Thermal Bridging Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thermal Bridges in Building Envelopes – an Overview of Impacts and Solutions
Int. Rev. Appl. Sci. Eng. 9 (2018) 1, 31–40 DOI: 10.1556/1848.2018.9.1.5 THERMAL BRIDGES IN BUILDING ENVELOPES – AN OVERVIEW OF IMPACTS AND SOLUTIONS A. ALHAWARI, P. MUKHOPADHYAYA* University of Victoria, Canada *E-mail: [email protected] Increasing building energy performance has become an obligatory objective in many countries. Thermal bridge is a major cause of poor energy performance, durability, and indoor air quality of buildings. This paper starts with a review of thermal bridges and their negative impacts on building energy effi ciency. Based on published literatures, various types of building thermal bridges are discussed in this paper, including the most effective solutions to diminish their impacts. In addition, various numerical and exper- imental studies on the balcony thermal bridge are explored. Results show that among all types of thermal bridges, the exposed bal- cony slab produces the most challenging thermal bridging problem where an integrated thermal and structural design is required. Using low thermal conductivity materials in building construction could help in reducing the impact of thermal bridges. Finally, further investigations are needed to develop more innovative and effective solutions for the balcony thermal bridge. Keywords: thermal bridges, thermal break, energy performance, balcony 1. Introduction ers. According to Passive House standards, the total heat transfer coeffi cient of opaque wall components in Globally, over the past decades, demand for energy cool climate zone must not exceed 0.15 W/(m2 K) [3]. is increasing rapidly every year and a signifi cant por- Various types of high energy effi cient walls, roofs, and tion of this demand is consumed by residential build- windows have been developed to reduce the buildings ings sector. -
Thermal Bridge Concepts
The Why of Psi The Why of Psi Workshop Presenters: for CertiPHIers Cooperative… o Chris Petit, CPHD, PHI-accredited Certifier Regenerative Design, LLC o Rolf Jacobson, LEED AP, CPHC Research Fellow, Center for Sustainable Building Research, U of M Copyright © 2017 Chris Petit and Rolf Jacobson. All rights reserved. No part of this presentation may be reproduced without written permission. Outline for the Course • Thermal Bridge Theory • Principles of thermal bridge modeling • Flixo orientation/walkthrough • Module 0 Warm up • Module 1 EQ Layers • Module 2 Wall Corner • Module 3 Brick Ledge • Module 4 Lintel 3 The Why of Psi Thermal Bridge Theory • Thermal bridge definition, types of TBs, and why controlling them is critical for super-insulated buildings. • Typical thermal bridge details and design techniques to reduce thermal bridge heat loss. • How to use and input psi values with the PHPP/ WUFI Passive 4 Section 1 – Background + Basics What is a thermal bridge? 5 Section 1 – Background + Basics What is a thermal bridge? Short answer: A discontinuity in the thermal envelope. 6 Section 1 – Background + Basics What is a thermal bridge? Short answer: A discontinuity in the thermal envelope. What types of discontinuities might there be in a thermal envelope? 7 Section 1 – Background + Basics What is a thermal bridge? Short answer: A discontinuity in the thermal envelope. What types of discontinuities might there be in a thermal envelope? • Repetitive bridges (studs, floor joists, rafters) • Material changes (windows, insulation) • Penetrations (pipes, fasteners) • Assembly junctions (roof to wall, wall to floor, etc) • Corners 8 Section 1 – Background + Basics Repetitive TBs Point TBs Linear TBs (penetrations) (assembly junctions) Should be accounted Usually use side Three types: for in calculation of calculators instead of 1) Structural (ex – rim assembly U-values in thermal bridge joists, prefab wall the PHPP modeling software. -
Thermal Transmittance (U-Value) Evaluation of Innovative Window Technologies
