Biostratigraphic Reappraisal of the Lower Triassic Sanga Do Cabral

Total Page:16

File Type:pdf, Size:1020Kb

Biostratigraphic Reappraisal of the Lower Triassic Sanga Do Cabral Journal of South American Earth Sciences 79 (2017) 281e296 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames Biostratigraphic reappraisal of the Lower Triassic Sanga do Cabral Supersequence from South America, with a description of new material attributable to the parareptile genus Procolophon * Sergio Dias-da-Silva a, , Felipe L. Pinheiro b, Atila Augusto Stock Da-Rosa c, Agustín G. Martinelli d, Cesar L. Schultz d, Eduardo Silva-Neves a, e, Sean P. Modesto f a Centro de Apoio a Pesquisa Paleontologica da Quarta Colonia,^ Universidade Federal de Santa Maria, Rua Maximiliano Vizotto, 598, Sao~ Joao~ do Pol^esine, Rio Grande do Sul, CEP: 97-230-000, Brazil b Laboratorio de Paleobiologia, Universidade Federal do Pampa, Av. Antonio Trilha, 1847, Sao~ Gabriel, Rio Grande do Sul, Brazil c Laboratorio de Estratigrafia e Paleobiologia, Departamento de Geoci^encias, Centro de Ci^encias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP: 97.105-900, Brazil d Departamento de Paleontologia e Estratigrafia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, CEP: 91540-000, Brazil e Programa de Pos-Graduaç ao~ em Biodiversidade Animal, Universidade Federal de Santa Maria, RS, CEP: 97.105-900, Brazil f Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada article info abstract Article history: The Sanga do Cabral Supersequence (SCS), comprises the Brazilian Sanga do Cabral Formation (SCF) and Received 8 June 2017 the Uruguayan Buena Vista Formation (BVF). So far, the SCS has yielded temnospondyls, parareptiles, Received in revised form archosauromorphs, putative synapsids, and a number of indeterminate specimens. In the absence of 20 July 2017 absolute dates for these rocks, a biostratigraphic approach is necessary to establish the ages of the SCF Accepted 26 July 2017 and the BVF. It is well established that the SCF is Early Triassic mainly due to the presence of the Available online 29 July 2017 widespread Gondwanan reptile Procolophon trigoniceps. Conversely, the age of the BVF is subject of great controversy, being regarded alternatively as Permian, Permo-Triassic, and Early Triassic. The BVF has Keywords: fi Gondwana yielded the de nite procolophonid Pintosaurus magnidentis. Procolophonoidea is one of the most diverse Sanga do Cabral Supersequence and conspicuous terrestrial tetrapod groups of the Lower Triassic Lystrosaurus Assemblage Zone in the Triassic Karoo Basin of South Africa, which preserves tetrapods from the aftermath of the end-Permian extinction Temnospondyli event. Based on a previous interpretation that the fauna of the BVF is Permian, and in the reinterpretation Procolophonidae of disarticulated vertebrae from SCF with ‘swollen’ neural arches as belonging to either seymour- Archosauromorpha iamorphs or diadectomorphs, it was recently suggested that at least part of the SCF is Permian in age, which prompted this comprehensive reevaluation of both SCS's faunal content and geology. Moreoever, new, strikingly large procolophonid specimens (skull, vertebra, and a mandibular fragment) from the SCF are described and referred to the genus Procolophon. The large procolophonid vertebra described here contradicts the recent hypothesis that similar specimens from the SCF belong to seymouriamorphs or diadectomorphs, because its morphology is consistent with that found in Procolophon. There is not a single diagnostic specimen that supports the inference of Permian levels in the SCS. Accordingly, because all diagnostic and biostratigraphically informative fossils from the SCF and the BVF are either Early Triassic or restricted to the Triassic, we conclude that the available biostratigraphic data reinforce an Early Triassic age assignment to the SCS. © 2017 Elsevier Ltd. All rights reserved. 1. Introduction Uruguayan Buena Vista Formation (BVF), is crucial to the under- standing of the biotic recovery that followed the greatest biological The Western Gondwanan Sanga do Cabral Supersequence (SCS), crisis in the history of Earth, the end-Permian extinction event. The including the Brazilian Sanga do Cabral Formation (SCF) and the SCF is traditionally considered Early Triassic, an age assignment mainly due to the presence of the widespread Gondwanan reptile * Corresponding author. Procolophon trigoniceps (Dias-da-Silva et al., 2006a; Cisneros, E-mail address: [email protected] (S. Dias-da-Silva). http://dx.doi.org/10.1016/j.jsames.2017.07.012 0895-9811/© 2017 Elsevier Ltd. All rights reserved. 