Original Paper dx.doi.org/10.22093/wwj.2018.115549.2610 87

Jouranl of Water and Wastewater, Vol. 30, No.3, pp: 87-98 Salinity Source Assessment in - Aquifers by Natural Isotopes and Hydrochemical Methods

M. Agharazi Ashtiani1, S. H. Rahmati2, Y. Khalaj Amirhoseini 3, F. Faridani4, W. Balderer5

MSc Student of Water Resource Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University , , Assist Prof, Department of Environmental Engineering -Water Resource, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University , Tehran, Iran (Corresponding Author) rahmati@srbiauacir Scientific Staff of Water Research Institute, Tehran, Iran Director of Research and Quality Control of Mesbah Energy Company, Tehran, Iran Prof at ETH University of Zurich, Switzerland

(Received Jan. 27, 2018 Accepted June 10, 2018)

To cite this article : Agharazi Ashtiani, M., Rahmati, S. H., Khalaj Amirhoseini, Y., Faridani, F., Balderer, W., 2019, “Salinity source assessment in Shabestar-Sufian aquifers by natural isotopes and hydrochemical methods.” Journal of Water and Wastewater, 30(3), 87-98. Doi: 10.22093/wwj.2018.115549.2610. (In Persian)

Abstract Shabestar - Sufian aquifers are one of the main important aquifers of . The salinity of this aquifers has increased during last decade. Therefore the quality of them has been decreased. Because of the importance of water resources issue and Urmia Lake, it has been decided to investigate on the cause of increasing of the salinity in groundwaterArchive of this area. During this research, of in orderSID to find the source of salinity and also its relationship with the Urmia Lake, the tracking methods have been used with natural isotopes. Former studies in similar cases had applied hydrochemical methods with the hydrogeological data. Therefore in this study, to get the better results, combined tracking by isotopes and hydrochemical methods has been used. According to this study, source of salinity of this aquifer is due to the evaporation, mixing and leaching processes by the geological formation. To sum up, there was no specific relationship between Urmia Lake and salinity of Shabestar - Sufian aquifers.

Keywords: Groundwater, Isotope, Tracing, Oxygen18 (18O), Deuterium (2H), Tritium (3H).

Journal of Water and Wastewater    Vol. 30, No. 3, 2019       www.SID.ir  

dx.doi.org/10.22093/wwj. 2018.115549.2610 88

87-98 :  3   30       &   0 T , F * (  // -  4 L  ] !' 8  C 02 _>% C0^(- *

S06 (D E_D09( 0,( B_2,=-(,  U k #9 ._A- ]0! 0, *_D,A _\ ?D(>

,;E# & 6  +1MY ^* 5B  ,78 ^* 5A ,;E# &6 ' O)'? N   >= # ,  ,  6  [ @ K O9)  8 5/  ,;E# &6  +1MY ^* 5B  ,78 ^* 5A ,;E# &6 O) 5A # 2) >C # ,  ,  6  [ @ K O9)  8 5/  [email protected] (4 GE 5E# ) # ,  ,78 6 E)c O@ ;G b@ >P # ,  ,Nd  eMZ ;?' OW? 42?  6 # >_ hg ) ,f# ,ETH 5/  2) >`

( //  / / )

:+ 4( 6+7 / *02 #( #) 8 #( 9:* ;( * Q'( *% . +. 23 G0V g $ Oa "  .' (()&*% .M P)+ - . A  fL ..\ .B 1#( .> P*1"3 7(*S3 Doi: 10.22093/wwj.2018.115549.2610 .K=()9 267*- ' 23 8 " ?*-, = 1A" ? h%3 ( +*#" ' F'+

 4   ' ] ^C 4  =?  V  c   '9 i& *HR ;$ HR 43 d$1V IL A  C *IL AT T@Q 4T3a 5 T6] = T/ 6T+ 5$;3 .3  V R 4      3L b$  $$_N 7 6 T V * ]„  8 *Yb * b;N   $/N  = = IL 7/ 56   V  3 ‰N # . +3 ‰N #   T$b$ $$_N 1& 5$$@N *L A = 4   ' ] 7 6 * „b" ^  .3 >  42 $3 /$+ = 4;9=  &JD T$CN +, 4 /;3  *   V $  0 Ž 9  *$U  6F9 L $ = = 43IL 4 9 \# HTR 7 IL ; kv \3 `S 5 .9 +  ;N 42  11; 5$ :2L V 9 M YL 4 Q IL *IL  TU '.T =L T3 L #$TL $;$T9 ZT$ N *T$6 N * N *'M3 `$  5$$@N 9 9  ID T+ 7JTC * T$FN T$^ 1 & *SN # 43  ; 4 3 ; '.8 $1CN 3#$L r+  M + .  

