Developmental Biology 399 (2015) 164–176

Total Page:16

File Type:pdf, Size:1020Kb

Developmental Biology 399 (2015) 164–176 Developmental Biology 399 (2015) 164–176 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology The requirement of histone modification by PRDM12 and Kdm4a for the development of pre-placodal ectoderm and neural crest in Xenopus Shinya Matsukawa a, Kyoko Miwata b, Makoto Asashima b, Tatsuo Michiue a,n a Department of Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan b Research Center for Stem Cell Engineering National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba City, Ibaraki, Japan article info abstract Article history: In vertebrates, pre-placodal ectoderm and neural crest development requires morphogen gradients and Received 6 September 2014 several transcriptional factors, while the involvement of histone modification remains unclear. Here, we Received in revised form report that histone-modifying factors play crucial roles in the development of pre-placodal ectoderm 21 November 2014 and neural crest in Xenopus. During the early neurula stage, PRDM12 was expressed in the lateral pre- Accepted 23 December 2014 placodal ectoderm and repressed the expression of neural crest specifier genes via methylation of Available online 6 January 2015 histone H3K9. ChIP-qPCR analyses indicated that PRDM12 promoted the occupancy of the trimethylated Keywords: histone H3K9 (H3K9me3) on the Foxd3, Slug, and Sox8 promoters. Injection of the PRDM12 MO inhibited fi Histone modi cation the expression of presumptive trigeminal placode markers and decreased the occupancy of H3K9me3 on PRDM12 the Foxd3 promoter. Histone demethylase Kdm4a also inhibited the expression of presumptive Kdm4a trigeminal placode markers in a similar manner to PRDM12 MO and could compensate for the effects Pre-placodal ectoderm Neural crest of PRDM12. ChIP-qPCR analyses revealed that promotion of the occupancy of H3K9me3 on the Foxd3, Xenopus Slug, and Sox8 promoters was inhibited by Kdm4a overexpression. Taken together, these data indicate that histone modification was essential for pre-placodal ectoderm and neural crest development. & 2015 Elsevier Inc. All rights reserved. Introduction the competence to form pre-placodal ectoderm (Pieper et al., 2012). Indeed, Dlx3 overexpression reduced the expressions of In the vertebrate embryo, the neural plate border is thought to neural plate genes, neural plate border genes, and neural crest be formed by the intermediate activation of bone morphogenetic genes, whereas the injection of Dlx3 morpholino oligomer (MO) protein (BMP) signaling to induce several neural plate border genes expanded their expression (Pieper et al., 2012). (Dincer et al., 2013; Reichert et al., 2013; Tribulo et al., 2003). The On the other hand, a previous report showed that a neural plate border region then further separates into the pre-placodal ectoderm border gene, Msx1, was important for neural crest specification and neural crest, with the former segregating into individual cranial (Monsoro-Burq et al., 2005). A gain-of-function experiment using placodes, such as the adenohypophyseal, olfactory, lens, trigeminal, the Msx1-GR construct showed that Msx1 could induce the lateral line, otic, and epibranchial placodes (reviewed in Baker and expression of several neural crest specifier genes (Tribulo et al., Bronner-Fraser, 2001; Saint-Jeannet and Moody, 2014; Schlosser, 2003). Another study suggested that some neural crest cells could 2010). In contrast, the neural crest differentiates into the peripheral be induced by co-expression of Msx1 and Pax3 in Xenopus animal nervous system, adrenal medulla, melanocytes, facial cartilage, and cap cells in the presence of Wnt and fibroblast growth factor (FGF) tooth dentine (reviewed in Grenier et al., 2009; Minoux and Rijli, signaling (Monsoro-Burq et al., 2005). In the animal cap cells 2010; Steventon et al., 2014; Theveneau and Mayor, 2012). injected with Noggin, Msx1 overexpression could also activate the Pre-placodal ectoderm development requires the expression of expression of Pax3 and Zic1, which play important roles in the a neural plate border gene, Dlx3 (Hans et al., 2004; Kaji and induction and formation of functional neural crest cells (Milet Artinger, 2004; Woda et al., 2003). Dlx3 is regulated by BMP et al., 2013; Monsoro-Burq et al., 2005; Sato et al., 2005). signaling and promotes the expression of pre-placodal ectoderm A boundary formation between the pre-placodal ectoderm and specifier genes such as Six1 and Eya1, known as pan-placodal neural crest may rely on the expression levels of Dlx and Msx, markers (Woda et al., 2003). A recent study also indicated that whose proteins can bind to each other and form an inhibitory Dlx3 expression in nonneural ectoderm was required for acquiring complex (Zhang et al., 1997). Pre-placodal ectoderm genes could be induced by the high transcriptional activity of Dlx (Pieper et al., 2012), whereas neural crest genes were induced by that of Msx n Corresponding author. (Monsoro-Burq et al., 2005). These mutual inhibitions may con- E-mail