ENCODING CONTENT a Codecistheencoder-Decoder Device Used to Compress Thedataa Video/Audio in Stream

Total Page:16

File Type:pdf, Size:1020Kb

ENCODING CONTENT a Codecistheencoder-Decoder Device Used to Compress Thedataa Video/Audio in Stream ENCODING CONTENT APPLICATION NOTES Agree Terms What is a codec and why are there so many? Why does Hippo�zer have to encode content? How does Hippo�zer handle encoded content? Terms and Defini�ons: A Codec is the Encoder-Decoder device used to compress the data in a video/audio stream. VIDEO FOOTAGE VIDEO CODEC VIDEO CODEC A Container is a file that allows audio, video and data files to be stored within it. ORIGINAL • PREPARE • DELIVER • PREPARE FOOTAGE .Mov - Proprietary file format used by Apple’s quick �me framework. .AVI - Microso� proprietary file format .mp4 DESIGN ENCODING DECODING PLAYBACK A Video Codec encode / decode video (as opposed to audio) H.265 / MPEG-H HEVC -> Streaming, Blu-ray ORIGINAL SOUND Apple ProRes -> Video Produc�on AV1 -> HTML5 Video AUDIO CODEC AUDIO CODEC SOUND READ MORE ABOUT GREEN HIPPO’S FLEXRES CODEC HERE www.green-hippo.com/hippo�zer-key-features/flexres-codec/ NOT ALL CODECS ARE CREATED EQUAL: There is no easy answer to what the best codec is: HIGHQUALITY HIGHQUALITY UNC AUTOSHOWS LOSSLESS YOUTUBE MEDIA SERVERS FLEXRES QUALITY LIVE STREAMING EVENTS FLEXRES DECODE DIGITAL SIGNAGE SMALL FILES DECODE PERFORMANCE SMALL FILES EFFICIENCY (BETTER COMPRESSION) EFFICIENCY • PREPARE • DELIVER • PREPARE FlexRes Tools is a free suite of plugins and u�li�es to streamline content crea�on workflows. How does Hippo�zer encode and handle Media? Flexibility is key for a media server. One show may need 8K+ playback while the next may require perfect DESIGN 4:4:4 colour and uncompressed playback. FlexRes is a suite of codecs that features the flexibility to do Hippo�zer has a built-in transcoder from most common formats. both extremes and everything in between. FlexRes is more than just a few codecs, it is also an integral Once transcoded into Hippo�zer, content can be transferred between part of the content workflow. From a single system produc�on to a render farm, FlexRes saves precious systems over the network. �me with a series of innova�ve tools to ensure the �me from render to playout is as short as possible. Automa�c encoding is via Watch Folders. Encoded media can only be played by Hippo�zer and cannot be Hippo�zer has four codecs: converted back. FlexRes Performance FlexRes Quality FlexRes Lossless FlexRes Uncompressed .