'8 ) J' ); J  \7T J  J]); J2 % % L :   G ;

0+ / 6 o1 11X G H .  (  .  ) M   >n-  > -   = 5Z 8 7   =1o1 11X Y9 .= ( )  >  )(   ,  (  %O - .1 >  M E D 6N(  6  18" G 11X  7    )@ & 5  = >) ) MI j8  -n4 )7  &1 4 šo<  ( () 6 B) H• & 5 (1  () (  ~o ‡w :  G(5   (  %O Y5 =5 6  M ( - M BI-n4  > Y5 

Journal of Water and Wastewater    Vol. 30, No. 3, 2019       www.SID.ir dx.doi.org/10.22093/wwj. 2018.115549.2610 ...* + # 78 ;W? i 0@ X1 89

T () 6=5  M ) D - M 7 1 f, .11@    =  s  ‡z 1    > o &, )  U() - T9(U 6Mo'  V?  M  (   w{…… iQ ()   .1 ( -  1 G;1I  1  =O D G(' M   GV1V9  • - (1 s9 (   ~o - &,  ‡| 1 ‡{ j8 .(Water Research Institute, 2009) . 1  > o   . 1 3D >(-) N -( >)o     M-   -n4 () .(Khalajamirhoseini and Babaeekochaksoraei, 2014) >)o 1C )(   M   %1 = > E\ 4-% .  >)  D - .  L • (  &,  pZ .1_  M 4 - )\ i(% 1HR  (    ?19  §-% &•I . .)   =1o1x  ! x = 8 5 >( z$w} T ()   `=o1  %  Z<   >(-) M_   I  =12@O - =1@ 7 (  !  4-%   (  6T M  () .(Ouda et al., 2015) ) x )\ >)o -    (-Ix - @'  ( )  >  K >)   U() 18" _( G 11X .11@ (C  .(Jones et al., 1999) )  I  ;ZO  E\ 1 -( ()  ( 4 § -% >)o  gƒ -     M 5   x 8< M  — O Q G 11X -  18" _( (  32 .(Ekaykin et al., 2015)    6!  =  H () = .•  6)  ,  %1 (i 1") 1  %  Z< () T |}$$ Q M &12) x )-  .1 (  Q( ()  x  B)  M  (F =1 DJ () )7  ( 4  §-% >)o .(Bear et al., 1999) = () (  ~o %1 M 8' .(Erkan et al., 2015) = O D G(' z$w} T () r . L1 1 " 6  () )( N-( >)o y x D ,)-(  D 4 -   - . 6 M .11@ .1 1 @ =18" 6N-( .  % .   L   8 7 .)( ) M " H   D 6E1  6( 4 § -% >)o  -  6RI 6 D)2   6   -  G 11X - 18" _( () I  -n4  B)   6%1 T M  ()  CFC - =  1   - =5  6j" M 6b;, 63X &9 .(Roller et al., 2015)= 4-% N -( >)o 1 . M .(Nabipour and Khalajamirhoseini, 2014) M1O' ‡   =) 6-n4 . () @2? )( Z<  = > >)o L  B) I )(    N-( () - > " -  1-( U() q  T  - T  ()  = ) &" - i1") \  a    5 &1" .  -n4 () 11X a'+, 6 1   =1o1 11X (U) 1,  T =") 1R    B) &5    ), %1 . -  >1 ( M )7- ! 8k  .   C .= > ( M %1 ()   -n4 8 7 . N-( .  % - \ - G;I  %O T < 6V?  >    FF) 1   . 11@ 6 ( O  (   M    > E\ 1 . &85 . 11@ 32 6)  \ () ?19 =  7 G ?, -  =)  F  V? () 1   M 7   =5 - = <   b( .O . Z 6M (  %O -  =1o1 11X 8'  • f    (O M 8  - (Sepasi, 2008) ˆQ 6=) 1   ( - U()  .1 b( E5 .(Khalajamirhoseini, )  >( 6=O 34 G('  GV1V9  (  1Z O . 6 (Archive .1  () .)( )  >n- =1  of SID . 2010) 8 7 6>)  1-( U() = (  ~o =85 V?    -  (     M  G@2? .1  _  V?   I1  (     9 &5 - L &t   (  - M 7  B 2 63X &9 .1 1 @ (C = .  (    w{…… T  () M  T  1    ( )  >  s  V? . () > E\  -n4 )( . ()  • -  •  88 2 .1 ˆ • ƒ I (   w{Œ$ >)o 4-% N -( M ()   E\  GV1V9 1 Tensift 2 Khalajamirhoseini et al., 2010 Vostok  )( G@2? .( ) = > 3 Incesu 4 Gacka  -n4 B) % 1 )= I  >B, () 4-% -