address: [email protected] (T. Michiue). tribute to the boundary formation between early pre-placodal http://dx.doi.org/10.1016/j.ydbio.2014.12.028 0012-1606/& 2015 Elsevier Inc. All rights reserved. S. Matsukawa et al. / Developmental Biology 399 (2015) 164–176 165 ectoderm and neural crest. However, a recent study showed that 53%, n¼49; compare Fig. 2B with C). As melanocytes are derived neural crest region did not expand to the pre-placodal ectoderm from neural crest cells, whether the injection of PRDM12 also region in the embryo injected with Dlx3 MO (Pieper et al., 2012), inhibited early neural crest differentiation was tested. At the early and thus another mechanism likely determines the boundary. neurula stage, PRDM12 overexpression significantly reduced the A recent study implicated the epigenetic factor Kdm4a, which expression of several neural crest markers such as Foxd3, Slug, and acts as a histone demethylase, was expressed in the neural crest Sox9 (repression in 73%, n¼26, 75%, n¼36, 67%, n¼24, respec- region of chick embryos (Strobl-Mazzulla et al., 2010). We hypothe- tively Fig. 2D–I), whereas expression patterns of the pre-placodal sized that histone modification for transcriptional regulation was markers Islet1 and Six1, and neural marker Sox2, were not affected required for pre-placodal ectoderm and neural crest patterning, and (no repression in 86%, n¼22, 94%, n¼33, 95%, n¼21, respectively focused on histone-modifying enzymes expressed in pre-placodal Fig. 2J–O). A recent study revealed that neural crest cells were ectoderm. To investigate which histone methyltransferases could be induced by both antagonizing BMP and promoting late Wnt involved with pre-placodal ectoderm development, we performed a signaling (Sato et al., 2005). Thus, neural crest cell induction can β-catenin-dependent microarray analysis (Tanibe et al., 2008)and be mimicked by co-injection of Chd and Wnt8 mRNAs in animal identified PRDM12, a member of the PRDM family of histone cap cells (Sato et al., 2005). RT-PCR indicated that PRDM12 over- methyltransferase factors. PRDM12 was expressed in the parietal expression in Chd- and Wnt8-injected animal cap cells inhibited region of the central nervous system and cranial placode in the expression of several neural crest markers in a dose- zebrafish and mouse embryos (Kinameri et al., 2008; Sun et al., dependent manner (Fig. 2P, lanes 4–6). PRDM12 contains a PR/ 2008), and regulated cell proliferation in P19 cells (Yang and SET domain that is probably related to histone methylation and Shinkai, 2013). However, the importance of PRDM12 in embryonic multiple zinc-finger domains (Fig. 2A). Generally, histone methyl- development remains largely unknown. In this study, we demon- transferase acts either as a positive regulator of transcription by strate the role of PRDM12 during early Xenopus development and methylating histone H3 at lysine 4 (H3K4) or as a negative the requirement of histone modification by PRDM12 and Kdm4a for regulator via methylation of histone H3 at lysine 9 (H3K9) or pre-placodal ectoderm and neural crest development. lysine 27 (H3K27) (reviewed in Zentner and Henikoff, 2013). To test whether PRDM12 acts as a positive or negative regulator, Western blotting analysis using each anti-trimethylated lysine Results antibody was performed, which indicated that PRDM12 induced the trimethylation of H3K9 (H3K9me3) in a dose-dependent PRDM12 is expressed in the lateral pre-placodal ectoderm after the manner, but not H3K4 and H3K27 (Fig. 2Q). These results demon- gastrula stage and is regulated by BMP and late Wnt signaling strated that PRDM12 played an inhibitory role in neural crest gene expression and promoted the H3K9me3. Following a previous First, the expression of Xenopus PRDM12 was investigated by study (de Souza et al., 1999), two fusion constructs, VP16-PRDM12 reverse transcription-polymerase chain reaction (RT-PCR) and and EnR-PRDM12, were made (Supplementary Fig. S2A). Micro- whole-mount in situ hybridization (WISH) analyses. PRDM12 was injection with VP16-PRDM12 increased the number of melanocytes zygotically expressed after the late gastrula stage (Fig. 1A) and was and induced several neural crest markers in animal cap cells detected at the lateral pre-placodal ectoderm in the early neurula (Supplementary Fig. S2B, C and F). In contrast, EnR-PRDM12 embryo (Fig. 1B). In the mid-neurula stage, PRDM12 expression decreased pigmentation and repressed several neural crest mar- was also observed in the two stripes of neural plate (Fig. 1C) and kers in Chd- and Wnt-injected animal cap cells, as observed in the was partially co-localized with the lateral expression regions of embryos or animal cap cells injected with PRDM12-WT (Supple- Six1, Pax3, Islet1, and Pax6 (Fig. 1D and E; Supplementary Fig. S1A– mentary Fig. S2D, E and G). Because the effects of EnR-PRDM12 C), but not Foxd3 and Six3 (Fig. 1F and G; Supplementary Fig. S1D). were similar to those of PRDM12-WT, PRDM12 could act as a Wnt and BMP signaling alter the expression of pre-placodal negative regulator for the target gene transcription.
