Hyaena Brunnea) in Shamwari Game Reserve, Eastern Cape, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Hyaena Brunnea) in Shamwari Game Reserve, Eastern Cape, South Africa Page 1 of 5 Short Communication The diet of brown hyaenas (Hyaena brunnea) in Shamwari Game Reserve, Eastern Cape, South Africa Authors: Brown hyaenas (Hyaena brunnea) were introduced to Shamwari Game Reserve in the 1 Kerry Slater Eastern Cape Province during 2002, but their feeding ecology is poorly understood. Feeding Konrad Muller2 observations of brown hyaena by field guides and the collection of 31 scats from the study area Affiliations: took place over an 11 month period. Standard techniques were used to analyse the scats and 1Department of identify prey items present. Ten dietary categories were identified from the scats, with a mean Environmental Sciences, of 3.2 dietary categories per scat. Large mammal remains were found in 30 of the 31 scats, with University of South Africa, South Africa kudu being the most abundant (61.0% of scats). Overall the two methods indicated at least 14 mammal species being fed on by the brown hyaena. The presence of mainly large mammal 2Shamwari Game Reserve, remains and invertebrates (in 38.7% of all scats), together with the feeding observations of Eastern Cape, South Africa mainly large mammals by field guides, suggests that brown hyaena in Shamwari are mainly Correspondence to: scavengers and that sufficient carrion is available, thereby reducing the need for them to hunt. Kerry Slater A 52.0% occurrence of plant matter was found in the scats, suggesting that plant material is an important component of their diet. Further studies are underway to investigate the feeding Email: ecology of brown hyaena in Shamwari and surrounding areas. [email protected] Conservation implications: Comprehensive scat analysis over a number of years, monitoring Postal address: of individual movement patterns and population numbers of brown hyaena in and around Private Bag X6, Florida 1710, South Africa conservation areas will be beneficial in quantifying resource use of this species. Dates: Received: 05 Feb. 2013 Accepted: 18 Sept. 2013 Introduction Published: 28 Feb. 2014 Investigating the diet of free-ranging animals provides information of resources available to and utilised by these animals, but this information is not always available to wildlife area managers How to cite this article: because of constraints on time-consuming field work. The diet of a carnivore is a reflection Slater, K. & Muller, K., 2014, ‘The diet of brown of its feeding type (specialist or opportunistic), the availability of its potential prey and its hyaenas (Hyaena brunnea) morphological, behavioural and physiological adaptations (Kok & Nel 2004). in Shamwari Game Reserve, Eastern Cape, South Africa’, Previous studies on brown hyaenas (Hyaena brunnea) have shown it to have a diverse diet and, Koedoe 56(1), Art. #1143, although primarily a scavenger of mammals, it also forages for insects, reptiles, birds and their 5 pages. http://dx.doi.org/ eggs, and plants (Burgener & Gusset 2003; Kuhn, Wiesel & Skinner 2008; Maude 2005; Mills 10.4102/koedoe.v56i1.1143 & Mills 1978; Owens & Owens 1978; Skinner 1976; Skinner & Chimimba 2005; Skinner & Van Copyright: Aarde 1981; Van der Merwe et al. 2009). Despite being generalist feeders, they appear to lean © 2014. The Authors. towards specific prey items depending on their habitat. For example, in the southern Kalahari, 58 Licensee: AOSIS different food types were identified in faecal samples (Mills & Mills 1978), but along the Namib OpenJournals. This work Desert coast, the bulk of the brown hyaena’s diet is Cape fur seals (Arctocephalus pusillus) (Goss is licensed under the Creative Commons 1986; Kuhn et al. 2008; Siegfried 1984; Skinner & Van Aarde 1981). Brown hyaenas are inefficient Attribution License. predators and food obtained by hunting is rare (Mills & Mills 1978). In the southern Kalahari, only 4.7% of hunting attempts were successful and those vertebrates hunted successfully made up only 4.2% of the total vertebrate diet (Mills 1978). Vertebrates hunted were also of small sizes and included birds such as korhaan (Eupodotis sp.), small mammals such as springbok lamb (Antidorcus marsupilis), springhare (Pedetes capensis), striped polecat (Ictonyx striatus) and bat- eared fox (Otocyon megalotis) (Mills 1990). Along the Namib coast, between 2.9% (Goss 1986) and 9.6% (Wiesel 2010) of the Cape fur seal pups eaten were killed by the brown hyaenas themselves. In areas where brown hyaena ranges overlap with agricultural lands (Skinner 1976; Skinner & Van Aarde 1981) or human settlements (Kuhn et al. 2008), remains of domestic dogs, cats, cattle, goats, sheep, horses and donkeys (Maude 2005) have been found in their faecal scats. Brown hyaenas are sparsely distributed over the arid and semi-arid regions of southern Africa (Mills & Hofer 1998). Owing to the shy behaviour of this animal, only a handful of papers report on their diet and are mainly restricted to arid areas. There is therefore generally a lack of this Read online: information in most of their distribution range. Scan this QR code with your smart phone