Journal of Water and Wastewater    Vol. 30, No. 3, 2019      

www.SID.ir dx.doi.org/10.22093/wwj. 2018.115549.2610 U  O 2'8 O:\8   90

- > N( %D T ()  81 {$} )-< %1 =) D( &189 - •2t•-(1 G@2? 6 1-(1  N-(  V1") z# - 7() |}  1O X7 TQ  ( ) 1O X7 P92   O D G('  .1 G5;Q   V1") } - 7() {… 1O X7 u 5 - "  V1") } - 7() |‚ .(Hassanpour et al., 2009) .(Water Research = 2  V1") z{ - 7() {…  i1") Š   M)(- = )     -n4 . () 32 Institute, 2014) >)o  4-% N -( - 1 1-(1  N-( M   ) &'< \   >)o @1Q )( 1!~I ; /B AI ( M ( RI - =" 6 1 1 G1  Q  - :I, T+O () ( )    (-) -n4 . () :I, T+O () ( )    >(-) -) ˆ4  (  . .)  1C j8     |z - {| ) @ !1  - E\ () M &'< Š - = O D G(' V? Q  - U() - M (  6G" 6>U 6 9?   6,)-( 6 IU - )7 L 1  (  4 6V?   =^o<  ( . O D .  , >)o M ( 7 - M  =; G1  . 11@ (C    E  6 8' 8<  -) Q Mn1  M % 1 6)7 M1 - M1 )V C 1 1 VW # +W2 /. š18X ) E1  - (LGR >B ) >)o ) E -) 6w… M\(~ L = ) 6(w &•) M1O' ‡   Z< () 6(s2  >(  >B ) f  N(  -   T  ()  =   81 w{$| )-< <   "  88 2 .1 ˆ • 6M   GV1V9  •  >BI  '() ‚{ )-< - > " - I1 >  7 () - M   F ETH - M 4 : 14 6.  1 1)4 =  6   •   ( ) =) . .= O D O O  G ( ( M () ( )    bV =1@" . O D ( " %12 )( ˆ1t & &1?  a V 6= T@ M   - ) M  . >  AI w T-7 () bV . G+I - z &• G () f  .= 81 w$ - }$ u 5 - TQ  ( ) -

Archive of SID

Fig. 1. Area of study (Shabestar – Sufian Plain) (M1O' ‡   =)) @2? )( V? / 48

Journal of Water and Wastewater    Vol. 30, No. 3, 2019      

www.SID.ir dx.doi.org/10.22093/wwj. 2018.115549.2610 ...* + # 78 ;W? i 0@ X1 91

Fig. 2. Location of sampling points and sources type  p - > ( )    bV =1@" /e 48

6   4-% )V .11@ () >)o )( )(  2)@ "9,,0,! %,D /*/B .(Khalajamirhoseini, 2014) )  M1  2)@  i?  2 =    (4 M AI ˆ4 6T- 8<  () δ ( o ) = (R/R −1)×1000 x oo Standard (w) :   6   ) - (TDS) T89 G 7 & 6pH 6(EC) - 2- 3- - - 6Cl 6SO4 6PO4 6NO2 6F M1 )V 6 1 1 %12 2+ + + + + + - - M () x - Mg 6K 6Na 6Li 6Rb 6Sr    M1 - CO3 6HCO3 2+    () M ( V  7  () §-% ( V =  δX      ) ˆ‰ . AI   () )7 Ca