Recommended publications
  • A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2007-12-28 A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs: a Dissertation Frederick Albert Schroeder University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Amino Acids, Peptides, and Proteins Commons, Cells Commons, Enzymes and Coenzymes Commons, Genetic Phenomena Commons, Mental Disorders Commons, Nervous System Commons, and the Therapeutics Commons Repository Citation Schroeder FA. (2007). A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs: a Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/7bk0-a687. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/370 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. A Dissertation Presented by Frederick Albert Schroeder Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences Worcester, Massachusetts, USA in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 28, 2007 Program in Neuroscience A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs A Dissertation Presented By Frederick Albert Schroeder Approved as to style and content by: _____________________________________ Alonzo Ross, Ph.D., Chair of Committee _____________________________________ Pradeep Bhide, Ph.D., Member of Committee _____________________________________ Craig L.
    [Show full text]
  • Viewed in [2, 3])
    Yildiz et al. Neural Development (2019) 14:5 https://doi.org/10.1186/s13064-019-0129-x RESEARCH ARTICLE Open Access Zebrafish prdm12b acts independently of nkx6.1 repression to promote eng1b expression in the neural tube p1 domain Ozge Yildiz1, Gerald B. Downes2 and Charles G. Sagerström1* Abstract Background: Functioning of the adult nervous system depends on the establishment of neural circuits during embryogenesis. In vertebrates, neurons that make up motor circuits form in distinct domains along the dorsoventral axis of the neural tube. Each domain is characterized by a unique combination of transcription factors (TFs) that promote a specific fate, while repressing fates of adjacent domains. The prdm12 TF is required for the expression of eng1b and the generation of V1 interneurons in the p1 domain, but the details of its function remain unclear. Methods: We used CRISPR/Cas9 to generate the first germline mutants for prdm12 and employed this resource, together with classical luciferase reporter assays and co-immunoprecipitation experiments, to study prdm12b function in zebrafish. We also generated germline mutants for bhlhe22 and nkx6.1 to examine how these TFs act with prdm12b to control p1 formation. Results: We find that prdm12b mutants lack eng1b expression in the p1 domain and also possess an abnormal touch-evoked escape response. Using luciferase reporter assays, we demonstrate that Prdm12b acts as a transcriptional repressor. We also show that the Bhlhe22 TF binds via the Prdm12b zinc finger domain to form a complex. However, bhlhe22 mutants display normal eng1b expression in the p1 domain. While prdm12 has been proposed to promote p1 fates by repressing expression of the nkx6.1 TF, we do not observe an expansion of the nkx6.1 domain upon loss of prdm12b function, nor is eng1b expression restored upon simultaneous loss of prdm12b and nkx6.1.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • Cross-Modulatory Actions of Cell Cycle Machinery on Estrogen Receptor-Α Level and Transcriptional Activity in Breast Cancer Cells
    CROSS-MODULATORY ACTIONS OF CELL CYCLE MACHINERY ON ESTROGEN RECEPTOR-α LEVEL AND TRANSCRIPTIONAL ACTIVITY IN BREAST CANCER CELLS BY SHWETA BHATT DISSERTATION Submitted In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biochemistry in the Graduate College of the University of Illinois at Urbana-Champaign, 2010 Urbana, Illinois Doctoral Committee: Professor Benita S. Katzenellenbogen (Chair) Professor David J. Shapiro Professor Milan K. Bagchi Professor Paul J. Hergenrother THESIS ABSTRACT Breast cancer is one of the most highly diagnosed cancers in women and the second largest cause of death of women in United States. The anti-estrogen tamoxifen which blocks gene expression through estradiol bound ERα, and hence the growth stimulatory effects of estradiol, has been widely used for decades for treating patients with ERα positive or hormone dependent breast cancer. Despite its obvious benefits, in as high as 40% of the patients receiving tamoxifen therapy there is an eventual relapse of the disease largely due to acquired resistance to the drug, underlying mechanism for which is rather poorly understood. Elucidating the molecular basis underlying “acquired tamoxifen resistance” and agonistic effects of tamoxifen on cellular growth was the primary focus of my doctoral research. We addressed this by two approaches, one being studying the molecular mechanism for the regulation of cellular levels of ERα so as to prevent its loss in ERα positive or restore its levels in ERα negative breast cancers and second to investigate the role of tamoxifen in modulating the expression of ERα target genes independent of estradiol as a function of its stimulatory or estrogenic effects on breast cancer cell growth.