282 S. Dias-da-Silva et al. / Journal of South American Earth Sciences 79 (2017) 281e296 2008a). The age of the BVF, however, has been subject of great Federal do Pampa (UNIPAMPA), Sao~ Gabriel, RS, Brazil; UFSM, controversy because it has been alternatively regarded as Permian, Laboratorio de Estratigrafia e Paleobiologia, Universidade Federal Permo-Triassic, and Early Triassic (Pineiro~ et al., 2003, 2004, 2007a, de Santa Maria (UFSM), Santa Maria, RS, Brazil. b, c; Dias-da-Silva et al., 2006a; Modesto and Botha-Brink, 2010). In line with a previous interpretation that the fauna of the BVF is 2. Geology and biostratigraphic reappraisal Permian, together with a reinterpretation of disarticulated verte- brae from SCF with ‘swollen’ neural arches as attributable to either 2.1. Geology and geochronology seymouriamorphs or diadectomorphs, it was suggested recently that at least part of the SCF is Permian in age (Pineiro~ et al., 2015). If The Sanga do Cabral Supersequence (SCS) comprises the Bra- correct, it implies that the Permo-Triassic boundary lies within the zilian Sanga do Cabral Formation (SCF) and the Uruguayan Buena SCF, which would make the SCF fauna critical to analyses of Vista Formation (BVF) (Zerfass et al., 2003). Based upon its tetrapod tetrapod survivorship of the end-Permian extinction event. The content, the SCF has long been regarded as Early Triassic, and hypothesis that part of the SCF is Permian, which contradicts all correlated with the Lower Triassic Katberg Formation of the Karoo previous work supporting an Early Triassic age for that formation, Basin in South Africa (for a complete up-to-date set of SCS's pub- has prompted our comprehensive reevaluation of both SCS's faunal lished vertebrate specimens, see Table 1). Together with other content and geology, in order to provide a biostratigraphic reas- Lower Triassic units (Fig. 1), this Western Gondwanan super- sessment for this supersequence. sequence crucially documents biotic recovery following the end- Whereas we re-examine all biostratigraphic evidence for the age Permian Extinction Event, which is traditionally regarded as the of the SCS, procolophonoid fossils remain central to any biostrati- most severe of the ‘Big Five’ mass extinctions. Accordingly, the SCS graphic assessment of this supersequence. Procolophonoidea is the helps to understand the decisive worldwide biotic turnover from only parareptile clade that survived the end-Permian extinction Paleozoic to Mesozoic eras (see Benton et al., 2004; Smith and event (Modesto et al., 2001, 2003; Modesto et al., 2010) and became Botha, 2005; Botha and Smith, 2006; Sahney and Benton, 2008). one of the most diverse and conspicuous group of tetrapods of the The SCF was proposed by Andreis et al. (1980) for rocks cropping out Lower Triassic Lystrosaurus Assemblage Zone in the Karoo Basin of around the city of Rio Pardo, which is located centrally in Rio Grande South Africa (Smith and Botha, 2005; Botha and Smith, 2006; Botha do Sul State (RS) (Fig. 2). There, orange-coloured, fine-grained et al., 2007; Macdougall and Modesto, 2011). In South America, sandstones with localized intraformational conglomerates occur procolophonoids are known from both the Sanga do Cabral and over the pinkish to white, fine sandstones of the Rio do Rasto Buena Vista formations (see Zerfass et al., 2003). The Brazilian Formation. The conglomerates represent shallow braided streams, material comprises several specimens, including fairly complete in an approximate 1:100 thickness/width scale, whereas the orange skulls (e.g. Lavina, 1983; Langer and Lavina, 2000; Cisneros and fine sandstones are interpreted as massive, or presenting horizontal Schultz, 2002; Dias-da-Silva et al., 2006a). Originally ascribed to stratification, and denote a broad semiarid plain. The intraforma- two species, Procolophon pricei (Holotype UFRGS-PV231T; Lavina, tional conglomerates are the source of the majority of vertebrate 1983) and P. brasiliensis (Holotype MCN-PV-1905; Cisneros and fossils, which consist mainly of isolated, fragmentary bones. Schultz, 2002), both have been synonymized under P. trigoniceps Vertebrate remains