( V  7  1  §-% ( V =  RStandard - > O D TDI  (4 G 11X - =O D G(' 6M   =C8F iQ .= 7  )(  () M . .11@ &+O -)  () (T89 M &) M ( V    §-% >Archive >I = C8F (    of SID  6  () > >I §-% =  @ 6   G('  "I#3%9 %,D /./B ( =  .   ) M1 (δX = 0 [‰]) 7  )(    . E\    () )7  §-% %12 6E-) 8<  () ~   E J .(Khalajamirhoseini, 2014)       δValue . . 11@ 2H - 18O 63H @  ?19  §-% )V  §-% =  .11@   -o  )(   = iO   7  ( 4  §-% =  .11@ -  1D >  B 1  `(SMOW) )(  -n4 . ()  )( ) )7-  §-% =  x )( )  M1 iO  . [ E\ 88 2 .1 18 16 2 1 . >)o 6= O  O - H  H =  B )  L :  () § -% =C8F =     ( 4

1 .)  >I (O-  =@1Q ()  = M § -% Standard Mean Ocean Water (SMOW)

Journal of Water and Wastewater    Vol. 30, No. 3, 2019      

www.SID.ir dx.doi.org/10.22093/wwj. 2018.115549.2610 U  O 2'8 O:\8   92

( )    bV G+I /*0Q Table 1. Specifications of sampling points Geographical Coordinates Season Sample No. Source Type Location X Y Z Dry Wet 1 Spring Meydan cheshme 586660 4246796 1717   2 Qanat Sichan si 582327 4241827 1503   Spring Youghari cheshme 571020 4245803 1868  - 3 River Kabootar chai and Daryan chai 554056 4230223 - -  4 Well Mokhtar Dindoost 585599 4237293 1409   5 Qanat Kat cheshme si 579366 4235890 1438   6 Well Nematollah 581847 4231270 -   7 Well Yousef Jame 576995 4230365 1747   8 Qanat Youghari Kahriz 573781 4229814 1459   9 Qanat Binis 563896 4227767 1518   10 Qanat Haj Abdollah 562784 4230307 1618   11 Qanat Chenar 554833 4227356 1531   12 Well Farahnak 554220 4221553 1327   13 Well Amiri 553995 4220577 1309   14 Well Farahnak 554486 4222083 1329   15 Well Haft cheshme 541426 4227530 1304   16 Qanat Gharre Kahriz 553701 4225240 1422   17 Qanat Sinak agha 544963 4225555 1403   18 Well Ali Beygloo 545268 4225770 1323   19 Well Mokhtar Rakhshi 552707 4224399 1288   20 Well Sadegh Afshar 548912 4223647 1377   21 Well Yousef Abad 549894 4222859 1327   22 Well Karimi 557617 4220979 1295   23 Well Yari 561656 4221717 1324   24 Well Ghanbarpoor 561656 4217935 1292   25 River Sischai 568787 4232134 -   26 Well Abbasi 569359 4222862 1324   27 Well Alishah 573269 4223080 1312   28 Well Sarban Gholi 576420 4223415 1315   29 Well Nazarloo 578650 4227200 1348   30 Well Golkar 586160 4229817 1336   31 Spring Dozlagh hens 546796 4233110 1557   32 Spring Kapirlar 546164 4233059 1551   33 lake 532648 4182787 1304   34 Rain ArchiveAerology station of561466 SID4225259 1421   35 Spring Shanjan 566005 4224505 1289 -  36 River Near the Chane river 575507 4226356 1420 -  37 Spring Gharre Kahriz (Eastern channel) 586856 4228592 1559 -  38 Qanat Gharre Kahriz (Western channel) -12 4228592 1559 -  39 Well Zarifi 575480 4222501 1383 -  40 Qanat Dizaj Khalil 554056 4234296 1503 -  41 River Andabil 568787 4240124 1445 -  42 River Between Sivan & Payam chai 575480 4243652 - - 