    [Show full text]
  • To Proliferate Or to Die: Role of Id3 in Cell Cycle Progression and Survival of Neural Crest Progenitors
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press To proliferate or to die: role of Id3 in cell cycle progression and survival of neural crest progenitors Yun Kee and Marianne Bronner-Fraser1 Division of Biology, California Institute of Technology, Pasadena, California 91125, USA The neural crest is a unique population of mitotically active, multipotent progenitors that arise at the vertebrate neural plate border. Here, we show that the helix–loop–helix transcriptional regulator Id3 has a novel role in cell cycle progression and survival of neural crest progenitors in Xenopus. Id3 is localized at the neural plate border during gastrulation and neurulation, overlapping the domain of neural crest induction. Morpholino oligonucleotide-mediated depletion of Id3 results in the absence of neural crest precursors and a resultant loss of neural crest derivatives. This appears to be mediated by cell cycle inhibition followed by cell death of the neural crest progenitor pool, rather than a cell fate switch. Conversely, overexpression of Id3 increases cell proliferation and results in expansion of the neural crest domain. Our data suggest that Id3 functions by a novel mechanism, independent of cell fate determination, to mediate the decision of neural crest precursors to proliferate or die. [Keywords: Xenopus; Id3; neural crest; cell cycle; survival] Received September 1, 2004; revised version accepted January 19, 2005. The neural crest is an embryonic cell population that origi- et al. 2003), c-Myc (Bellmeyer et al. 2003), and Msx1 nates from the lateral edges of the neural plate during (Tribulo et al. 2003) have been identified in Xenopus nervous system formation.
    [Show full text]
  • Whole-Genome Cartography of Estrogen Receptor a Binding Sites
    Whole-Genome Cartography of Estrogen Receptor a Binding Sites Chin-Yo Lin1[¤, Vinsensius B. Vega1[, Jane S. Thomsen1, Tao Zhang1, Say Li Kong1, Min Xie1, Kuo Ping Chiu1, Leonard Lipovich1, Daniel H. Barnett2, Fabio Stossi2, Ailing Yeo3, Joshy George1, Vladimir A. Kuznetsov1, Yew Kok Lee1, Tze Howe Charn1, Nallasivam Palanisamy1, Lance D. Miller1, Edwin Cheung1,3, Benita S. Katzenellenbogen2, Yijun Ruan1, Guillaume Bourque1, Chia-Lin Wei1, Edison T. Liu1* 1 Genome Institute of Singapore, Singapore, Republic of Singapore, 2 Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor a (ERa) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERa binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (.5 kb from 59 and 39 ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERa binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERa-positive from ERa-negative breast tumors.