)XWXUH&LWLHV Aguilar-Santana, JL, et al. 2020. Thermal Transmittance (U-value) Evaluation of Innovative Window Technologies. Future Cities and DQG(QYLURQPHQW Environment, 6(1): 12, 1–13. DOI: https://doi.org/10.5334/fce.99 TECHNICAL ARTICLE Thermal Transmittance (U-value) Evaluation of Innovative Window Technologies Jorge Luis Aguilar-Santana, Mariana Velasco-Carrasco and Saffa Riffat Calculation of heat transfer in windows has a direct impact on the thermal transmittance on highly insulated glazing components. A series of experimental tests were carried out in order to calculate the U-value of active insulated windows using the Heat Flux Meter method (ISO 9869-1); this to compare the insulation properties of traditional single glass, double glazing with different aerogel fillings and vacuum glazing windows. The use of this heat flux method utilised an environmental chamber to provide a temperature difference of 15 °C reporting the U-values as follows: traditional double glazing 3.09 W/m2·K, vacuum glazing 1.12 W/m2·K, and double glazing with aerogel pillars 2.52 W/m2·K. On the other hand, double glazing with KGM wheat starch reported 3.40 W/m2·K, double glazing with granulated aerogel 2.07 W/m2·K and heat insula- tion solar glass 1.84 W/m2·K. Vacuum glazing recorded optimal results under these experimental conditions, describing a U-value 78 % lower when compared to traditional single glazing window units (5.15 W/m2·K). Installation of windows with lower thermal transmittance are expected to increase in the global market to meet the current construction codes, aimed for achieving net zero carbon buildings. -
Technical Paper 10 U-Values and Traditional Buildings
Conservation Group Technical Paper 10 U‐values and traditional buildings In situ measurements and their comparisons to calculated values Dr. Paul Baker (Glasgow Caledonian University) January 2011 Historic Scotland Technical Paper 10 The views expressed in the research report(s), presented in this Historic Scotland Technical Paper, are those of the researchers, and do not necessarily represent those of Historic Scotland. This paper is available as web publication on the Historic Scotland website: www.historic‐scotland.gov.uk/technicalpapers This paper should be quoted as ‘Historic Scotland Technical Paper 10’. Acknowledgements We like to thank Crichton Development Company Ltd, The Great Stewart of Scotland’s Dumfries House Trust, Lister Housing Association, The National Trust for Scotland, Reidvale Housing Association, and all the private building owners for the opportunities to carry out measurements in their properties. We also like to thank the building occupiers who shared their homes for two weeks with measurement sensors and data loggers. We also like to thank Dr. Caroline Rye for her help in developing this research further. Definitions U‐value (or thermal transmittance co‐efficient) is a measure of how much heat will pass through one square metre of a structure when the temperature on either side of the structure differs by 1 degree Celsius. The lower the U‐value, the better is the thermal performance of a structure. The U‐value is expressed in W/m2K. Page I Historic Scotland Technical Paper 10 U‐values and traditional buildings In situ measurements and their comparison to calculated values Contents Introduction by Historic Scotland …………………………………………………………………………… III Research report by Dr. -
Fundamentals of Thermal Bridging
Thermal Bridging: Small Details with a Large Impact Jay H. Crandell, P.E. ABTG / ARES Consulting Applied Building Technology Group (ABTG) is committed to using sound science and generally accepted engineering practice to develop research supporting the reliable design and installation of foam sheathing. ABTG’s educational program work with respect to foam sheathing is supported by the Foam Sheathing Committee (FSC) of the American Chemistry Council. ABTG is a professional engineering firm, an approved source as defined in Chapter 2 and independent as defined in Chapter 17 of the IBC. DISCLAIMER: While reasonable effort has been made to ensure the accuracy of the information presented, the actual design, suitability and use of this information for any particular application is the responsibility of the user. Where used in the design of buildings, the design, suitability and use of this information for any particular building is the responsibility of the Owner or the Owner’s authorized agent. Foam sheathing research reports, code compliance documents, educational programs and best practices can be found at www.continuousinsulation.org. Copyright © 2021 Applied Building Technology Group Outline . Types of Thermal Bridges & Implications . Design and Mitigation Concepts . Examples of Thermal Bridge Mitigation Strategies . Calculation Methods and Design Data . Design Example . Status of ASHRAE 90.1 Thermal Bridging Work . Conclusions . Bibliography (design resources) What is a thermal bridge? A thermal bridge is not a burning bridge, although both have something to do with heat transfer. Source: Steve Dadds; as published in azfamily.com by 3TV/CBS 5, posted Aug. 17, 2015. What do codes require? . Framing thermal bridges (studs, tracks, headers, etc.) are accounted for in the prescriptive R-values and U-factor calculations for individual assemblies (walls, roofs, floors, etc.) . -