or During the early 1990s, the Eastern Cape Province transformed large areas of agriculture to more mobile device economically viable game farming, ecotourism and conservation areas (Hayward et al. 2007). to read online. This change in land use led to numerous wildlife species being reintroduced to former domestic http://www.koedoe.co.za doi:10.4102/koedoe.v56i1.1143 Page 2 of 5 Short Communication livestock farms. These reintroductions included large hair was removed from the slide leaving the imprint of the predator species that had historically occurred in the eastern hair’s scale on the slide. Each hair sample was placed into Cape region, with the main aim of these reintroductions the front section of a Pasteur pipette. Wax was melted and being to restore ecological integrity, conserve threatened sucked up into the pipette and then dipped into cold water species and maximise ecotourism (Hayward et al. 2007). to solidify the wax. A cross-section of the hair was made by Although translocation of large carnivores is common, there cutting the front end of the pipette into small slices with a is often very little or no post-release monitoring (Hofmeyer surgical blade. The size and shape of the medulla and cortex & Van Dyk 1998). of each cross-section, together with the scale imprints, were used to identify mammal species represented in each sample Research method and design from reference material (Keogh 1983; Maude 2005; Perrin & Campbell 1980). Samples from mammal species occurring in Study area the reserve were also used to make up a reference key (see This article describes a preliminary study on the diet of Appendix 1). Remains of insects, reptiles, fruit, bone, hair, brown hyaenas at Shamwari Game Reserve in South Africa’s feathers and any other objects were identified by manually Eastern Cape Province (33°25′40′′S, 26°05′32′′E). Shamwari sorting through the faecal scats. is approximately 25 000 ha, traversing four geological formations (i.e. Bokkeveld series shale, Witteberg quartzite, Dietary diversity (H) was calculated from the scats using Karoo sandstone and Sundays River formations) (O’Brien the Brillouin index and the cumulative diversity (Hk) was 2004). Vegetation types in Shamwari include: Kowie Thicket, plotted against the number of scats to determine if the brown Bhisho Thornveld, Suurberg Quartzite Fynbos and Suurberg hyaenas diet had been adequately sampled (Glen & Dickman Shale Fynbos (Mucina & Rutherford 2006). Shamwari 2006). The percentage occurrence of each prey item or species in is situated in the spring-dominant rainfall region of the the total number of scats was calculated as an indication of province and receives about 550 mm of rainfall per annum (Low & Rebelo 1996; Stone, Weaver & West 1998). Permanent Feeding observations water is available in the semi-perrenial Bushman’s River that Main roads flows through the reserve for 27.6 km and there are a number Bushmans river of small earth dams. Shamwari boundary Carnivores that have been reintroduced to Shamwari include cheetah, leopard, lion, serval, African wild dog and brown hyaena. Historical records indicate that brown hyaenas had not been seen in the eastern Cape region since the 1960s Bushmans river (Hayward et al. 2007). During 2002, two adult male and four adult female brown hyaenas wild caught from Northern R342 Cape Province farms were reintroduced to the reserve and, N10 by 2004, an estimated population of 15 hyaenas could be N2 found in Shamwari. During 2007, seven adults and sub- adults were relocated from Shamwari to other Eastern Cape N reserves. Despite this apparent success of reintroducing 10 km brown hyaenas into Shamwari, no detailed study on their diet has been conducted. FIGURE 1: Locations of brown hyaena feeding observations by field guides in Shamwari Game Reserve, Eastern Cape Province during the study period, from Procedure April 2008 to June 2009. Data on feeding observations of brown hyaenas documented by field guides whilst out on game drives with guests were Latrine locations collected between April 2008 and June 2009 (Figure 1). These Main roads recordings included the date, species being fed on, size and Bushmans river any other related information. Thirty-one fresh faecal scats Shamwari boundary were also collected from 11 latrines throughout the study area between April 2008 and May 2009 (Figure 2). Dried scats were placed into a nylon netting envelope and rinsed with Bushmans warm water to loosen the hair and other objects trapped inside. river The scats were dissected manually and all hair samples R342 were removed. A representative sample was selected for N10 analysis by inspecting all the hairs visually from each faecal N2 scat and selecting at least one hair for each size, thickness, shape, colour and length (Maude 2005). This increased the N chances of identifying all mammal species represented by 10 km hair in each faecal sample. A scale imprint was made of each FIGURE 2: Locations of brown hyaena latrines used for faecal scat collection in hair sample by placing the hair onto a glass slide that was Shamwari Game Reserve, Eastern Cape Province during the study period, from covered with liquid gelatine.