Recommended publications
  • On Audio-Visual File Formats
    On Audio-Visual File Formats Summary • digital audio and digital video • container, codec, raw data • different formats for different purposes Reto Kromer • AV Preservation by reto.ch • audio-visual data transformations Film Preservation and Restoration Hyderabad, India 8–15 December 2019 1 2 Digital Audio • sampling Digital Audio • quantisation 3 4 Sampling • 44.1 kHz • 48 kHz • 96 kHz • 192 kHz digitisation = sampling + quantisation 5 6 Quantisation • 16 bit (216 = 65 536) • 24 bit (224 = 16 777 216) • 32 bit (232 = 4 294 967 296) Digital Video 7 8 Digital Video Resolution • resolution • SD 480i / SD 576i • bit depth • HD 720p / HD 1080i • linear, power, logarithmic • 2K / HD 1080p • colour model • 4K / UHD-1 • chroma subsampling • 8K / UHD-2 • illuminant 9 10 Bit Depth Linear, Power, Logarithmic • 8 bit (28 = 256) «medium grey» • 10 bit (210 = 1 024) • linear: 18% • 12 bit (212 = 4 096) • power: 50% • 16 bit (216 = 65 536) • logarithmic: 50% • 24 bit (224 = 16 777 216) 11 12 Colour Model • XYZ, L*a*b* • RGB / R′G′B′ / CMY / C′M′Y′ • Y′IQ / Y′UV / Y′DBDR • Y′CBCR / Y′COCG • Y′PBPR 13 14 15 16 17 18 RGB24 00000000 11111111 00000000 00000000 00000000 00000000 11111111 00000000 00000000 00000000 00000000 11111111 00000000 11111111 11111111 11111111 11111111 00000000 11111111 11111111 11111111 11111111 00000000 11111111 19 20 Compression Uncompressed • uncompressed + data simpler to process • lossless compression + software runs faster • lossy compression – bigger files • chroma subsampling – slower writing, transmission and reading • born
    [Show full text]
  • Shop Fullcompass.Com Today! for Expert Advice - Call: 800-356-5844 M-F: 9:00-5:30 Central 412 VIDEO PLAYERS / RECORDERS
    DVD / BLU-RAY PLAYERS AND RECORDERS DVD / BLU-RAYVIDEO PLAY PLAYERSE RASND / RECORDERS 411 NEW! ATOMOS ATOMOS NINJA STAR POCKET- SIZE APPLE PRORES RECORDER AND TASCAM DV-D01U RACKMOUNTABLE SINGLE DISC DVD PLAYER DECK Designed for action cameras, drones The DV-D01U is a rackmountable single-disc player with a powered loading tray. and mirrorless DSLR’s, this pocket-size Apple The player reads DVD video, DVD audio (2-channel only), video CD, CD-DA, MP3, ProRes recorder delivers better quality (no MPEG compression) and huge WMA, .WAV, JPEG, ASF, MPEG-2/MPEG-1, and DivX. It is capable of playing back workflow timesavings. Ultra-long battery life with tiny size and weight make this properly finalized DVD +R/+RW discs. Outputs consist of HDMI audio/video unit ideal for situations requiring portability, reliability and long power draws. out and composite, S-Video, and component video outputs. Rear panel stereo Captures video in select HD/SD recording formats via HDMI, with 2-channel audio outputs are unbalanced (RCA) and digital outputs are optical. Digital outputs can from camera and/or analog input. Edit-ready media files are recorded directly to pass Dolby Digital and DTS surround streams for later decoding. The DV-D01U CFast 1.0 memory card. Standard mounting plate included. provides extensive bi-directional RS232 serial control and an I/R remote control ITEM DESCRIPTION PRICE is included. ATO-NINJA-STAR........ Pocket-Size ProRes Recorder & Deck ........................................... 295.00 ITEM DESCRIPTION PRICE ATO-MCFT064 ........... 64GB CFast Memory Card ........................................................... 159.00 DVD01U ..................... Rackmountable DVD player, 1RU ................................................ 369.99 ATO-MCFT128 ..........
    [Show full text]
  • Prices 06-2021
    Prices (exc. VAT) -June 2021 1 - Contents 2 - 4K HDR color grading 3 - 5.1 mixing 4 - Subtitling 5 - 2K/4K/3D DCPs 6 - Broadcast-ready files / IMF Package / Dolby E 7 - DVD & 2D/3D/4K Blu-ray authoring 8 - DVD duplication 9 - Blu-ray duplication 10 - Dailies management / 3D & HDR encoding 11 - LTO archiving and restore Have a question or want a quote? Write to us: [email protected] Registration: 492432703 - VAT ID: FR52492432703 4K HDR color grading Color grading station Half-day (4h) Full day (8h) Week (5d) Rental of 4K HDR DaVinci Resolve station with senior colorist's services € 550 € 990 € 4 900 Rental of 4K HDR DaVinci Resolve station without senior colorist's services € 270 € 500 € 2 450 Delivery of DaVinci Resolve source project to customer Included Video export Apple ProRes or DNxHR Included Color grading peripherals Week (5d) Rental of HDR Eizo CG3145 Prominence monitor € 900 Rental of DaVinci Resolve Mini Panel € 300 Transport costs (both ways, mandatory, only available in Paris, Hauts-de-Seine, Seine-Saint-Denis and Val-de-Marne) € 100 Roundtrip workflow Final Cut Pro Media Composer Premiere Pro Organisation of the timeline and export to Final Cut Pro 7/X, Avid Media Composer or Adobe Premiere Pro Offline reference clip with burned-in timecode after export € 90 / hour Project import and check on DaVinci Resolve The powerful color grading station: Blackmagic Design's DaVinci Resolve Studio 17 on Linux (+Neat plugin) AMD Ryzen Threadripper 64 cores / nVidia RTX 3090 24 GB Best 4K DCI 10-bit HDR mastering display monitor on an Eizo CG3145 Prominence (meeting Dolby Vision and Netflix standards) Display calibration by a VTCAM expert to Rec.