Balcony and Slab Edge Thermal Bridges and Solutions on Effective R-Values and North American Energy Code Compliance
The Importance of Slab Edge & Balcony Thermal Bridges Report # 1 : Impact of Slab Thermal Breaks on Effective R-Values and Energy Code Compliance Prepared by Preparedby Ltd. RDHEngineering Building 2013 24, September Date The Importance of Slab Edge & Balcony Thermal Bridges Report # 1 - Impact on Effective R-Values and Energy Code Compliance Thermal bridging occurs when heat flow bypasses the insulated elements of the building enclosure. Bridging occurs through structural components such as the studs/plates, framing, and cladding supports as well as the larger columns, shear walls, and exposed floor slab edges and protruding balconies. While thermal bridging occurs through the roofs, floors, and below-grade assemblies, it is often most pronounced in above-grade wall assemblies. The heat flow through thermal bridges is significant and disproportionate to the overall enclosure area so that a seemingly well insulated building can often fail to meet energy code requirements, designer intent, or occupant expectations. Windows are often seen as the largest thermal bridge in buildings, as the thermal performance is often quite low compared to the surrounding walls (i.e., an R-2 metal frame window within an R-20 insulated wall); however, exposed concrete slab edges and balconies can have almost as large of an influence having effective R-values of approximately R-1. After accounting for windows and doors, exposed concrete slab edges and balconies can account for the second greatest source of thermal bridging in a multi-storey building. With a better understanding of the impacts of thermal bridging, the building industry has started to thermally improve building enclosures; for example, the use of exterior continuous insulation in walls is becoming more common. -
TRSYS01 Heat Flux Measurement System Brochure
Hukseflux Thermal Sensors TRSYS01 High-accuracy building thermal resistance measuring system with two measurement locations TRSYS01 is a high-accuracy system for on-site measurement of thermal resistance, R, thermal conductance, the Λ-value, and thermal transmittance, the U-value, of building envelopes. TRSYS01 is mostly used for measurements according to standard practices of ISO 9869 and ASTM C1155 / C1046. The system is equipped with high-accuracy electronics, two heat flux sensors of model HFP01 as well as two pairs of matched thermocouples. The two measurement locations provide redundancy, leading to a high level of confidence in the measurement result. The high accuracy of the heat flux sensors and temperature difference measurements ensures that TRSYS01 continues measuring when other systems no longer perform; in particular at very low temperature differences across the wall. Introduction On-site measurements of thermal resistance, R, are often applied in studies of buildings. Alternatives are to measure its inverse value, the thermal conductance which is called the Λ-value, or the thermal transmittance which includes ambient air boundary layer thermal resistance, the U-value. The measurements of R are based on simultaneous time averaged measurement of heat flux Φ and differential temperature, ΔT, (using two temperature sensors, each on a different side of the wall). R = ΔT / Φ The ISO and ASTM standards give detailed Figure 1 TRSYS01: the complete measuring system directions concerning the measurement method, includes 2 HFP01 heat flux sensors and 2 matched TC sensor installation and data analysis. thermocouple pairs (in total 4 temperature sensors) The TRSYS01 system employs dedicated sensors and the MCU01 measurement and control unit and electronics. -
Thermal Conductivity 1 Thermal Conductivity