Recommended publications
  • Resource Partitioning Between Black-Backed Jackal and Brown Hyaena in Waterberg Biosphere Reserve, South Africa
    Ramnanan et al. Jackal and hyaena in South Africa Copyright © 2016 by the IUCN/SSC Canid Specialist Group. ISSN 1478-2677 Research report Resource partitioning between black-backed jackal and brown hyaena in Waterberg Biosphere Reserve, South Africa Rivona Ramnanan1, Michelle Thorn1, Craig J. Tambling2 and Michael J. Somers 1, 3* 1 Centre for Wildlife Management, University of Pretoria, Pretoria, South Africa. 2 Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela Metropolitan University, Port Elizabeth, 6031, South Africa. 3 Centre for Invasion Biology, University of Pretoria, Pretoria, South Africa. Email: [email protected] * Correspondence author Keywords: apex predators, dietary niche, human modification, resource partitioning. Abstract Understanding resource partitioning by predators is important for understanding coexistence patterns, with this becoming more relevant as historical food webs are altered through human impacts. Using scat analysis, we investigated the diet overlap of two sympatric meso-carnviores, the black-backed jackal Canis mesomelas and brown hyaena Hyaena brunnea, in Waterberg Biosphere Reserve, South Africa. Scats (n = 30 jackal, 42 brown hyaena) were collected in April 2012 from game and livestock farms. When comparing main prey categories (medium-large mam- mal, small mammal, fruit, invertebrate, reptile, and bird) we found little difference in diets, with both carnivores con- suming predominantly medium-large mammals (10-100kg). Bushbuck Tragelaphus scriptus was the most commonly consumed large mammal species for both predators. Jackal and brown hyaena had, on average, 1.3 and 1.4 main prey categories per scat respectively which resulted in diet diversities of 3.9 for jackal and 2.5 for brown hyaena.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Canid, Hye A, Aardwolf Conservation Assessment and Management Plan (Camp) Canid, Hyena, & Aardwolf
    CANID, HYE A, AARDWOLF CONSERVATION ASSESSMENT AND MANAGEMENT PLAN (CAMP) CANID, HYENA, & AARDWOLF CONSERVATION ASSESSMENT AND MANAGEMENT PLAN (CAMP) Final Draft Report Edited by Jack Grisham, Alan West, Onnie Byers and Ulysses Seal ~ Canid Specialist Group EARlliPROMSE FOSSIL RIM A fi>MlY Of CCNSERVA11QN FUNDS A Joint Endeavor of AAZPA IUCN/SSC Canid Specialist Group IUCN/SSC Hyaena Specialist Group IUCN/SSC Captive Breeding Specialist Group CBSG SPECIES SURVIVAL COMMISSION The work of the Captive Breeding Specialist Group is made possible by gellerous colltributiolls from the following members of the CBSG Institutional Conservation Council: Conservators ($10,000 and above) Federation of Zoological Gardens of Arizona-Sonora Desert Museum Claws 'n Paws Australasian Species Management Program Great Britain and Ireland BanhamZoo Darmstadt Zoo Chicago Zoological Society Fort Wayne Zoological Society Copenhagen Zoo Dreher Park Zoo Columbus Zoological Gardens Gladys Porter Zoo Cotswold Wildlife Park Fota Wildlife Park Denver Zoological Gardens Indianapolis Zoological Society Dutch Federation of Zoological Gardens Great Plains Zoo Fossil Rim Wildlife Center Japanese Association of Zoological Parks Erie Zoological Park Hancock House Publisher Friends of Zoo Atlanta and Aquariums Fota Wildlife Park Kew Royal Botanic Gardens Greater Los Angeles Zoo Association Jersey Wildlife Preservation Trust Givskud Zoo Miller Park Zoo International Union of Directors of Lincoln Park Zoo Granby Zoological Society Nagoya Aquarium Zoological Gardens The Living Desert Knoxville Zoo National Audubon Society-Research Metropolitan Toronto Zoo Marwell Zoological Park National Geographic Magazine Ranch Sanctuary Minnesota Zoological Garden Milwaukee County Zoo National Zoological Gardens National Aviary in Pittsburgh New York Zoological Society NOAHS Center of South Africa Parco Faunistico "La To:rbiera" Omaha's Henry Doorly Zoo North of Chester Zoological Society Odense Zoo Potter Park Zoo Saint Louis Zoo Oklahoma City Zoo Orana Park Wildlife Trust Racine Zoological Society Sea World, Inc.