are rarely preserved in the sandstones. The (Cisneros, 2008a). Although those best preserved and most diag- most commonly represented groups are procolophonids and tem- nostic specimens (i.e. skull and lower jaws) are unequivocally nospondyls (see discussion on the fossiliferous content, below). The referred to P. trigoniceps, the real diversity of procolophonians in the SCF occurs in an EeW outcrop belt in RS, with many fossiliferous SCS is unknown because several other specimens are fragmentary outcrops (Lavina, 1983; Lavina and Barberena, 1985; Da-Rosa et al., and poorly preserved (Langer and Lavina, 2000). Procolophonoid 2009; Dias-da-Silva and Da-Rosa, 2011), and have a probable material from the BVF so far comprises a single specimen of the physical continuation in Uruguay (Andreis
Recommended publications
  • Sauropareion Anoplus, with a Discussion of Possible Life History
    The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history MARK J. MACDOUGALL, SEAN P. MODESTO, and JENNIFER BOTHA−BRINK MacDougall, M.J., Modesto, S.P., and Botha−Brink, J. 2013. The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history. Acta Palaeontologica Polonica 58 (4): 737–749. The skeletal anatomy of the Early Triassic (Induan) procolophonid reptile Sauropareion anoplus is described on the basis of three partial skeletons from Vangfontein, Middelburg District, South Africa. Together these three specimens preserve the large majority of the pectoral and pelvic girdles, articulated forelimbs and hindlimbs, and all but the caudal portion of the vertebral column, elements hitherto undescribed. Our phylogenetic analysis of the Procolophonoidea is consonant with previous work, positing S. anoplus as the sister taxon to a clade composed of all other procolophonids exclusive of Coletta seca. Previous studies have suggested that procolophonids were burrowers, and this seems to have been the case for S. anoplus, based on comparisons with characteristic skeletal anatomy of living digging animals, such as the presence of a spade−shaped skull, robust phalanges, and large unguals. Key words: Parareptilia, Procolophonidae, phylogenetic analysis, burrowing, Induan, Triassic, South Africa. Mark J. MacDougall [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada and Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Ontario, L5L 1C6, Canada; Sean P. Modesto [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada; Jennifer Botha−Brink [[email protected]], Karoo Palaeontology, National Museum, P.O.
    [Show full text]
  • New Permian Fauna from Tropical Gondwana
    ARTICLE Received 18 Jun 2015 | Accepted 18 Sep 2015 | Published 5 Nov 2015 DOI: 10.1038/ncomms9676 OPEN New Permian fauna from tropical Gondwana Juan C. Cisneros1,2, Claudia Marsicano3, Kenneth D. Angielczyk4, Roger M. H. Smith5,6, Martha Richter7, Jo¨rg Fro¨bisch8,9, Christian F. Kammerer8 & Rudyard W. Sadleir4,10 Terrestrial vertebrates are first known to colonize high-latitude regions during the middle Permian (Guadalupian) about 270 million years ago, following the Pennsylvanian Gondwanan continental glaciation. However, despite over 150 years of study in these areas, the bio- geographic origins of these rich communities of land-dwelling vertebrates remain obscure. Here we report on a new early Permian continental tetrapod fauna from South America in tropical Western Gondwana that sheds new light on patterns of tetrapod distribution. Northeastern Brazil hosted an extensive lacustrine system inhabited by a unique community of temnospondyl amphibians and reptiles that considerably expand the known temporal and geographic ranges of key subgroups. Our findings demonstrate that tetrapod groups common in later Permian and Triassic temperate communities were already present in tropical Gondwana by the early Permian (Cisuralian). This new fauna constitutes a new biogeographic province with North American affinities and clearly demonstrates that tetrapod dispersal into Gondwana was already underway at the beginning of the Permian. 1 Centro de Cieˆncias da Natureza, Universidade Federal do Piauı´, 64049-550 Teresina, Brazil. 2 Programa de Po´s-Graduac¸a˜o em Geocieˆncias, Departamento de Geologia, Universidade Federal de Pernambuco, 50740-533 Recife, Brazil. 3 Departamento de Cs. Geologicas, FCEN, Universidad de Buenos Aires, IDEAN- CONICET, C1428EHA Ciudad Auto´noma de Buenos Aires, Argentina.