Thermal conductivity 1 Thermal conductivity In physics, thermal conductivity, , is the property of a material's ability to conduct heat. It appears primarily in Fourier's Law for heat conduction. Thermal conductivity is measured in watts per kelvin-meter (W·K−1·m−1, i.e. W/(K·m) or in IP units (Btu·hr−1·ft−1·F−1, i.e. Btu/(hr·ft⋅F). Multiplied by a temperature difference (in kelvins, K) and an area (in square meters, m2), and divided by a thickness (in meters, m), the thermal conductivity predicts the rate of energy loss (in watts, W) through a piece of material. In the window building industry "thermal conductivity" is expressed as the U-Factor [1], which measures the rate of heat transfer and tells you how well the window insulates. U-factor values are generally recorded in IP units (Btu/(hr·ft⋅F)) and usually range from 0.15 to 1.25. The lower the U-factor, the better the window insulates. The reciprocal of thermal conductivity is thermal resistivity. Measurement There are a number of ways to measure thermal conductivity. Each of these is suitable for a limited range of materials, depending on the thermal properties and the medium temperature. There is a distinction between steady-state and transient techniques. In general, steady-state techniques are useful when the temperature of the material does not change with time. This makes the signal analysis straightforward (steady state implies constant signals). The disadvantage is that a well-engineered experimental setup is usually needed. The Divided Bar (various types) is the most common device used for consolidated rock samples. -
Thermal Bridging: Observed Impacts and Proposed Improvement for Common Conditions Andrea Love1, Charles Klee2
Thermal Bridging: Observed Impacts and Proposed Improvement for Common Conditions Andrea Love1, Charles Klee2 ABSTRACT This investigation seeks to quantify the effects of thermal bridging in commercial facades and then propose alternative solutions to improve performance. Utilizing infrared images taken from targeted assemblies at 15 recently completed buildings; we have calculated the actual performance of a range of façade types and conditions. We have compared these R-values with the theoretical, design intended R-values from drawings and specifications to quantify the discrepancy between design and actual performance. These differences were seen to range from greater than 70% less than the design intended R-value to those with negligible differences. This range shows the unintended impact that design details can have on thermal performance. Based on thousands of images collected, we identified 16 common areas of thermal bridging that was commonly observed in the buildings surveyed. Broken into two broad categories of façade systems and transitions/penetrations, they range from such systems as curtain walls and existing wall renovations to conditions such as parapets and transitions to foundation. Using 2- D heat transfer simulations, models of these conditions were also developed. These models in conjunction with the infrared images were used to verify and understand the thermal bridges observed, as well as exploration of improved detailing. The study proposes alternatives to industry standards that can provide enhanced thermal performance. The outcome of this research is a better understanding of thermal performance of commercial facades in order to help architects and building professionals understand the real impact of common thermal bridges and present alternatives to the industry standards that enhanced performance. -
Framework for the Detection, Diagnosis, and Evaluation of Thermal Bridges Using Infrared Thermography and Unmanned Aerial Vehicles
Article Framework for the Detection, Diagnosis, and Evaluation of Thermal Bridges Using Infrared Thermography and Unmanned Aerial Vehicles Albert Ficapal and Ivan Mutis * Illinois Institute of Technology, Chicago, IL 60616, USA * Correspondence: [email protected]; Tel.: +1.312.567.3808 Received: 1 July 2019; Accepted: 30 July 2019; Published: 1 August 2019 Abstract: The glass curtain wall system is an architectural, functional innovation where failures of insulation systems create areas of reduced resistance to heat transfer—thermal bridges—during a building’s operational lifetime. These failures enable energy flows that trigger unanticipated temperature changes and increased energy consumption, ultimately damaging the façade structure and directly impacting occupants. Our study aims to design and test an innovative method for rapidly identifying thermal bridges in façade systems, with minimum or no occupant disturbance. The research focus is in the classification of damage as either a local failure or as being related to a poor systematic construction/assembly. A nontraditional approach