Substrate Oxidation by Cytochrome P450 Enzymes

Total Page:16

File Type:pdf, Size:1020Kb

Substrate Oxidation by Cytochrome P450 Enzymes 6 Substrate Oxidation by Cytochrome P450 Enzymes Paul R. Ortiz de Montellano and James J. De Voss 1. Introduction P450^^^ (CYPlOl)io, P450B^.3 (CYP102)11' '\ P450^^^p (CYP108)i3, P450^^yp (CYP107Al)l^ The cytochromes P450 are catalytic hemo- P450^^^ (CYP55Al)i^ Sulfolobus solfataricus proteins in which the heme iron atom is coordi­ CYPl 19^^ Streptomyces coelicolor CYP154Cli\ nated to a proximal cysteine thiolate. This thiolate Mycobacterium tuberculosis CYP52^^, Sorangium ligand is responsible for the characteristic Soret cellulosum P450epoK^^, and the mammalian absorption maximum of the Fe"-CO complex at CYP2C5 (see Chapter 3>f^. Although the thiolate —450 nm and is critical for P450 catalysis^. Early ligand is always present, the distal water ligand site-specific mutagenesis studies with CYP1A2 appears to be absent in some mammalian and P450^^j^ suggested that replacement of the enzymes, either because the water does not bind in cysteine thiolate by a histidine ligand gave inac­ those structures or because it is displaced by an tive protein^' ^. Detailed studies of the P450^^^ endogenous ligand^ ^ Cys357His mutant have recently confirmed that The c)^ochrome P450 catalytic cycle is initiated this mutant enzyme has an almost undetectable by the binding of a substrate, usually with con­ catalytic activity^' ^. The low camphor-oxidizing comitant displacement of the distal water ligand. activity is paralleled by a low rate of reduction of The ferric heme is then reduced to the ferrous state the iron, an elevated autooxidation rate, and an using electrons provided by suitable electron donor observable peroxidase activity"*. The thiolate lig­ proteins (see Chapter 4). In cytochrome P450^^ and is thus clearly critical for P450^^j^ function, and many other P450 enzymes, substrate binding although the relative contributions of the elec­ is widely believed to be a prerequisite for the trans­ tronic vs structural perturbations of the mutation fer of the first electron to the iron, but in some to the low catal)^ic activity remain unclear. These enzymes electron transfer can occur without the results agree with the results of experiments with prior binding of a substrate^ ^. Reduction of the iron thiolate ligated metalloporphyrin model systems^' ^ is followed by binding of oxygen to give the fer­ and of computational analyses of the role of the rous dioxy complex. Transfer of a second electron thiolate (see Chapter 2)^' ^. to this complex produces the ferric peroxy anion The heme iron ligand on the distal side is a (PorFe"^-00~, where Por = porphyrin) or, after water molecule in all the available crystal struc­ protonation, the ferric hydroperoxo complex tures of substrate-free P450 enzymes, including (Por"^-OOH) (Figure 6.1). Heterolytic cleavage of Paul R. Ortiz de Montellano • Department of Pharmaceutical Chemistry, University of California, San Francisco, CA. James J. De Voss • Department of Chemistry, University of Queensland, Brisbane, QLD Australia. Cytochrome P450: Structure, Mechanism, and Biochemistry, 3e, edited by Paul R. Ortiz de Montellano Kluwer Academic / Plenum Publishers, New York, 2005. 183 184 Paul R. Ortiz de Montellano and James J. De Voss |Fe"-02|[sH]--^02 yj+ f 1 H ' |Fe=o]|sH]-^--— |Fe"i-02H||sH]-*— [Fe"'-02-l[sH] —rl20 • 2e- t t H2O H2O2 Figure 6.1. The general catalytic cycle of cytochrome P450 enzymes. The [Fe"^] stands for the resting ferric state of P450, and SH for a substrate molecule. The shunt pathway utilizing H2O2 is shown as are three sites for the uncoupling of the enzyme to give, respectively, O^, H2O2, or H2O. the dioxygen bond in this peroxo intermediate (b) a molecule of H2O2 dissociates from the ferric extrudes a molecule of water and forms the hydroperoxide