    [Show full text]
  • Capabilities of the Horchow Auditorium and the Orientation
    Performance Capabilities of Horchow Auditorium and Atrium at the Dallas Museum of Art Horchow Auditorium Capacity and Stage: The auditorium seats 333 people (with a 12 removable chair option in the back), maxing out the capacity at 345). The stage is 45’ X 18’and the screen is 27’ X 14’. A height adjustable podium, microphone, podium clock and light are standard equipment available. Installed/Available Equipment Sound: Lighting: 24 channel sound board 24 fixed lights 4 stage monitors (with up to 4 Mixes) 5 movers (these give a wide array of lighting looks) 6 hardwired microphones 4 wireless lavaliere microphones 2 handheld wireless microphones (with headphone option) 9-foot Steinway Concert Grand Piano 3 Bose towers (these have been requested by Acoustic performers before and work very well) Music stands Projection Panasonic PTRQ32 4K 20,000 Lumen Laser Projector Preferred Video Formats in Horchow Blu Ray DVD Apple ProRes 4:2:2 Standard in a .mov wrapper H.264 in a .mov wrapper Formats we can use, but are not optimal MPEG-1/2 Dirac / VC-2 DivX® (1/2/3/4/5/6) MJPEG (A/B) MPEG-4 ASP WMV 1/2 XviD WMV 3 / WMV-9 / VC-1 3ivX D4 Sorenson 1/3 H.261/H.263 / H.263i DV H.264 / MPEG-4 AVC On2 VP3/VP5/VP6 Cinepak Indeo Video v3 (IV32) Theora Real Video (1/2/3/4) Atrium Capacity and Stage: The Atrium seats up to 500 people (chair rental required). The stage available to be installed in the Atrium is 16’ x 12’ x 1’.
    [Show full text]
  • Amphion Video Codecs in an AI World
    Video Codecs In An AI World Dr Doug Ridge Amphion Semiconductor The Proliferance of Video in Networks • Video produces huge volumes of data • According to Cisco “By 2021 video will make up 82% of network traffic” • Equals 3.3 zetabytes of data annually • 3.3 x 1021 bytes • 3.3 billion terabytes AI Engines Overview • Example AI network types include Artificial Neural Networks, Spiking Neural Networks and Self-Organizing Feature Maps • Learning and processing are automated • Processing • AI engines designed for processing huge amounts of data quickly • High degree of parallelism • Much greater performance and significantly lower power than CPU/GPU solutions • Learning and Inference • AI ‘learns’ from masses of data presented • Data presented as Input-Desired Output or as unmarked input for self-organization • AI network can start processing once initial training takes place Typical Applications of AI • Reduce data to be sorted manually • Example application in analysis of mammograms • 99% reduction in images send for analysis by specialist • Reduction in workload resulted in huge reduction in wrong diagnoses • Aid in decision making • Example application in traffic monitoring • Identify areas of interest in imagery to focus attention • No definitive decision made by AI engine • Perform decision making independently • Example application in security video surveillance • Alerts and alarms triggered by AI analysis of behaviours in imagery • Reduction in false alarms and more attention paid to alerts by security staff Typical Video Surveillance
    [Show full text]
  • (A/V Codecs) REDCODE RAW (.R3D) ARRIRAW
    What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format.
