Appears in Computational Complexity Vol. 3, 319{354, 1993. Preliminary version in FOCS 90. Randomness in Interactive Proofs∗ Mihir Bellarey Oded Goldreichz Shafi Goldwasserx February 1993 Abstract This paper initiates a study of the quantitative aspects of randomness in interactive proofs. Our main result, which applies to the equivalent form of IP known as Arthur-Merlin (AM) games, is a randomness-efficient technique for decreasing the error probability. Given an AM proof system for L which achieves error probability 1=3 at the cost of Arthur sending l(n) random bits per round, and given a polynomial k = k(n), we show how to construct an AM proof system for L which, in the same number of rounds as the original proof system, achieves error 2−k(n) at the cost of Arthur sending only O(l + k) random bits per round. Underlying the transformation is a novel sampling method for approximating the aver- age value of an arbitrary function f : f0; 1gl ! [0; 1]. The method evaluates the function on O(−2 log δ−1) sample points generated using only O(l + log δ−1) coin tosses to get an estimate which with probability at least 1 − δ is within of the average value of the function. Keywords: Interactive proof systems, Arthur-Merlin games, randomness, sampling methods, error reduction, expander graphs, pairwise independence. yDepartment of Computer Science & Engineering, Mail Code 0114, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093. E-mail:
[email protected]. Work done while author was at MIT, supported in part by NSF grant No.