is adopted to survey an entire fully operational building using infrared thermography and an unmanned aerial vehicle (UAV) using a noncontact infrared camera mounted on and operated from the UAV. The system records the emissivity of the façade materials and calculates the thermal radiation to estimate localized temperatures. The system records thermal radiation readings which are analyzed using graphs to be compared with the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) standards, under ideal conditions using the THERM software. The results enable discussion relating to the most common failure areas for existing structures, facilitating the identification of focus areas for the improvement of construction methods through improved processes. -
Thermal Bridges at Foundations
Thermal bridges at foundations Evaluation of heat calculation methods Master’s Thesis in the Master’s Programme Structural Engineering and Building Performance Design HANNES NYBERG Department of Civil and Environmental Engineering Division of Building Technology Building Physics CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2011 Master’s Thesis 2011:146 MASTER’S THESIS 2011:146 Thermal bridges at foundations Evaluation of heat calculation methods Master’s Thesis in the Master’s Programme Structural Engineering and Building Performance Design HANNES NYBERG Department of Civil and Environmental Engineering Division of Building Technology Building Physics CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2011 Thermal bridges at foundations Evaluation of heat calculation methods Master’s Thesis in the Master’s Programme Structural Engineering and Building Performance Design HANNES NYBERG © HANNES NYBERG, 2011 Examensarbete 2011:146 Chalmers tekniska högskola Department of Civil and Environmental Engineering Division of Building Technology Building Physics Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Cover: Example of 3D-analysis of thermal bridges in a basement wall-floor junction, made in HEAT3. Chalmers Reproservice Göteborg, Sweden 2011 Thermal bridges at foundations Evaluation of heat calculation methods Master’s Thesis in the Master’s Programme Structural Engineering and Building Performance Design HANNES NYBERG Department of Civil and Environmental Engineering Division of Building Technology Building Physics Chalmers University of Technology ABSTRACT As the need of low-energy buildings and plus-houses increases in Sweden, the importance of knowing a building’s energy consumption increases as well. When looking at a building’s total energy consumption, one needs to know the heat exchange between the building and its environment. -
Q.9 Thermal Bridge Free Design - Three Locations
Q.9 Thermal bridge free design - three locations Floor detail – such as • a thermal/cold bridge is an area of a building that has a higher heat transfer than the surrounding materials, resulting in a reduction in thermal insulation of the building • thermal bridging reduces energy efficiency and thermal comfort • thermal bridging is prevented by careful design - to achieve uniform thermal resistance, with no thermal breaks, and continuous insulation • best practice - a perimeter 80 mm insulation strip installed up to floor level • ensure wall insulation is carried down at least 225mm below the top of the finished floor. Head of window opening - such as • 250mm full-fill cavity insulation • 60mm cavity closer • internal concrete lintel 25mm above external lintel to allow for insulation wrapping the window frame • 15mm insulation overlapping window frame • insulated plasterboard finish to reveal. Window cill - such as • insulation at back of cill to prevent cold bridge • high density proprietary cavity closer for fireproofing • cill does not bridge cavity • triple-glazed window to Passive House standard - 0.8W/m2 K or equivalent • 60 mm cavity closer • 250mm full-fill cavity insulation • airtightness tape to window frame. Ground floors abutting external walls - such as • cavity insulation • 80 mm insulation between concrete floor slab and inner leaf of wall • 150 – 300 mm insulation between floor slab and subfloor • 100 mm aac – autoclaved aerated concrete – blocks below ground level. Junction of upper floors and external walls - such as • joist to hang on inside leaf, no penetration of leaf and cavity • wall plastered to increase airtightness • resin anchored bolts to support floor joists – see sketch • joists supported on metal hangers .