    [Show full text]
  • Encoding H.264 Video for Streaming and Progressive Download
    W4: KEY ENCODING SKILLS, TECHNOLOGIES TECHNIQUES STREAMING MEDIA EAST - 2019 Jan Ozer www.streaminglearningcenter.com [email protected]/ 276-235-8542 @janozer Agenda • Introduction • Lesson 5: How to build encoding • Lesson 1: Delivering to Computers, ladder with objective quality metrics Mobile, OTT, and Smart TVs • Lesson 6: Current status of CMAF • Lesson 2: Codec review • Lesson 7: Delivering with dynamic • Lesson 3: Delivering HEVC over and static packaging HLS • Lesson 4: Per-title encoding Lesson 1: Delivering to Computers, Mobile, OTT, and Smart TVs • Computers • Mobile • OTT • Smart TVs Choosing an ABR Format for Computers • Can be DASH or HLS • Factors • Off-the-shelf player vendor (JW Player, Bitmovin, THEOPlayer, etc.) • Encoding/transcoding vendor Choosing an ABR Format for iOS • Native support (playback in the browser) • HTTP Live Streaming • Playback via an app • Any, including DASH, Smooth, HDS or RTMP Dynamic Streaming iOS Media Support Native App Codecs H.264 (High, Level 4.2), HEVC Any (Main10, Level 5 high) ABR formats HLS Any DRM FairPlay Any Captions CEA-608/708, WebVTT, IMSC1 Any HDR HDR10, DolbyVision ? http://bit.ly/hls_spec_2017 iOS Encoding Ladders H.264 HEVC http://bit.ly/hls_spec_2017 HEVC Hardware Support - iOS 3 % bit.ly/mobile_HEVC http://bit.ly/glob_med_2019 Android: Codec and ABR Format Support Codecs ABR VP8 (2.3+) • Multiple codecs and ABR H.264 (3+) HLS (3+) technologies • Serious cautions about HLS • DASH now close to 97% • HEVC VP9 (4.4+) DASH 4.4+ Via MSE • Main Profile Level 3 – mobile HEVC (5+)
    [Show full text]
  • IP-Soc Shanghai 2017 ALLEGRO Presentation FINAL
    Building an Area-optimized Multi-format Video Encoder IP Tomi Jalonen VP Sales www.allegrodvt.com Allegro DVT Founded in 2003 Privately owned, based in Grenoble (France) Two product lines: 1) Industry de-facto standard video compliance streams Decoder syntax, performance and error resilience streams for H.264|MVC, H.265/SHVC, VP9, AVS2 and AV1 System compliance streams 2) Leading semiconductor video IP Multi-format encoder IP for H.264, H.265, VP9, JPEG Multi-format decoder IP for H.264, H.265, VP9, JPEG WiGig IEEE 802.11ad WDE CODEC IP 2 Evolution of Video Coding Standards International standards defined by standardization bodies such as ITU-T and ISO/IEC H.261 (1990) MPEG-1 (1993) H.262 / MPEG-2 (1995) H.263 (1996) MPEG-4 Part 2 (1999) H.264 / AVC / MPEG-4 Part 10 (2003) H.265 / HEVC (2013) Future Video Coding (“FVC”) MPEG and ISO "Preliminary Joint Call for Evidence on Video Compression with Capability beyond HEVC.” (202?) Incremental improvements of transform-based & motion- compensated hybrid video coding schemes to meet the ever increasing resolution and frame rate requirements 3 Regional Video Standards SMPTE standards in the US VC-1 (2006) VC-2 (2008) China Information Industry Department standards AVS (2005) AVS+ (2012) AVS2.0 (2016) 4 Proprietary Video Formats Sorenson Spark On2 VP6, VP7 RealVideo DivX Popular in the past partly due to technical merits but mainly due to more suitable licensing schemes to a given application than standard video video formats with their patent royalties. 5 Royalty-free Video Formats Xiph.org Foundation
    [Show full text]
  • PVQ Applied Outside of Daala (IETF 97 Draft)