complex, or (c) two electrons are putative ferryl oxidizing species (Figure 6.1). used to reduce the ferryl species to a molecule of Hydrogen bonding of the distal ferric hydroperoxo water before it can be used in a reaction with the oxygen, directly or via a water molecule, to a substrate (Figure 6.1). The parameters that govern highly conserved threonine facilitates this het- uncoupling at each of the three stages are unclear, erolytic cleavage (see Chapter 5)^^~^^. The ferryl but factors that contribute to uncoupling appear to species is thought to be responsible for most P450- be the degree of uncontrolled water access to the catalyzed oxidations, although the ferric peroxo active site, the extent to which the substrate can anion and the ferric hydroperoxo complex have reside at unproductive distances from the ferryl been invoked as oxidizing species (see below). It is species, and the presence or absence of sufficiently usually, but not always, possible to circumvent the reactive sites on the substrate molecule^^' ^'^-'^^, The requirement for activation of molecular oxygen in catalytic efficiency of a P450 enzyme can be seri­ a so-called "shunt" pathway by employing H2O2 or ously impaired by uncoupling, as evidenced by the some other peroxide as a co-substrate (Figure 6.1). contrast between nearly quantitative coupling in the However, the oxidizing species thus obtained is oxidation of camphor by P450^^j^ and a process that apparently not identical to that obtained by normal is more than 95% uncoupled when the same oxygen activation. Thus, peroxides cannot replace enzyme oxidizes styrene^^. A higher degree of molecular oxygen activation in some reactions, intrinsic uncoupling is often observed in mam­ they often give product distributions that differ sig­ malian P450 enzymes, some of which can be sup­ nificantly from those obtained by molecular oxy­ pressed by interaction of the P450 enzyme with gen activation^^"^^, and they cause a more rapid reduced cytochrome b^^^' ^^. degradation of the prosthetic heme group^'. The P450 oxidation stoichiometry requires one molecule of oxygen and two electrons from NAD(P)H to add one oxygen atom to a substrate. If 2. Activation of the ratio of reduced pyridine nucleotide (or oxygen) iVIolecufar Oxygen consumed to product formed is greater than one, the enzyme is said to be uncoupled. Uncoupling Cryogenic X-ray crystallographic, EPR, occurs when (a) the ferrous dioxy complex reverts ENDOR, and spectroscopic studies have convinc­ to the ferric state by dissociation of superoxide. ingly identified several intermediates in the P450 Substrate Oxidation by Cytochrome P450 Enzymes 185 catalytic cycle (see Chapter S)^^"^^. These include three substrates plus styrene"*^. To rationalize this the ferric, ferrous, ferrous dioxo, and ferric observation, the authors argued that hydroxylation is hydroperoxo complexes of P450^^j^. Crystallo- mediated exclusively by the ferryl whereas epoxida­ graphic evidence has also been reported for the tion can be mediated by both the ferryl and ferric ferry 1 species^^, but this intermediate has not been hydroperoxide intermediates. Thus, impairing for­ detected by other sensitive cryogenic approaches mation of the ferryl species by removing the cat­ and its attribution to the ferryl species remains alytic threonine would decrease hydroxylation but open to question. In low-temperature EPR, have little effect upon epoxidation. However, in con­ ENDOR, and spectroscopic studies, the ferric trast to the results with the CYP2E1 T303A mutant, hydroperoxide intermediate disappears as the the corresponding T302A mutant of CYP2B4 hydroxylated camphor product appears without exhibited both decreased hydroxylation and epoxi­ the observation of any intermediate species^^' ^^. dation rates. This discrepancy does not necessarily All the intermediates in oxygen activation by