    [Show full text]
  • Onset of Taste Bud Cell Renewal Starts at Birth and Coincides with a Shift In
    RESEARCH ARTICLE Onset of taste bud cell renewal starts at birth and coincides with a shift in SHH function Erin J Golden1,2, Eric D Larson2,3, Lauren A Shechtman1,2, G Devon Trahan4, Dany Gaillard1,2, Timothy J Fellin1,2, Jennifer K Scott1,2, Kenneth L Jones4, Linda A Barlow1,2* 1Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States; 2The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States; 3Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, United States; 4Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States Abstract Embryonic taste bud primordia are specified as taste placodes on the tongue surface and differentiate into the first taste receptor cells (TRCs) at birth. Throughout adult life, TRCs are continually regenerated from epithelial progenitors. Sonic hedgehog (SHH) signaling regulates TRC development and renewal, repressing taste fate embryonically, but promoting TRC differentiation in adults. Here, using mouse models, we show TRC renewal initiates at birth and coincides with onset of SHHs pro-taste function. Using transcriptional profiling to explore molecular regulators of renewal, we identified Foxa1 and Foxa2 as potential SHH target genes in lingual progenitors at birth and show that SHH overexpression in vivo alters FoxA1 and FoxA2 expression relevant to taste buds. We further bioinformatically identify genes relevant to cell adhesion and cell *For correspondence: locomotion likely regulated by FOXA1;FOXA2 and show that expression of these candidates is also LINDA.BARLOW@CUANSCHUTZ. altered by forced SHH expression.
    [Show full text]
  • Genetic Network During Neural Crest Induction: from Cell Specification to Cell Survival
    Seminars in Cell & Developmental Biology 16 (2005) 647–654 Review Genetic network during neural crest induction: From cell specification to cell survival a a a,b,c, Ben Steventon , Carlos Carmona-Fontaine , Roberto Mayor ∗ a Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK b Millennium Nucleus in Developmental Biology, Universidad de Chile, Chile c Fundaci´on Ciencia Para la Vida, Chile Available online 5 August 2005 Abstract The concerted action of extracellular signals such as BMP, Wnt, FGF, RA and Notch activate a genetic program required to transform a na¨ıve ectodermal cell into a neural crest cell. In this review we will analyze the extracellular signals and the network of transcription factors that are required for this transformation. We will propose the division of this complex network of factors in two main steps: an initial cell specification step followed by a maintenance or cell survival step. © 2005 Elsevier Ltd. All rights reserved. Keywords: Neural crest; Genetic cascade; Cell survival; Wnt; FGF; BMP; Retinoic acid Contents 1. Introduction ........................................................................................................ 647 2. Extracellular Cell Signalling during neural crest induction............................................................... 648 3. Early genetic network involved in Cell Specification of the neural crest ................................................... 649 4. Specific neural crest genes involved in Cell Survival ...................................................................
    [Show full text]
  • In Vitro Differentiation of Human Skin-Derived Cells Into Functional
    cells Article In Vitro Differentiation of Human Skin-Derived Cells into Functional Sensory Neurons-Like Adeline Bataille 1 , Raphael Leschiera 1, Killian L’Hérondelle 1, Jean-Pierre Pennec 2, Nelig Le Goux 3, Olivier Mignen 3, Mehdi Sakka 1, Emmanuelle Plée-Gautier 1,4 , Cecilia Brun 5 , Thierry Oddos 5, Jean-Luc Carré 1,4, Laurent Misery 1,6 and Nicolas Lebonvallet 1,* 1 EA4685 Laboratory of Interactions Neurons-Keratinocytes, Faculty of Medicine and Health Sciences, University of Western Brittany, F-29200 Brest, France; [email protected] (A.B.); [email protected] (R.L.); [email protected] (K.L.); [email protected] (M.S.); [email protected] (E.P.-G.); [email protected] (J.-L.C.); [email protected] (L.M.) 2 EA 4324 Optimization of Physiological Regulation, Faculty of Medicine and Health Sciences, University of Western Brittany, F-29200 Brest, France; [email protected] 3 INSERM UMR1227 B Lymphocytes and autoimmunity, University of Western Brittany, F-29200 Brest, France; [email protected] (N.L.G.); [email protected] (O.M.) 4 Department of Biochemistry and Pharmaco-Toxicology, University Hospital of Brest, 29609 Brest, France 5 Johnson & Johnson Santé Beauté France Upstream Innovation, F-27100 Val de Reuil, France; [email protected] (C.B.); [email protected] (T.O.) 6 Department of Dermatology, University Hospital of Brest, 29609 Brest, France * Correspondence: [email protected]; Tel.: +33-2-98-01-21-81 Received: 23 March 2020; Accepted: 14 April 2020; Published: 17 April 2020 Abstract: Skin-derived precursor cells (SKPs) are neural crest stem cells that persist in certain adult tissues, particularly in the skin.