    [Show full text]
  • Museum of Natural History
    p m r- r-' ME FYF-11 - - T r r.- 1. 4,6*. of the FLORIDA MUSEUM OF NATURAL HISTORY THE COMPARATIVE ECOLOGY OF BOBCAT, BLACK BEAR, AND FLORIDA PANTHER IN SOUTH FLORIDA David Steffen Maehr Volume 40, No. 1, pf 1-176 1997 == 46 1ms 34 i " 4 '· 0?1~ I. Al' Ai: *'%, R' I.' I / Em/-.Ail-%- .1/9" . -_____- UNIVERSITY OF FLORIDA GAINESVILLE Numbers of the BULLETIN OF THE FLORIDA MUSEUM OF NATURAL HISTORY am published at irregular intervals Volumes contain about 300 pages and are not necessarily completed in any one calendar year. JOHN F. EISENBERG, EDITOR RICHARD FRANZ CO-EDIWR RHODA J. BRYANT, A£ANAGING EMOR Communications concerning purchase or exchange of the publications and all manuscripts should be addressed to: Managing Editor. Bulletin; Florida Museum of Natural Histoty, University of Florida P. O. Box 117800, Gainesville FL 32611-7800; US.A This journal is printed on recycled paper. ISSN: 0071-6154 CODEN: BF 5BAS Publication date: October 1, 1997 Price: $ 10.00 Frontispiece: Female Florida panther #32 treed by hounds in a laurel oak at the site of her first capture on the Florida Panther National Wildlife Refuge in central Collier County, 3 February 1989. Photograph by David S. Maehr. THE COMPARATIVE ECOLOGY OF BOBCAT, BLACK BEAR, AND FLORIDA PANTHER IN SOUTH FLORIDA David Steffen Maehri ABSTRACT Comparisons of food habits, habitat use, and movements revealed a low probability for competitive interactions among bobcat (Lynx ndia). Florida panther (Puma concotor cooi 1 and black bear (Urns amencanus) in South Florida. All three species preferred upland forests but ©onsumed different foods and utilized the landscape in ways that resulted in ecological separation.
    [Show full text]
  • Response of Wildlife to Bush Thinning on the North Central Freehold Farmlands of Namibia T
    Forest Ecology and Management 473 (2020) 118330 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Response of wildlife to bush thinning on the north central freehold farmlands of Namibia T Matti T. Nghikembuaa,b,c, Laurie L. Markera,b, Bruce Brewera,b, Lauri Mehtätaloc, Mark Appiahc,d, ⁎ Ari Pappinenc, a Cheetah Conservation Fund, Otjiwarongo, Namibia b CCF Bush PTY Ltd, Otijwarongo, Namibia c University of Eastern Finland, School of Forest Sciences, Joensuu Campus, Yliopistokatu 7, 80101 Joensuu, Finland d Forestry Research Institute of Ghana (CSIR-FORIG), Kumasi, Ghana ARTICLE INFO ABSTRACT Keywords: Agriculture is considered the backbone of the Namibian economy. However, bush encroachment affects ap- Bush encroachment proximately 45 million hectares of Namibian farmland and in the absence of appropriate restoration measures, Biodiversity negatively affects local biodiversity and the national economy. Bush thinning operations on three freehold farms Restoration were assessed to examine the response of local ungulates (small, medium, large) and predators (meso, large). Carrying capacity Camera traps were used to capture wildlife in bush encroached and previously thinned habitats. We hy- Overgrazing pothesized that thinning would increase the activity of small, medium, and large ungulates, meso and large Bush thinning predators, and that the magnitude of the increase in activity at thinned sites would differ among animal types. Our results revealed that the expected animal captures were not equal – small, medium, and large ungulates were common, large predators were least common; thinned areas had more expected animal captures and overall animal-treatment interactions were almost significant (p = 0.051).