contradict the hypothesis, as it could reflect differ­ P450 have thus been observed except for the crit­ ential changes in the active sites of the two proteins ical ferryl species, which remains elusive and in addition to elimination of the hydrogen bond that undefined. facilitates ferryl formation, hi a more recent study in As already mentioned, the activation of molec­ which Thr252, the catalytic threonine of P450^^^, ular oxygen can often be circumvented if perox­ was mutated to an alanine, it was found that cam­ ides are used as activated oxygen donors. Efforts phor hydroxylation was suppressed, but the epoxi­ to identify the reactive oxygen species in these dation of an olefinic camphor analogue could still peroxide-supported reactions have been pursued be observed'*^. However, the epoxidation reaction for many years'^ ^^^. The species that has been spec- occurred at a much slower rate (<20%) despite the troscopically detected in these reactions has the expectation that the steady-state level of the ferric spectroscopic signature of a ferryl intermediate^^, hydroperoxide should be elevated. This finding is but evidence is lacking that this intermediate is the consistent with the prediction by computational same as that produced by the activation of molecu­ studies that the ferric hydroperoxo complex should lar oxygen. To the contrary, the reactions with per­ be a very poor olefin-oxidizing agent^^. These oxides have been shown to produce EPR signals results argue that in the wild-type proteins, the fer­ tentatively attributed to tyrosine radicals^ ^' '^^' ^^, but ric hydroperoxide makes no more than a small con­ no such radicals have been observed under normal tribution to epoxidation, and none to hydroxylation. turnover conditions. Furthermore, as noted earlier, In a second study, the iV-oxidation of amines by the peroxide-mediated reactions do not always CYP2B4 and its T302A mutant supported by either faithfully
Recommended publications
  • Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles.
    [Show full text]
  • Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
    DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy.
    [Show full text]
  • 1 AMINO ACIDS Commonly, 21 L-Amino Acids Encoded by DNA Represent the Building Blocks of Animal, Plant, and Microbial Proteins
    1 AMINO ACIDS Commonly, 21 L-amino acids encoded by DNA represent the building blocks of animal, plant, and microbial proteins. The basic amino acids encountered in proteins are called proteinogenic amino acids 1.1). Biosynthesis of some of these amino acids proceeds by ribosomal processes only in microorganisms and plants and the ability to synthesize them is lacking in animals, including human beings. These amino acids have to be obtained in the diet (or produced by hydrolysis of body proteins) since they are required for normal good health and are referred to as essential amino acids. The essential amino acids are arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. The rest of encoded amino acids are referred to as non-essential amino acids (alanine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, and tyrosine). Arginine and histidine are classified as essential, sometimes as semi-essential amino acids, as their amount synthesized in the body is not sufficient for normal growth of children. Although it is itself non-essential, cysteine (classified as conditionally essential amino acid) can partly replace methionine, which is an essential amino acid. Similarly, tyrosine can partly replace phenylalanine. 1.1 The glutamic acid group 1.1.1 Glutamic acid and glutamine Free ammonium ions are toxic to living cells and are rapidly incorporated into organic compounds. One of such transformations is the reaction of ammonia with 2-oxoglutaric acid from the citric acid cycle to produce L-glutamic acid. This reaction is known as reductive amination. Glutamic acid is accordingly the amino acid generated first as both constituent of proteins and a biosynthetic precursor.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • ( 12 ) United States Patent