    [Show full text]
  • South Africa's Coalfields — a 2014 Perspective
    International Journal of Coal Geology 132 (2014) 170–254 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo South Africa's coalfields — A 2014 perspective P. John Hancox a,⁎,AnnetteE.Götzb,c a University of the Witwatersrand, School of Geosciences and Evolutionary Studies Institute, Private Bag 3, 2050 Wits, South Africa b University of Pretoria, Department of Geology, Private Bag X20, Hatfield, 0028 Pretoria, South Africa c Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Republic of Tatarstan, Russian Federation article info abstract Article history: For well over a century and a half coal has played a vital role in South Africa's economy and currently bituminous Received 7 April 2014 coal is the primary energy source for domestic electricity generation, as well as being the feedstock for the Received in revised form 22 June 2014 production of a substantial percentage of the country's liquid fuels. It furthermore provides a considerable source Accepted 22 June 2014 of foreign revenue from exports. Available online 28 June 2014 Based on geographic considerations, and variations in the sedimentation, origin, formation, distribution and quality of the coals, 19 coalfields are generally recognised in South Africa. This paper provides an updated review Keywords: Gondwana coal of their exploration and exploitation histories, general geology, coal seam nomenclature and coal qualities. With- Permian in the various coalfields autocyclic variability is the norm rather than the exception, whereas allocyclic variability Triassic is much less so, and allows for the correlation of genetically related sequences. During the mid-Jurassic break up Coalfield of Gondwana most of the coal-bearing successions were intruded by dolerite.
    [Show full text]
  • Stuttgarter Beiträge Zur Naturkunde
    S^5 ( © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart Stuttgarter Beitr. Naturk. Ser. B Nr. 278 175 pp., 4pls., 54figs. Stuttgart, 30. 12. 1999 Comparative osteology oi Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen) By Rainer R. Schoch, Stuttgart With 4 plates and 54 textfigures Abstract Mastodonsaurus giganteus, the most abundant and giant amphibian of the German Letten- keuper, is revised. The study is based on the excellently preserved and very rieh material which was excavated during road construction in 1977 near Kupferzeil, Northern Baden- Württemberg. It is shown that there exists only one diagnosable species of Mastodonsaurus, to which all Lettenkeuper material can be attributed. All finds from other horizons must be referred to as Mastodonsauridae gen. et sp. indet. because of their fragmentary Status. A sec- ond, definitely diagnostic genus of this family is Heptasaurus from the higher Middle and Upper Buntsandstein. Finally a diagnosis of the family Mastodonsauridae is provided. Ä detailed osteological description of Mastodonsaurus giganteus reveals numerous un- known or formerly inadequately understood features, yielding data on various hitherto poor- ly known regions of the skeleton. The sutures of the skull roof, which could be studied in de- tail, are significantly different from the schemes presented by previous authors. The endocra- nium and mandible are further points of particular interest. The palatoquadrate contributes a significant part to the formation of the endocranium by an extensive and complicated epi- pterygoid.