    PVQ Applied outside of Daala (IETF 97 Draft) Yushin Cho Mozilla Corporation November, 2016 Introduction ● Perceptual Vector Quantization (PVQ) – Proposed as a quantization and coefficient coding tool for NETVC – Originally developed for the Daala video codec – Does a gain-shape coding of transform coefficients ● The most distinguishing idea of PVQ is the way it references a predictor. – PVQ does not subtract the predictor from the input to produce a residual Mozilla Corporation 2 Integrating PVQ into AV1 ● Introduction of a transformed predictors both in encoder and decoder – Because PVQ references the predictor in the transform domain, instead of using a pixel-domain residual as in traditional scalar quantization ● Activity masking, the major benefit of PVQ, is not enabled yet – Encoding RDO is solely based on PSNR Mozilla Corporation 3 Traditional Architecture Input X residue Subtraction Transform T signal R predictor P + decoded X Inverse Inverse Scalar decoded R Transform Quantizer Quantizer Coefficient bitstream of Coder coded T(X) Mozilla Corporation 4 AV1 with PVQ Input X Transform T T(X) PVQ Quantizer PVQ Coefficient predictor P Transform T T(X) Coder PVQ Inverse Quantizer Inverse dequantized bitstream of decoded X Transform T(X) coded T(X) Mozilla Corporation 5 Coding Gain Change Metric AV1 --> AV1 with PVQ PSNR Y -0.17 PSNR-HVS 0.27 SSIM 0.93 MS-SSIM 0.14 CIEDE2000 -0.28 ● For the IETF test sequence set, "objective-1-fast". ● IETF and AOM for high latency encoding options are used. Mozilla Corporation 6 Speed ● Increase in total encoding time due to PVQ's search for best codepoint – PVQ's time complexity is close to O(n*n) for n coefficients, while scalar quantization has O(n) ● Compared to Daala, the search space for a RDO decision in AV1 is far larger – For the 1st frame of grandma_qcif (176x144) in intra frame mode, Daala calls PVQ 3843 times, while AV1 calls 632,520 times, that is ~165x.
    [Show full text]
  • Bitmovin's “Video Developer Report 2018,”
    MPEG MPEG VAST VAST HLS HLS DASH DASH H.264 H.264 AV1 AV1 HLS NATIVE NATIVE CMAF CMAF RTMP RTMP VP9 VP9 ANDROID ANDROID ROKU ROKU HTML5 HTML5 Video Developer MPEG VAST4.0 MPEG VAST4.0 HLS HLS DASH DASH Report 2018 H.264 H.264 AV1 AV1 NATIVE NATIVE CMAF CMAF ROKU RTMP ROKU RTMP VAST4.0 VAST4.0 VP9 VP9 ANDROID ANDROID HTML5 HTML5 DRM DRM MPEG MPEG VAST VAST DASH DASH AV1 HLS AV1 HLS NATIVE NATIVE H.264 H.264 CMAF CMAF RTMP RTMP VP9 VP9 ANDROID ANDROID ROKU ROKU MPEG VAST4.0 MPEG VAST4.0 HLS HLS DASH DASH H.264 H.264 AV1 AV1 NATIVE NATIVE CMAF CMAF ROKU ROKU Welcome to the 2018 Video Developer Report! First and foremost, I’d like to thank everyone for making the 2018 Video Developer Report possible! In its second year the report is wider both in scope and reach. With 456 survey submissions from over 67 countries, the report aims to provide a snapshot into the state of video technology in 2018, as well as a vision into what will be important in the next 12 months. This report would not be possible without the great support and participation of the video developer community. Thank you for your dedication to figuring it out. To making streaming video work despite the challenges of limited bandwidth and a fragmented consumer device landscape. We hope this report provides you with insights into what your peers are working on and the pain points that we are all experiencing. We have already learned a lot and are looking forward to the 2019 Video Developer Survey a year from now! Best Regards, StefanStefan Lederer Lederer CEO, Bitmovin Page 1 Key findings In 2018 H.264/AVC dominates video codec usage globally, used by 92% of developers in the survey.