    US010208322B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 ,208 , 322 B2 Coelho et al. (45 ) Date of Patent: * Feb . 19, 2019 ( 54 ) IN VIVO AND IN VITRO OLEFIN ( 56 ) References Cited CYCLOPROPANATION CATALYZED BY HEME ENZYMES U . S . PATENT DOCUMENTS 3 , 965 ,204 A 6 / 1976 Lukas et al. (71 ) Applicant: California Institute of Technology , 4 , 243 ,819 A 1 / 1981 Henrick Pasadena , CA (US ) 5 ,296 , 595 A 3 / 1994 Doyle 5 , 703 , 246 A 12 / 1997 Aggarwal et al. 7 , 226 , 768 B2 6 / 2007 Farinas et al. ( 72 ) Inventors : Pedro S . Coelho , Los Angeles, CA 7 , 267 , 949 B2 9 / 2007 Richards et al . (US ) ; Eric M . Brustad , Durham , NC 7 ,625 ,642 B2 12 / 2009 Matsutani et al. (US ) ; Frances H . Arnold , La Canada , 7 ,662 , 969 B2 2 / 2010 Doyle et al. CA (US ) ; Zhan Wang , San Jose , CA 7 ,863 ,030 B2 1 / 2011 Arnold (US ) ; Jared C . Lewis , Chicago , IL 8 ,247 ,430 B2 8 / 2012 Yuan 8 , 993 , 262 B2 * 3 / 2015 Coelho . .. .. .. • * • C12P 7 /62 (US ) 435 / 119 9 ,399 , 762 B26 / 2016 Farwell et al . (73 ) Assignee : California Institute of Technology , 9 , 493 ,799 B2 * 11 /2016 Coelho .. C12P 7162 Pasadena , CA (US ) 2006 / 0030718 AL 2 / 2006 Zhang et al. 2006 / 0111347 A1 5 / 2006 Askew , Jr . et al. 2007 /0276013 AL 11 /2007 Ebbinghaus et al . ( * ) Notice : Subject to any disclaimer , the term of this 2009 /0238790 A2 9 /2009 Sommadosi et al. patent is extended or adjusted under 35 2010 / 0056806 A1 3 / 2010 Warren U .
    [Show full text]
  • Characterization of a Second Secologanin Synthase Isoform
    Dugé de Bernonville et al. BMC Genomics (2015) 16:619 DOI 10.1186/s12864-015-1678-y RESEARCH ARTICLE Open Access Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome Thomas Dugé de Bernonville1†, Emilien Foureau1†, Claire Parage1†, Arnaud Lanoue1, Marc Clastre1, Monica Arias Londono1,2, Audrey Oudin1, Benjamin Houillé1, Nicolas Papon1, Sébastien Besseau1, Gaëlle Glévarec1, Lucia Atehortùa2, Nathalie Giglioli-Guivarc’h1, Benoit St-Pierre1, Vincenzo De Luca3, Sarah E. O’Connor4 and Vincent Courdavault1* Abstract Background: Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes. Results: Secologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C.
    [Show full text]
  • Robert Foti to Cite This Version
    Characterization of xenobiotic substrates and inhibitors of CYP26A1, CYP26B1 and CYP26C1 using computational modeling and in vitro analyses Robert Foti To cite this version: Robert Foti. Characterization of xenobiotic substrates and inhibitors of CYP26A1, CYP26B1 and CYP26C1 using computational modeling and in vitro analyses. Agricultural sciences. Université Nice Sophia Antipolis, 2016. English. NNT : 2016NICE4033. tel-01376678 HAL Id: tel-01376678 https://tel.archives-ouvertes.fr/tel-01376678 Submitted on 5 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université de Nice-Sophia Antipolis Thèse pour obtenir le grade de DOCTEUR DE L’UNIVERSITE NICE SOPHIA ANTIPOLIS Spécialité : Interactions Moléculaires et Cellulaires Ecole Doctorale : Sciences de la Vie et de la Santé (SVS) Caractérisation des substrats xénobiotiques et des inhibiteurs des cytochromes CYP26A1, CYP26B1 et CYP26C1 par modélisation moléculaire et études in vitro présentée et soutenue publiquement par Robert S. Foti Le 4 Juillet 2016 Membres du jury Dr. Danièle Werck-Reichhart Rapporteur Dr. Philippe Roche Rapporteur Pr. Serge Antonczak Examinateur Dr. Philippe Breton Examinateur Pr. Philippe Diaz Examinateur Dr. Dominique Douguet Directrice de thèse 1 1. Table of Contents 1. Table of Contents ..............................................................................................................................