    [Show full text]
  • Reptile Family Tree
    Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus
    [Show full text]
  • PIA Wanhoop Oct 2010
    PALAEONTOLOGICAL IMPACT ASSESSMENT: DESKTOP STUDY WANHOOP BOREHOLE SCHEME EXTENSION, EDEN DISTRICT MUNICIPALITY, WESTERN CAPE PROVINCE Dr John E. Almond Natura Viva cc, PO Box 12410 Mill Street, CAPE TOWN 8010, RSA [email protected] October 2010 1. SUMMARY The latest phase of the ongoing upgrade of the water supply for Willowmore (Eastern Cape Province) involves several small developments c. 35km to the south of town on the farm Wanhoop in the adjacent Eden District Municipality. The proposed new water pipelines will involve excavations of up to one and a half metres depth but the Devonian to Cretaceous bedrocks and younger superficial sediments affected – viz. the Baviaanskloof Formation (Table Mountain Group), Buffelskloof Formation (Uitenhage Group) and Quaternary alluvium - are mostly of low palaeontological sensitivity. Installation of new powerlines and a short section of new access road are unlikely to involve extensive bedrock excavations and are not regarded as palaeontologically significant. It is concluded that the proposed water supply developments on Wanhoop will not substantially compromise palaeontological heritage and there are therefore no objections to approval on these grounds, nor is any specialist palaeontological mitigation required. However, any substantial fossil remains - such as bones, teeth or dense accumulations of shells or plants – that are exposed during excavations should be reported to Heritage Western Cape and / or a qualified palaeontologist for formal collection and documentation. 2. PROJECT OUTLINE & BRIEF As part of the ongoing upgrade of the water supply for the town of Willowmore (Eastern Cape Province) several proposed developments will take place on the remainder of Wanhoop 19, Wanhoop Farm in the adjacent Eden District Municipality, Western Cape Province, approximately c.
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • The Role of Fossils in Interpreting the Development of the Karoo Basin
    Palaeon!. afr., 33,41-54 (1997) THE ROLE OF FOSSILS IN INTERPRETING THE DEVELOPMENT OF THE KAROO BASIN by P. J. Hancox· & B. S. Rubidge2 IGeology Department, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa 2Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa ABSTRACT The Permo-Carboniferous to Jurassic aged rocks oft1:J.e main Karoo Basin ofSouth Africa are world renowned for the wealth of synapsid reptile and early dinosaur fossils, which have allowed a ten-fold biostratigraphic subdivision ofthe Karoo Supergroup to be erected. The role offossils in interpreting the development of the Karoo Basin is not, however, restricted to biostratigraphic studies. Recent integrated sedimentological and palaeontological studies have helped in more precisely defming a number of problematical formational contacts within the Karoo Supergroup, as well as enhancing palaeoenvironmental reconstructions, and basin development models. KEYWORDS: Karoo Basin, Biostratigraphy, Palaeoenvironment, Basin Development. INTRODUCTION Invertebrate remains are important as indicators of The main Karoo Basin of South Africa preserves a facies genesis, including water temperature and salinity, retro-arc foreland basin fill (Cole 1992) deposited in as age indicators, and for their biostratigraphic potential. front of the actively rising Cape Fold Belt (CFB) in Fossil fish are relatively rare in the Karoo Supergroup, southwestern Gondwana. It is the deepest and but where present are useful indicators of gross stratigraphically most complete of several depositories palaeoenvironments (e.g. Keyser 1966) and also have of Permo-Carboniferous to Jurassic age in southern biostratigraphic potential (Jubb 1973; Bender et al. Africa and reflects changing depositional environments 1991).