Journal of Water and Wastewater    Vol. 30, No. 3, 2019      

www.SID.ir dx.doi.org/10.22093/wwj. 2018.115549.2610 ...* + # 78 ;W? i 0@ X1 93

M () x M  6> oD GJ)@ s  C )( )V T+< ˆ4 3 18 2 12- =C8F A 6( )    M () §-% =C8F A0   &V ( H – d-Excess) - (δ O – δ H) ( )   BI  (3X V? >)-9 ()) 1   () §-% .) .11@  7  b?, 2)@  s  MIB7 4 -  %\ ! Z λ 6= o  () )7 12- =C8F `    7  f, 2)@ M M    :  ) ( . 6t ( V a    - §-% .(Khalajamirhoseini, 2014)   AI ( j" δ2H = 8δ18O+ 22 (g) g 1  7  f, 2)@ 2 18 T56  U9AD /E δ H = 8δ O +15 ({) "9,,0,! %,D /*/E r =C8F s     6> E\ 1 1-(1 %12 iQ 7 7  f, 2)@ 2 18 % 12 . .   ) )7 M1 - M1   δ H = 8δ O +10 (|) () )7 )(   i? B )  N-( >)o  6f,  .   =      =1@" BBU  7  () (ASTM)   )(  \ N -( - M  .)  .11@  ( I G(' 6 O @ &"  () x  @  >BI  1C 8 5      ( 6s .  !2F M  s  &+O -)       ) 32 6 O D G;1I  s  () B   - T;9 6 1 6 b;, = >)  •   6M () )7 MIB7     ( I a   5  [  1 6w# 6w‚ 6ww 6w$ 6Œ 6{ 6w :!2F   8 ( V      .=  1  O 6= 7 7  f,  [zŒ - z… 6z# 6z| 6z$  f, .1 >)-9 ()     ( RI .1_  6z{ 6w} 6w| 6w{ 6‚ 6| :!2F G 1 ( V      a 5 6  O D  7 1   7  f, - 7 7 [{$- z‚ 6z}  1 G;1I  s  () B   - T;9  O [wz - w$ 6} :!2F Go2 M ( V     - 1  7  f, .1    = () - > M1 [… - # :!2F L%1 M ( V      (  ( ) 6% 1  >  " -     7  f, .z{ - w… :!2F L M ( V     .(IAEA, 1983)    b;, -)      () )7 (Cl-) 8 M  ( V  7  !  Y 0\  \#3 ^ ? K,,V3 /B/B   - !2F    () M1 . ( V   AI 6&+O )7 E1  =C8F  =12@O M %1 >)o  8<  . () TDI G 11X s  32 .({ &•)  > )  8 p a 5 j" M 61 ) ( )  4- O 2)@ >)o -   () !   :I, &+O () G 11X . M %1   >) ) MI Archive.) ofMI (  SID=" M  " - ()  > AI   () 8<  . &'< Š .= >) I1  Q  &+O M1  G(' -n4  .   > >)o 2)@ . >  AI #  |  & )  A = A ×e−λt !  K K,,V3 /./E 0 (}) λ = Ln(2) ÷ Ln(T ) )(     () )7 E1   1D >  s  1/2 t = T1/2 × Ln(A/A0 )   . 6(} 2)@) >) 4- O 2)@  M q? - C 1 Eastern Medditeranean WaterLine .(z T-7)  .1@ 6=  %1  M j" M >)MI 2 Western Anatolian Water Line 3 Global Meteoric WaterLine

Journal of Water and Wastewater    Vol. 30, No. 3, 2019      

www.SID.ir dx.doi.org/10.22093/wwj. 2018.115549.2610 U  O 2'8 O:\8   94

Fig. 3. Water types according to the Dominant Ion !2F M s    p / 48

Relative concentration of cations (%meq/L) - Dry Season

Ca+(Sr+Rb) Mg Na+K

f 100% o n ) o i L t / 80% a q r e t n m Archive of SID e 60% c % ( n o s c n o e

i 40% v t i a t c a l e 20% R

0% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Sample number Fig. 4. Relative Concentration of Cations (Dry Season) :I, &+O    ()  M1   =C8F /E 48

Journal of Water and Wastewater    Vol. 30, No. 3, 2019      

www.SID.ir dx.doi.org/10.22093/wwj. 2018.115549.2610 ...* + # 78 ;W? i 0@ X1 95

Relative concentration of anions (%meq/L) - Dry season

HCO3 Cl+F+NO2+NO3 SO4

100% n ) o i L t

/ 80% a q r e t m n

e 60% c % ( n o s c n 40% o e i v i n t a a f l 20% e o R 0% 123456789101112131415161718192021222324252627282930 Sample number :I, &+O    ()  M1   =C8F /S 48 Fig. 5. Relative Concentration of Anions (Dry Season)