    [Show full text]
  • Metabolic Activation and Toxicological Evaluation of Polychlorinated Biphenyls in Drosophila Melanogaster T
    www.nature.com/scientificreports OPEN Metabolic activation and toxicological evaluation of polychlorinated biphenyls in Drosophila melanogaster T. Idda1,7, C. Bonas1,7, J. Hofmann1, J. Bertram1, N. Quinete1,2, T. Schettgen1, K. Fietkau3, A. Esser1, M. B. Stope4, M. M. Leijs3, J. M. Baron3, T. Kraus1, A. Voigt5,6 & P. Ziegler1* Degradation of polychlorinated biphenyls (PCBs) is initiated by cytochrome P450 (CYP) enzymes and includes PCB oxidation to OH-metabolites, which often display a higher toxicity than their parental compounds. In search of an animal model refecting PCB metabolism and toxicity, we tested Drosophila melanogaster, a well-known model system for genetics and human disease. Feeding Drosophila with lower chlorinated (LC) PCB congeners 28, 52 or 101 resulted in the detection of a human-like pattern of respective OH-metabolites in fy lysates. Feeding fies high PCB 28 concentrations caused lethality. Thus we silenced selected CYPs via RNA interference and analyzed the efect on PCB 28-derived metabolite formation by assaying 3-OH-2′,4,4′-trichlorobiphenyl (3-OHCB 28) and 3′-OH-4′,4,6′-trichlorobiphenyl (3′-OHCB 28) in fy lysates. We identifed several drosophila CYPs (dCYPs) whose knockdown reduced PCB 28-derived OH-metabolites and suppressed PCB 28 induced lethality including dCYP1A2. Following in vitro analysis using a liver-like CYP-cocktail, containing human orthologues of dCYP1A2, we confrm human CYP1A2 as a PCB 28 metabolizing enzyme. PCB 28-induced mortality in fies was accompanied by locomotor impairment, a common phenotype of neurodegenerative disorders. Along this line, we show PCB 28-initiated caspase activation in diferentiated fy neurons.
    [Show full text]
  • Bifunctional CYP81AA Proteins Catalyse Identical Hydroxylations but Alternative Regioselective Phenol Couplings in Plant Xanthone Biosynthesis
    ARTICLE Received 27 Oct 2015 | Accepted 30 Mar 2016 | Published 5 May 2016 DOI: 10.1038/ncomms11472 OPEN Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis Islam El-Awaad1,2,w, Marco Bocola3, Till Beuerle1,2, Benye Liu1,2 & Ludger Beerhues1,2 Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,30,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 30-hydro- xylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupling of the resulting 2,30, 4,6-tetrahydroxybenzophenone. Relative to the inserted 30-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5- trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C–O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs. 1 Institute of Pharmaceutical Biology, Technische Universita¨t Braunschweig, Mendelssohnstrae 1, Braunschweig 38106, Germany. 2 Center of Pharmaceutical Engineering (PVZ), Technische Universita¨t Braunschweig, Franz-Liszt-Strae 35A, Braunschweig 38106, Germany. 3 Institute of Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
    [Show full text]
  • Metabolic Activation of 4-Ipomeanol by Complementary DNA-Expressed Human Cytochromes P-450: Evidence for Species-Specific Metabolism Maciej Czerwinski, Theodore L
    [CANCER RESEARCH 51. 4636-4638, September I, 1991] Metabolic Activation of 4-Ipomeanol by Complementary DNA-expressed Human Cytochromes P-450: Evidence for Species-specific Metabolism Maciej Czerwinski, Theodore L. McLemore,1 Richard M. Philpot, Patson T. Nhamburo, Kenneth Korzekwa, Harry V. Gelboin, and Frank J. Gonzalez Laboratory of Molecular Carcinogenesis, Division of Cancer Etiology [M. C., P. T. N., K. K., H. V. G., F. J. G.¡,and Developmental Therapeutics Program, Division of Cancer Treatment [T. L. M.], National Cancer Institute, NIH, Bethesda, Maryland 20892, and Laboratory of Pharmacology, National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709 ¡R.M. P.] ABSTRACT Specific enzymes present in human lung that are capable of activating 4-ipomeanol have not been established previously. 4-Ipomeanol is a pulmonary toxin in cattle and rodents that is meta- We therefore studied the ability of 14 P-450s to activate 4- bolically activated by cytochromes P-450 (P-450s). P-450-mediated ac ipomeanol to DNA-binding metabolites using vaccinia virus- tivation of 4-ipomeanol to DNA binding metabolites was evaluated using mediated cDNA expression of P-450s in human Hep G2 cells a vaccinia virus complementary DNA expression system and an in situ DNA-binding assay. Twelve human P-450s and two rodent P-450s were and in situ binding to cellular DNA. We report that several P- expressed in human hepatoma Hep G2 cells and examined for their 450s can catalyze some activation of 4-ipomeanol and at least abilities to metabolically activate this toxin. Three forms, designated three distinct human P-450 forms are capable of high rates of CYP1A2, CYP3A3, and CYP3A4, were able to catalyze significant biotransformation of this compound.