    [Show full text]
  • Rangeland Ecology & Management
    Rangeland Ecology & Management 79 (2021) 64–76 Contents lists available at ScienceDirect Rangeland Ecology & Management journal homepage: www.elsevier.com/locate/rama Local-Scale Variation in Land Use Practice Supports a Diverse Carnivore ✩ Guild on Namibian Multiple-Use Rangeland ∗ Stijn Verschueren 1,2, , Willem D. Briers-Louw 1,3, Pedro Monterroso 4, Laurie Marker 1 1 Cheetah Conservation Fund, Otjiwarongo, Namibia 2 Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium 3 Zambeze Delta Conservation, Marromeu, Mozambique 4 CIBIO/InBIO, Biodiversity and Genetic Resources Research Center, University of Biodiversity and Genetic Resources Research Center, University of Porto, Vairão Campus, 4485-661 Vairão, Portugal a r t i c l e i n f o a b s t r a c t Article history: Many rangelands worldwide are threatened by human population growth, so there is an urgent need Received 19 October 2020 for understanding how we can preserve functional diversity across these systems. The conservation and Revised 7 July 2021 restoration of mammalian carnivores (order Carnivora) is critical because they impart important trophic Accepted 15 July 2021 cascading effects. Land use practice on rangelands may determine carnivore distributions and abun- dances; thus, to effectively facilitate coexistence between carnivores and humans, it is essential to under- Key Words: stand carnivore community functioning in human-dominated landscapes. We conducted a camera trap- camera trap ping survey on multiple-use rangeland in north-central Namibia to investigate the spatial ecology of free- coexistence ranging carnivores in a farming system that comprises both livestock farming activities and wildlife-based farmland land uses. We hypothesized that carnivore diversity and occupancy would be determined by farm type occupancy seasonality and predicted the associations of carnivore distributions with covariates related to resource availability, spatial ecology intraguild interactions, and anthropogenic influence.
    [Show full text]
  • Prey Selection by Caracal in the Kgalagadi Transfrontier Park
    Prey selection by caracal in the Kgalagadi Transfrontier Park H.I.A.S. Melville1*, J. du P. Bothma1 & M.G.L. Mills2 1Centre for Wildlife Management, University of Pretoria, Pretoria, 0002 South Africa 2SAN Parks, Endangered Wildlife Trust and Mammal Research Institute, University of Pretoria, Private Bag X402, Skukuza, 1350 South Africa Received 29 August 2003. Accepted 4 March 2004 In the Kgalagadi Transfrontier Park, 116 caracal (Caracal caracal) scat samples were col- lected and 327 attempted hunts were reconstructed from spoor-tracking. The data were analysed to establish the prey use of caracals in the Kgalagadi Transfrontier Park and to study the extent to which caracals use small stock by moving into the adjacent farmland in Namibia. It was found that the primary prey resource was small mammals, the vast majority of which were rodents, including springhare (Pedetes capensis). Larger prey animals included steenbok (Raphicerus campestris) and smaller carnivores up to the size of a black-backed jackal (Canis mesomelas). Birds were an abundant prey resource, especially the larger ground-roosting species. Invertebrate remains were found in a large proportion of the scats, indicating that they were commonly used as a source of food. Domestic livestock remains were identified in eight of the scat samples and the temporal distribution of these indicated an increased use of domestic livestock by caracals in the cold season. Key words: caracal, Felidae, livestock, scat analysis, small mammals, spoor-tracking. INTRODUCTION where stock farms border on the Kgalagadi The survival of any predator is directly related Transfrontier Park. Although widely condemned to the quality and quantity of its diet.