    [Show full text]
  • Tasmaniosaurus Triassicus from the Lower Triassic of Tasmania, Australia
    The Osteology of the Basal Archosauromorph Tasmaniosaurus triassicus from the Lower Triassic of Tasmania, Australia Martı´n D. Ezcurra1,2* 1 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom, 2 GeoBio-Center, Ludwig-Maximilian-Universita¨t Mu¨nchen, Munich, Germany Abstract Proterosuchidae are the most taxonomically diverse archosauromorph reptiles sampled in the immediate aftermath of the Permo-Triassic mass extinction and represent the earliest radiation of Archosauriformes (archosaurs and closely related species). Proterosuchids are potentially represented by approximately 15 nominal species collected from South Africa, China, Russia, Australia and India, but the taxonomic content of the group is currently in a state of flux because of the poor anatomic and systematic information available for several of its putative members. Here, the putative proterosuchid Tasmaniosaurus triassicus from the Lower Triassic of Hobart, Tasmania (Australia), is redescribed. The holotype and currently only known specimen includes cranial and postcranial remains and the revision of this material sheds new light on the anatomy of the animal, including new data on the cranial endocast. Several bones are re-identified or reinterpreted, contrasting with the descriptions of previous authors. The new information provided here shows that Tasmaniosaurus closely resembles the South African proterosuchid Proterosuchus, but it differed in the presence of, for example, a slightly downturned premaxilla, a shorter anterior process of maxilla, and a diamond-shaped anterior end of interclavicle. Previous claims for the presence of gut contents in the holotype of Tasmaniosaurus are considered ambiguous. The description of the cranial endocast of Tasmaniosaurus provides for the first time information about the anatomy of this region in proterosuchids.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE AMY C. HENRICI Collection Manager Section of Vertebrate Paleontology Carnegie Museum of Natural History 4400 Forbes Avenue Pittsburgh, Pennsylvania 15213-4080, USA Phone:(412)622-1915 Email: [email protected] BACKGROUND Birthdate: 24 September 1957. Birthplace: Pittsburgh. Citizenship: USA. EDUCATION B.A. 1979, Hiram College, Ohio (Biology) M.S. 1989, University of Pittsburgh, Pennsylvania (Geology) CAREER Carnegie Museum of Natural History (CMNH) Laboratory Technician, Section of Vertebrate Paleontology, 1979 Research Assistant, Section of Vertebrate Paleontology, 1980 Curatorial Assistant, Section of Vertebrate Paleontology, 1980-1984 Scientific Preparator, Section of Paleobotany, 1985-1986 Scientific Preparator, Section of Vertebrate Paleontology, 1985-2002 Acting Collection Manager/Scientific Preparator, 2003-2004 Collection Manager, 2005-present PALEONTOLOGICAL FIELD EXPERIENCE Late Pennsylvanian through Early Permian of Colorado, New Mexico and Utah (fish, amphibians and reptiles) Early Permian of Germany, Bromacker quarry (amphibians and reptiles) Triassic of New Mexico, Coelophysis quarry (Coelophysis and other reptiles) Upper Jurassic of Colorado (mammals and herps) Tertiary of Montana, Nevada, and Wyoming (mammals and herps) Pleistocene of West Virginia (mammals and herps) Lake sediment cores and lake sediment surface samples, Wyoming (pollen and seeds) PROFESSIONAL APPOINTMENTS Associate Editor, Society of Vertebrate Paleontology, 1998-2000. Research Associate in the Science Division, New Mexico Museum of Natural History and Science, 2007-present. PROFESSIONAL ASSOCIATIONS Society of Vertebrate Paleontology Paleontological Society LECTURES and TUTORIALS (Invited and public) 1994. Middle Eocene frogs from central Wyoming: ontogeny and taphonomy. California State University, San Bernardino 1994. Mechanical preparation of vertebrate fossils. California State University, San Bernardino 1994. Mechanical preparation of vertebrate fossils. University of Chicago 2001.
    [Show full text]
  • Palate Anatomy and Morphofunctional Aspects of Interpterygoid Vacuities in Temnospondyl Cranial Evolution
    Lautenschlager, S., Witzmann, F., & Werneburg, I. (2016). Palate anatomy and morphofunctional aspects of interpterygoid vacuities in temnospondyl cranial evolution. Naturwissenschaften, 103, [79]. https://doi.org/10.1007/s00114-016-1402-z Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1007/s00114-016-1402-z Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Springer at http://link.springer.com/article/10.1007/s00114-016-1402-z. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Sci Nat (2016) 103:79 DOI 10.1007/s00114-016-1402-z ORIGINAL PAPER Palate anatomy and morphofunctional aspects of interpterygoid vacuities in temnospondyl cranial evolution Stephan Lautenschlager1 & Florian Witzmann2,3 & Ingmar Werneburg3,4,5 Received: 19 April 2016 /Revised: 1 August 2016 /Accepted: 23 August 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Temnospondyls were the morphologically and tax- significance. Here, we applied finite element analysis, to test onomically most diverse group of early tetrapods with a near- the possibility that the interpterygoid vacuities served for global distribution during the Palaeozoic and Mesozoic. stress distribution during contraction of the jaw closing mus- Members of this group occupied a range of different habitats culature.
    [Show full text]
  • Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
    ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut
    [Show full text]