Relative concentration of cations (%meq/L) - Wet season

Ca+(Sr+Rb) Mg Na+K+Li

100%

n 80% ) o i L t / a q r e t n m 60% e c % ( n o s c n o e

i 40% v t i a t c a l f e o

R 20%

0% 1357911131517192123252729313335373941 Sample number Q  &+O    ()  M1   =C8F /Z 48 Fig. 6. Relative Concentration of Cations (Wet Season)

Relative concentration of anions (%meq/L) - Wet season

HCO3 Cl+(F+NO2+NO3) SO4

100%

n 80% ) o i L t / a q r e t n m Archive of SID 60% e c % ( n o s c n o e

i 40% v i n t a a f l e o

R 20%

0% 1357911131517192123252729313335373941 Sample number Q  &+O    ()  M1   =C8F /j 48 Fig. 7. Relative Concentration of Anions (Wet Season)

Journal of Water and Wastewater    Vol. 30, No. 3, 2019      

www.SID.ir dx.doi.org/10.22093/wwj. 2018.115549.2610 U  O 2'8 O:\8   96

"I#3%9 %,D /B/E > 3,     . /.0Q Table 2. Age of water samples )V 6MI =  . 11@ -  4-% %12 s  Sample Age Sample Age Sample Age >B7 - &V 7  b?,   ( )   -(  8'< No. (year) No. (yaer) No. (year) M M AI  7  .(Œ - … &•)  .1@    1 22 157 29 16.5 2 32 16 31 30 32 δ18O – ) 7  b?, ( )  -(  > 3,    3 43 17 32 310 f, .1 a   5      AI (d-excess – H3) - (δ2H 4 31 18 32 32 70 5 33 19 47 33 33 - 2 7  f, .1 .1_  - 2 - 7 7  6 16.5 20 45 34 0 ) @ x .  7  .1_  . O D ( "    7 24 21 17 35 32.5 8 3.5 22 22.5 36 31 7  f,  @  1  O >)-9 () L   9 0 23 17 37 30 >B7 6%1 1-( U()    .1 . () . > " - 7 10 0 24 27 38 32 11 16 25 22.5 39 32    ) 8'O  - 7 7  f,  ( ), 12 15 26 35 40 2.5   =  ( )  ()    >B7   C .= >) ) MI 13 20 27 36 41 16.5 14 33 28 35 42 23.5 T <  )  M 1 M   6= G-o 7  f,  .= L8  %1 M :  ( I M) G-o " a 5 6  >  1D>  . - z T-7  7  MI w$ &• () 4-% Š s    ( RI M 7 BI x = > >) ) MI M   T w$$   .= > >) ) .= V?  p M)

Archive of SID

Fig. 8. Water Lines and Location of samples (H2O- δ18O) (H2O- δ18O)     1D( " &9 - 7  b?, /t 48

Journal of Water and Wastewater    Vol. 30, No. 3, 2019      

www.SID.ir dx.doi.org/10.22093/wwj. 2018.115549.2610 ...* + # 78 ;W? i 0@ X1 97

Fig. 9. . Water Line and Location of Samples (d-excess – 3H) (d-excess – 3H)     1D ( " &9 - 7  b?, /u 48

6{‚ 6{$ 6z| 6z{ 6zz 6wŒ 6w# 6… 6{ 6z 6w >(      )    ) @ () .= > AI 1  () )7 (|z 6{… N( %D  1  O 1HR 6(  %O 8' &5 %1  32 .(|w - {} 6{| 6{{ 6{z 6{w >(    ) = > U()    G-o 4-% - 1 1 G1   7 - M   =  U ()  e? G 11X  (   >   U()  ~o 1Z O 6V? .1 G5;Q (  . E;5 )-)  M1O' ‡   M  f  4-% N-( -n4 . ()  .  C - E -) 6E1  @ 6 () )7 @1Q   )( %12    N-( >    -  >)o >\ Mn1   Fig. 10. Source of water salinity according to isotope 6  (  (  %O - =1o1 11X &85 6 1 1-(1 analysis

i1" (C  - -n4 .Archive  >&'< Š  7  32 of 4-% Š s SID    ( RI / 48 =1o1 11X  H• & 5   & =, - G5;Q - E-     (   )  )I14 @2? )( Z< '(,L ,AD /S  1B14 .1_  .) 34 G(' I )(  () 4() 4 & 189 -    4-% - 1 1 %12 Š s  E\ .1@  &' O .11@  - T j8 T+O () 2  ="  6 8 p a   5 V?   68'< ( )  6  E\ 0  f   §-%  32 .)  b;, 1C 8 5 6M ( RI - T #$  € <  ( ) %12 > = ) Š  )   1R G  6z} 6w… 6w} 6w| 6w{ 6wz 6w$ 6Œ 6‚ 6} 6| >(      )    ) M   .1_  . M1 Q M %1 . I1  1 G;1I  s  () B   - T;9 - (z#