    [Show full text]
  • Feliforms 21 V-6
    Global Federation of Animal Sanctuaries Standards For Feliform Sanctuaries Version: December 2019 ©2012 Global Federation of Animal Sanctuaries Global Federation of Animal Sanctuaries – Standards for Feliform Sanctuaries Table of Contents INTRODUCTION 1 GFAS PRINCIPLES 1 ANIMALS COVERED BY THESE STANDARDS 1 STANDARDS UPDATES 4 FELIFORM STANDARDS 4 FELIFORM HOUSING 4 H-1. Types of Space and Size 4 H-2. Containment 6 H-3. Ground and Plantings 8 H-4. Transfer Doors 9 H-5. Shelter 10 H-6. Enclosure Furniture 10 H-7. Sanitation 12 H-8. Temperature, Humidity, Ventilation, Lighting 13 NUTRITION REQUIREMENTS 15 N-1. Water 15 N-2. Diet 15 N-3. Food Presentation and Feeding Techniques 17 N-4. Food Storage 17 N-5. Food Handling 18 VETERINARY CARE 18 V-1. General Medical Program and Staffing 18 V-2. On-Site and Off-Site Veterinary Facilities 19 V-3. Preventative Medicine Program 19 V-4. Clinical Pathology, Surgical, Treatment and Necropsy Facilities 20 V-5. Quarantine and Isolation of Feliforms 21 V-6. Medical Records and Controlled Substances 22 V-7. Breeding/Contraception 23 V-8. Zoonotic Disease Program 24 V-9. Euthanasia 30 WELL BEING AND HANDLING OF FELIFORMS 25 W-1. Physical Well-Being 26 W-2. Social Housing 27 W-3. Introduction of Unfamiliar Individuals 27 W-4. Behavioral/Psychological Well-Being 28 W-5. Feliform-Caregiver Relationships 29 W-6. Handling and Restraint 30 i Global Federation of Animal Sanctuaries – Standards for Feliform Sanctuaries W-7. Animal Transport 37 FELIFORMS BEING RELEASED TO THE WILD 32 R-1. General Considerations 32 R-2.
    [Show full text]
  • 'Patterns of Habitat Use and Segregation Among African Large
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Patterns of habitat use and segregation among African large carnivores Cozzi, Gabriele Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-93646 Dissertation Originally published at: Cozzi, Gabriele. Patterns of habitat use and segregation among African large carnivores. 2013, University of Zurich, Faculty of Science. PATTERNS OF HABITAT USE AND SEGREGATION AMONG AFRICAN LARGE CARNIVORES Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Gabriele Cozzi von Vacallo (TI) Promotionskomitee: Prof. Dr. Bernhard Schmid (Leitung der Dissertation und Vorsitz) Prof. Dr. Marta Manser Dr. John W. McNutt Dr. Sarah Durant Zürich, 2013 PATTERNS OF HABITAT USE AND SEGREGATION AMONG AFRICAN LARGE CARNIVORES A CASE STUDY ON THE AFRICAN WILD DOG (LYCAON PICTUS), THE SPOTTED HYENA (CROCUTA CROCUTA) AND THE LION (PANTHERA LEO) Gabriele Cozzi Die vorliegende Dissertaion wurde am 27.11.2012 zur Begutachtung eingereicht. Promotionskomitee: Prof. Dr. Bernhard Schmid (Vorsitz) Prof. Dr. Marta Manser Dr. John W. McNutt Dr. Sarah Durant This thesis is dedicated to the memory of Christine B. Müller a mentor, a colleague, a friend Contents CONTENTS SUMMARY .......................................................................................................................................................................................
    [Show full text]
  • Undermining Game Fences: Who Is Digging Holes in Kalahari Sands?
    Undermining game fences: who is digging holes in Kalahari sands? Kristina M. Kesch1*, Dominik T. Bauer2 and Andrew J. Loveridge3 1Department of Animal Ecology and Conservation, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany, 2Department of Zoology, University of Hohenheim, 70593, Stuttgart, Germany and 3Department of Zoology, Wildlife Conservation Research Unit, Recanati- Kaplan Centre, University of Oxford, Tubney House, Tubney, OX13 5QL, U.K. Abstract dont elles les creusent pour entretenir les clotures^ correct- The effectiveness of game fencing as a tool to promote ement. Nous fournissons des donnees sur certaines des coexistence between humans and wildlife is highly principales especes animales qui creusent des trous pour dependent on the maintenance of fences. It is vital to proposer une methode simple mais efficace qui permettra identify animal species, which dig holes under fences, and aux parties prenantes de classer les especes qui creusent des ^ their digging behaviour to maintain game fences appro- trous sous les clotures destinees a la faune sauvage, dans des ^ priately. We provide data on some of southern Africa’s habitats sableux profonds, grace a des connaissances major hole-digging animal species for a simple albeit specifiques sur la taille et la forme des trous. Prenant ^ effective method enabling stakeholders to categorize spe- comme exemple la cloture qui separe, au Botswana, la cies that are digging holes underneath game fences in deep Reserve de faune de Khutse de la Reserve de faune de Central sand habitats by species-specific knowledge on sizes and Kalahari, nous soulignons l’aspect temporel du creusement shapes of holes.