    [Show full text]
  • Transcriptional Regulator PRDM12 Is Essential for Human Pain
    LETTERS Transcriptional regulator PRDM12 is essential for human pain perception Ya-Chun Chen1,2,52, Michaela Auer-Grumbach3,52, Shinya Matsukawa4, Manuela Zitzelsberger5, Andreas C Themistocleous6,7, Tim M Strom8,9, Chrysanthi Samara10, Adrian W Moore11, Lily Ting-Yin Cho12, Gareth T Young12, Caecilia Weiss5, Maria Schabhüttl3, Rolf Stucka5, Annina B Schmid6,13, Yesim Parman14, Luitgard Graul-Neumann15, Wolfram Heinritz16,17, Eberhard Passarge17,18, Rosemarie M Watson19, Jens Michael Hertz20, Ute Moog21, Manuela Baumgartner22, Enza Maria Valente23, Diego Pereira24, Carlos M Restrepo25, Istvan Katona26, Marina Dusl5, Claudia Stendel5,27, Thomas Wieland8, Fay Stafford1,2, Frank Reimann28, Katja von Au29, Christian Finke30, Patrick J Willems31, Michael S Nahorski1,2, Samiha S Shaikh1,2, Ofélia P Carvalho1,2, Adeline K Nicholas2, Gulshan Karbani32, Maeve A McAleer19, Maria Roberta Cilio33,34, John C McHugh35, Sinead M Murphy36,37, Alan D Irvine19,38, Uffe Birk Jensen39, Reinhard Windhager3, Joachim Weis26, Carsten Bergmann40–42, Bernd Rautenstrauss5,43, Jonathan Baets44–46, Peter De Jonghe44–46, Mary M Reilly47, Regina Kropatsch48, Ingo Kurth49, Roman Chrast9,50,51, Tatsuo Michiue4, David L H Bennett6, C Geoffrey Woods1,2 & Jan Senderek5 Pain perception has evolved as a warning mechanism to alert exome sequencing on the index patient of family A and the unre- organisms to tissue damage and dangerous environments1,2. lated single CIP patient from family B. Although exome sequenc- In humans, however, undesirable, excessive or chronic pain ing of the subject from family A yielded no obvious pathogenic is a common and major societal burden for which available variant in genes located in the autozygous region on chromosome 9, medical treatments are currently suboptimal3,4.
    [Show full text]
  • Lncrna FOXD3-AS1 Promoted Chemo-Resistance of NSCLC Cells
    Zeng et al. Cancer Cell Int (2020) 20:350 https://doi.org/10.1186/s12935-020-01402-9 Cancer Cell International PRIMARY RESEARCH Open Access LncRNA FOXD3-AS1 promoted chemo-resistance of NSCLC cells via directly acting on miR-127-3p/MDM2 axis Zhaolong Zeng1,2†, Guofang Zhao1,2†, Huangkai Zhu3†, Liangqin Nie4, Lifeng He1, Jiangtao Liu5, Rui Li1, Shuai Xiao1 and Gang Hua1* Abstract Background: This study aims to investigate the mechanism underlying the high level of long non-coding RNA FOXD3-AS1 in cisplatin-resistant NSCLC cells. Methods: Cisplatin-resistant cells were generated from A549 cells. CCK-8 were used to evaluate cell proliferation. The FOXD3-AS1, miR-127-3p, MDM2 and MRP1 mRNA expression levels were confrmed by qRT-PCR. Protein levels of MDM2 and MRP1 were determined by western blot assay. Luciferase reporter and RNA pull-down assays were evalu- ated the relationship between miR-127-3p and FOXD3-AS1/MDM2. In vivo tumor growth was evaluated in a xeno- graft nude mice model. Results: FOXD3-AS1 was up-regulated in cisplatin-resistant NSCLC cells (A549/DDP and H1299/DDP cells) in com- parison with their parental cell lines. Overexpression of FOXD3-AS1 promoted cisplatin-resistance in A549 and H1299 cells; while FOXD3-AS1 knockdown sensitized A549/DDP and H1299/DDP cells to cisplatin treatment. FOXD3-AS1 reg- ulated miR-127-3p expression by acting as a competing endogenous RNA, and miR-127-3p repressed MDM2 expres- sion via targeting the 3′UTR. MiR-127-3p overexpression and MDM2 knockdown both increased the chemo-sensitivity in A549/DDP cells; while miR-127-3p knockdown and MDM2 overexpression both promoted chemoresistance in A549 cells.
    [Show full text]