Journal of Water and Wastewater    Vol. 30, No. 3, 2019      

www.SID.ir dx.doi.org/10.22093/wwj. 2018.115549.2610 U  O 2'8 O:\8   98

"D0\ /Z 6   L,  \1  6 812)    G@2? E\ -( () ˆ  •  6M   GV1V9  • (   -n4 .  M1 (   6=  () - )  )I14 )\  (  "  M\(~  V?  =  -   •  88 2 .1 f  )(  N-( >)o  = E J 6 i1") Š M (( = ) - & 5  18 G < 32 6= O D G('  - 1-(1   N -( .%B 7 - Š-  6 §-% .)   )(" M  1 ' G5  - 1I4 = .)  N-(

References Bear, J., Cheng, A.D., Sorek, Sh., Ouazar, D. & Herrera, I. 1999. Seawater intrusion in coastal aquifers: Concepts, methods and practices. Springer, Netherlands. Ekaykin, A., Lipenkov, V. & Shibaev, Y. 2015. The study on paleoclimate and subglacial lake Vostok at Arctic and Antaractic Research Institue (Russia) using stable water isotopes. Extended Synopses of IAEA, 225, 6-7. Erkan, G., Bayari, C. & Ozyurt, N. 2015. Paleoclimate in the Konya closed basin during last 4500 years ago based on Thorium 230 age and Oxygen18 and Carbon13 recordes of Stalagmite in Incesu Cave of Karaman Turkey. Extended Synopses of IAEA, 225, 10-15. Hassanpour, M., Mirheydari, F. & Tahmasebinejad, H. 2009. Assesment of hydrodynamic properties of Shabestar Aquifer and simulation with visual modflow. 2nd National Water Conference, Tehran, Iran, 2(2), 1-13. (In Persian) IAEA. 1983. Isotope Hydrology, International Atomic Energy Agency, Vienna. Jones, B., Vengosh, F., Rosenthal, A. & Yechieli, Y. 1999. Seawater intrusion in coastal aquifer conceptsm methods and practices. In: Geochemical investigations, Bear, J. (Eds), Springer, Netherland. Khalajamirhoseini, Y. 2010. Assesment seapage from dam reservoir in Salman Farsi Dam, Proceeding of 1th National Conferece on Water Resources research, Kermanshah, Iran. (In Persian) Khalajamirhoseini, Y. 2014. Application of isotope techniques in hydrogeology, 1st Ed., Water Research Institue, Tehran. (In Persian) Khalajamirhoseini, Y. & Babaeekochaksoraei, S. 2014. Study on the cause of groundwater change quality by hydrochemical and isotope techniques results in Eastern Azerbayjan basin. Water Science and Engineering, 3, 1. Nabipour, M. & Khalajamirhoseini, Y. 2014. Usage of isotops in water resource studies, Abbaspour Power and Water University of Technology, Tehran. Ouda, B., Marah, H. & Liman, M. 2015. Use of environmental isotopes to investigate impact of artificial research on groundwaterArchive Houze Basin of Morocco. Extended Synopsesof of IAEA,SID Issue 225, p. 57. Roller, Z. 2015. Stable isotopes, tritum, CFCs and noble gases in the Gacka River region (Croatia). Extended Synopses of IAEA, 225, 33-36. Sepasi, M. 2008. Isotope studies in hard formations of Tabas area. Proceedings of 3rd Conference of Water Resources Management, (In Persian). Water Research Institue. 2009. Isotope studies in beheshtabad dam by isotope tracer and radioactives, Chaharmahal and Bakhtiari, Iran. (In Persian) Water Research Institue. 2014. Recognition and study of Karst water resource and formations in area, East Azerbayjan, Iran. (In Persian)

Journal of Water and Wastewater    Vol. 30, No. 3, 2019      

www.SID.ir