A Geological History of the Turkana Basin

Total Page:16

File Type:pdf, Size:1020Kb

A Geological History of the Turkana Basin Evolutionary Anthropology 20:206–216 (2011) Article A Geological History of the Turkana Basin CRAIG S. FEIBEL The Turkana Basin preserves a long and detailed record of biotic evolution, cultural nent quartzo-feldspathic sandstones development, and rift valley geology in its sedimentary strata. Before the formation of into the ‘‘Turkana Grits,’’ an assem- the modern basin, Cretaceous fluvial systems, Paleogene lakes, and Oligo-Miocene blage later determined to include volcano-sedimentary sequences left fossil-bearing strata in the region. These strata ranging in age from the Creta- deposits were in part related to an early system of rift basins that stretched from ceous through the Pleistocene.4 Sudan to the Indian Ocean. The present-day basin has its origins in Pliocene tectonic Reconnaissance mapping west of developments of the modern rift, with subsidence making room for more than one Lake Turkana initiated comprehen- kilometer of Plio-Pleistocene strata. Much of this sequence belongs to the Omo sive documentation of the basin with Group, richly fossiliferous sediments associated with the ancestral Omo River and a series of geological reports.5–7 In its tributaries. Modern Lake Turkana has a record stretching back more than 200 1972-1974, the Omo River Project thousand years, with earlier lake phases throughout the Plio-Pleistocene. The investigated the lower reaches of geologic history of the basin is one of dynamic landscapes responding to the Omo Valley, including mapping environmental influences, including tectonics, volcanic activity and climate. and description of its geological exposures.8 Field work undertaken between 1980 and 1986 around the eastern and southern periphery of The Turkana Basin is a hydro- have controlled accumulation and the basin9–13 provided the most com- graphic and sedimentary system exposure of the sedimentary strata prehensive mapping and geological encompassing about 131,000 km2 of for which the basin is world-famous. descriptions available for that region. northern Kenya and southern Ethio- This contribution attempts to synthe- Beginning in the mid-1960s, paleo- pia (Fig. 1). In its present configura- size the geologic history of the Tur- anthropological investigations in tion, the basin is hydrologically kana Basin with an emphasis on the 14 the lower Omo Valley, at Koobi closed and dominated by alkaline sedimentary strata associated with Fora,15,16 West Turkana,17 and else- Lake Turkana, with the Omo River the basin’s rich paleontological and where4,18,19 catalyzed geological as its primary source of water. As archeological records. research in the basin. Although this recently as the middle Holocene, it work has focused heavily on provid- had connections to adjacent rift GEOLOGICAL INVESTIGATIONS ing context for fossil and archeologi- basins and an outlet to the Nile cal discoveries, it has generated River. The present-day isolation of Exploration and description of the much of our current understanding the Turkana Basin is in part due to geological features of the Turkana of the basin as a whole. In particular, the current water balance, but has at Basin have been under way for over the development of detailed chrono- its roots the tectonic dynamics that a century. The earliest European stratigraphic frameworks4,20–23 has explorers to visit the region, Teleki helped to constrain the geological his- and von Ho¨ hnel,1 returned with valu- tory of the basin. (Note that the time Craig Feibel is a geologist at Rutgers Uni- 24 versity, where he teaches sedimentology, able observations on the geology and scale of Gradstein, Ogg, and Smith geoarcheology, and the environmental landscapes they traversed. Other is used throughout this paper). context of evolution. His fieldwork in the Turkana Basin is currently focused on expeditions followed (see bibliogra- Hydrocarbon and geothermal in- 2 linking modern and ancient depositional phy in Coppens and coworkers ), terest fueled exploration in the systems, and understanding the controls culminating in Fuchs’3 first synthesis southern reaches of the basin and on local environmental change E-mail: [email protected] of the basin’s geological history. expanded our understanding of sub- These early workers recognized surface structure, stratigraphy, and many significant aspects of the petrology.25–27 Research focused on Key words: stratigraphy; evolution; Africa; rift basin’s geology, from the complex deposits beneath the modern lake valley; hominins record of lake-level fluctuations to has also added considerably to our major tectonic and volcanic episodes. understanding of the structural VC 2011 Wiley Periodicals, Inc. One confounding generalization underpinnings of the system and of DOI 10.1002/evan.20331 Published online in Wiley Online Library from this early work, however, was both Neogene strata and Holocene (wileyonlinelibrary.com). the amalgamation of many promi- sedimentation.28,29 Article A Geological History of the Turkana Basin 207 Jurassic-Paleogene Central African Rift System (CARS),30 which trans- ected the area as a northwest-south- east basin complex. The CARS basins were responsible for sedimen- tary accumulations preserved from the Late Cretaceous,31 and may have remained an important structural influence into Miocene times. The CARS continued to affect sediment accumulation patterns through the Neogene as preexisting rift struc- tures and topographic lows con- strained both basin morphology and fluvial corridors, particularly the Anza Graben leading to the Indian Ocean.32 Tectonic activity delineating the modern Turkana Basin began in Early Pliocene times, with subsi- dence related to the EARS that quickly took on a pattern of alternat- ing half-graben trending north- south.33 Several significant pulses of tectonic activity are recorded in ear- liest Pleistocene times, when the Hamar Uplift developed, and in a Middle Pleistocene phase of activity that culminated