    [Show full text]
  • Standards for Feliform Sanctuaries
    Global Federation of Animal Sanctuaries Standards For Feliform Sanctuaries Version: June, 2013 ©2012 Global Federation of Animal Sanctuaries Global Federation of Animal Sanctuaries – Standards for Feliform Sanctuaries Table of Contents INTRODUCTION 1 GFAS PRINCIPLES 1 ANIMALS COVERED BY THESE STANDARDS 1 STANDARDS UPDATES 4 FELIFORM STANDARDS 4 FELIFORM HOUSING 4 H-1. Types of Space and Size 4 H-2. Containment 6 H-3. Ground and Plantings 8 H-4. Transfer Doors 9 H-5. Shelter 10 H-6. Enclosure Furniture 12 H-7. Sanitation 13 H-8. Temperature, Humidity, Ventilation, Lighting 14 PHYSICAL FACILITIES AND ADMINISTRATION 16 PF-1. Overall Safety of Facilities 16 PF-2. Water Drainage and Testing 16 PF-3. Life Support 16 PF-4. Hazardous Materials Handling 16 PF-5. Security: Feliform Enclosures 17 PF-6. Perimeter Boundary and Inspections, and Maintenance 18 PF-7. Security: General Safety Monitoring 18 PF-8. Insect and Rodent Control 19 PF-9. Record Keeping 19 PF-10. Animal Transport 20 NUTRITION REQUIREMENTS 21 N-1. Water 21 N-2. Diet 21 N-3. Food Presentation and Feeding Techniques 23 N-4. Food Storage 23 N-5. Food Handling 24 VETERINARY CARE 24 V-1. General Medical Program and Staffing 24 V-2. On-Site and Off-Site Veterinary Facilities 25 V-3. Preventative Medicine Program 25 V-4. Clinical Pathology, Surgical, Treatment and Necropsy Facilities 26 V-5. Quarantine and Isolation of Feliforms 27 i Global Federation of Animal Sanctuaries – Standards for Feliform Sanctuaries V-6. Medical Records and Controlled Substances 28 V-7. Breeding/Contraception 29 V-8.
    [Show full text]
  • Ecological Studies of the African Civet (Civettictis Civetta) in Hawassa and Wondo Genet Areas, Southern Ethiopia
    ECOLOGICAL STUDIES OF THE AFRICAN CIVET (CIVETTICTIS CIVETTA) IN HAWASSA AND WONDO GENET AREAS, SOUTHERN ETHIOPIA By Ayalew Berhanu Adem A Dissertation Submitted to the School of Graduate Studies of the Addis Ababa University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Zoology (Ecological and Systematic Zoology) Supervisors Professor Afework Bekele Professor Balakrishnan, M. June 23, 2015 Declaration I, Ayalew Berhanu Adem, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. The material contained in this thesis has not previously been submitted for a degree at Addis Ababa University or any other university The African civet (Civettictis civetta Schreber, 1776) Dedicated to my parents Almaz Abebo (mam) Berhanu Odamo (dad) Ecological Studies of the African Civet (Civettictis civetta) ACKNOWLEDGEMENTS First of all, I would like to express my deepest gratitude and appreciation to my supervisors, Professor Afework Bekele and Professor M. Balakrishnan for their encouragement, constructive criticism, consistent guidance starting from the proposal design up to the final version of this thesis, provision of reference materials and equipment for field work, and for their enthusiastic advice for the accomplishment of this research work. I am also grateful to Dr. Gurja Belay, former Chairman of the Department of Biology, for his kind support during the beginning of my PhD study in the department and his follow up and continuous moral support. I would like to forward my appreciation to Dr. Abebe Getahun, Chairman, Department of Zoological Sciences, for his valuable encouragement and facilitating official works and release of departmental fund.
    [Show full text]