    [Show full text]
  • Progress in the Production of Medicinally Important Secondary
    Progress in the production of medicinally important secondary metabolites in recombinant microorganisms or plants-Progress in alkaloid biosynthesis Michael Wink, Holger Schäfer To cite this version: Michael Wink, Holger Schäfer. Progress in the production of medicinally important secondary metabo- lites in recombinant microorganisms or plants-Progress in alkaloid biosynthesis. Biotechnology Jour- nal, Wiley-VCH Verlag, 2009, 4 (12), pp.1684. 10.1002/biot.200900229. hal-00540529 HAL Id: hal-00540529 https://hal.archives-ouvertes.fr/hal-00540529 Submitted on 27 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biotechnology Journal Progress in the production of medicinally important secondary metabolites in recombinant microorganisms or plants-Progress in alkaloid biosynthesis For Peer Review Journal: Biotechnology Journal Manuscript ID: biot.200900229.R1 Wiley - Manuscript type: Review Date Submitted by the 28-Oct-2009 Author: Complete List of Authors: Wink, Michael; Heidelberg University, Institute for Pharmacy and Molecular Biotechnology
    [Show full text]
  • Recent Advances in P450 Research
    The Pharmacogenomics Journal (2001) 1, 178–186 2001 Nature Publishing Group All rights reserved 1470-269X/01 $15.00 www.nature.com/tpj REVIEW Recent advances in P450 research JL Raucy1,2 ABSTRACT SW Allen1,2 P450 enzymes comprise a superfamily of heme-containing proteins that cata- lyze oxidative metabolism of structurally diverse chemicals. Over the past few 1La Jolla Institute for Molecular Medicine, San years, there has been significant progress in P450 research on many fronts Diego, CA 92121, USA; 2Puracyp Inc, San and the information gained is currently being applied to both drug develop- Diego, CA 92121, USA ment and clinical practice. Recently, a major accomplishment occurred when the structure of a mammalian P450 was determined by crystallography. Correspondence: Results from these studies will have a major impact on understanding struc- JL Raucy,La Jolla Institute for Molecular Medicine,4570 Executive Dr,Suite 208, ture-activity relationships of P450 enzymes and promote prediction of drug San Diego,CA 92121,USA interactions. In addition, new technologies have facilitated the identification Tel: +1 858 587 8788 ext 116 of several new P450 alleles. This information will profoundly affect our under- Fax: +1 858 587 6742 E-mail: jraucyȰljimm.org standing of the causes attributed to interindividual variations in drug responses and link these differences to efficacy or toxicity of many thera- peutic agents. Finally, the recent accomplishments towards constructing P450 null animals have afforded determination of the role of these enzymes in toxicity. Moreover, advances have been made towards the construction of humanized transgenic animals and plants. Overall, the outcome of recent developments in the P450 arena will be safer and more efficient drug ther- apies.
    [Show full text]