    [Show full text]
  • CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Optimized AV1 Inter
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Optimized AV1 Inter Prediction using Binary classification techniques A graduate project submitted in partial fulfillment of the requirements for the degree of Master of Science in Software Engineering by Alex Kit Romero May 2020 The graduate project of Alex Kit Romero is approved: ____________________________________ ____________ Dr. Katya Mkrtchyan Date ____________________________________ ____________ Dr. Kyle Dewey Date ____________________________________ ____________ Dr. John J. Noga, Chair Date California State University, Northridge ii Dedication This project is dedicated to all of the Computer Science professors that I have come in contact with other the years who have inspired and encouraged me to pursue a career in computer science. The words and wisdom of these professors are what pushed me to try harder and accomplish more than I ever thought possible. I would like to give a big thanks to the open source community and my fellow cohort of computer science co-workers for always being there with answers to my numerous questions and inquiries. Without their guidance and expertise, I could not have been successful. Lastly, I would like to thank my friends and family who have supported and uplifted me throughout the years. Thank you for believing in me and always telling me to never give up. iii Table of Contents Signature Page ................................................................................................................................ ii Dedication .....................................................................................................................................
    [Show full text]
  • Format Support
    Episode 6 Format Support FILE FORMAT CODEC Episode Episode Episode Pro EngineCOMMENTS Adaptive bitrate streaming Microsoft Smooth Streaming H.264 (AAC audio) O Windows OS only. Available with Episode Engine License. Apple HLS H.264 (AAC audio) O Available with Episode Engine License. Windows Media WMV, ASF VC-1 O O O WM9 I/O I/O I/O WMV7 and 8 through F4M component on Mac WMA I/O I/O I/O WMA Pro I/O I/O I/O Flash FLV Flash 8 (VP6s/VP6e) I/O I/O I/O SWF Flash 8 (VP6s/VP6e) I/O I/O I/O MOV/MP4/F4V Flash 9 (H.264) I/O I/O I/O F4V as extension to MP4 WebM WebM VP8 O O O Vorbis O O O 3GPP 3GPP AAC I/O I/O I/O H.263 I/O I/O I/O H.264 I/O I/O I/O MainConcept and x264 MPEG-4 I/O I/O I/O 3GPP2 3GPP2 AAC I/O I/O I/O H.263 I/O I/O I/O H.264 I/O I/O I/O MainConcept and x264 MPEG-4 I/O I/O I/O MPEG Elementary Streams MPEG-1 Elementary Stream MPEG-1 (video) I/O I/O I/O MPEG-2 Elementary Stream MPEG-2 I/O I/O I/O MPEG Program Streams PS AAC O O O MainConcept and x264 H.264 I/O I/O I/O MPEG-1/2 (audio) I/O I/O I/O MPEG-2 I/O I/O I/O MPEG-4 I/O I/O I/O MPEG Transport Streams TS AAC I O O AES I I/O I/O H.264 I I/O I/O MainConcept and x264 AVCHD I I I HDV I I/O I/O MPEG - 1/2 (audio) I I/O I/O MPEG - 2 I I/O I/O MPEG - 4 I I/O I/O PCM I I I Matrox MAX H.264 I/O I/O I/O QT codec (*output possible via QT), Requires Matrox MAX hardware - Mac OS X only MPEG System Streams M1A MPEG-1 (audio) I/O I/O I/O M1V MPEG-1 (audio) I/O I/O I/O Episode 6 Format Support Format Support FILE FORMAT CODEC Episode Episode Episode Pro EngineCOMMENTS MPEG-4 MP4 AAC I/O I/O I/O
    [Show full text]