in the modern basinal configuration. During this most recent phase, subsidence along the basin axis has left structural blocks along the margin in topographically higher positions and subject to the erosion that has exposed Plio-Pleistocene sediments, fossils, and sites. Biogeo- graphic34 and sedimentary patterns suggestthatuptotheMiddlePleisto- cene reorganization, the Turkana Basin preserved elements of the CARS hydrography, including an outlet to the Indian Ocean. Only in the last few hundred thousand years has the basin become a contributory system to the Nile drainage. Following extensive research, including seismic analyses tied to hydrocarbon exploration,25 the detailed structural configuration of the basin is now well understood in many areas. However, recognition of structural bounds and active sub-basins from spe- Figure 1. Locality map of the Turkana Basin. A. Extent of drainage network and major cific episodes of the past is often com- geographic features. B. Local geographic terms, fossil localities, and archeological sites. plicated. Though sometimes referred to as the Omo-Turkana Basin, there are at least nine structural sub-basins TECTONIC HERITAGE domes, associated with the East within the tectonic complex associated African Rift System (EARS). The Much of the Turkana Basin lies with EARS development, and a further within the topographic saddle region has a long history of basin seven or more older basins related to between the Ethiopian and Kenyan development, beginning with the either the CARS or early EARS. 208 FEIBEL Article trachytes, rhyolites, and other modern basin, an integrated deposi- types.39,40 At Lothidok, Boschetto41 tional system was established over a described approximately 785 m of much broader area, though the con- the Kalakol basalts deposited in lat- tinuity of these deposits has subse- est Oligocene and Early Miocene quently been disrupted by younger times. A pulse of nearly basin-wide tectonic events and the formation of basaltic effusion produced the the modern lake. Gombe Group,40,42 an important Early Pliocene stratigraphic marker. Cretaceous Windows In general, however, after the early Late Miocene, volcanism was con- The oldest sedimentary strata cur- siderably less common and more rently recognized within the Turkana localized within the basin. The vol- Basin are the Cretaceous sandstones canic centers associated with Mount and conglomerates of the Lapur Kulal developed after about 2.5 Ma. Formation and its correlates. The The Barrier complex separating Tur- best exposures are on the slopes of kana from the Suguta Basin was Lapur itself, and presumed correlates are known from Muruanachok, emplaced beginning about 1.4 Ma, 26 and the islands within the modern Lariu, and Sera Iltomia. Originally lake are of Late Pleistocene to Holo- included within the poorly con- cene age. With the exception of the strained ‘‘Turkana Grits,’’ these sedi- detailed studies by Watkins40,43–45 ments attain thicknesses of about around the Suregei region and an 500 m near Lokitaung Gorge, and are preserved as thinner packages on investigation of the islands within the metamorphic basement in other Lake Turkana,46 most of the basin’s parts of the basin.31 Lapur Forma- volcanic rocks are known primarily tion sediments are exclusively from individual sampling localities quartzo-feldspathic material derived and isotopic ages, and through from the metamorphic basement, broad reconnaissance mapping. representing alluvial fans, braided However, these volcanics shaped rivers, and associated paleosols.48 much of the basin’s landscape, are They may span up to 50 million
Recommended publications
  • Outcomes of the EU Horizon 2020 DAFNE PROJECT the Omo
    POLICY BRIEF October 2020 Outcomes of the EU Horizon 2020 DAFNE PROJECT The Omo-Turkana River Basin Progress towards cooperative frameworks KEY POLICY MESSAGES The OTB has reached a stage of pivotal importance for future development; the time to establish a cooperative framework on water governance is now. Transparency and accountability must be improved in order to facilitate the sharing of data and information, increasing trust and reducing the perception of risk. Benefit-sharing which extends beyond energy could enhance regional integration and improve sustainable development within the basin . THE OMO-TURKANA RIVER BASIN potential for hydropower and irrigation schemes that are, if scientifically and equitably managed, crucial to lift millions within and outside the basin out of extreme poverty; this has led to transboundary cooperation in recent years. This policy brief is derived from research conducted under the €5.5M four-year EU Horizon 2020 and Swiss funded ‘DAFNE’ project which concerns the promotion of integrated and adaptive water resources management, explicitly addressing the WEF Nexus and aiming to promote a sustainable economy in regions where new infrastructure and expanding The Omo-Turkana River Basin (OTB) – for the agriculture has to be balanced with social, purposes of the DAFNE Project – comprises of economic and environmental needs. The project two main water bodies: the Omo River in takes a multi- and interdisciplinary approach to Ethiopia and Lake Turkana which it drains into. the formation of a decision analytical While the Omo River lies entirely within Ethiopian territory, Lake Turkana is shared by framework (DAF) for participatory and both Kenya and Ethiopia, with the majority of integrated planning, to allow the evaluation of Lake Turkana residing within Kenya.
    [Show full text]
  • Homo Habilis
    COMMENT SUSTAINABILITY Citizens and POLICY End the bureaucracy THEATRE Shakespeare’s ENVIRONMENT James Lovelock businesses must track that is holding back science world was steeped in on surprisingly optimistic governments’ progress p.33 in India p.36 practical discovery p.39 form p.41 The foot of the apeman that palaeo­ ‘handy man’, anthropologists had been Homo habilis. recovering in southern Africa since the 1920s. This, the thinking went, was replaced by the taller, larger-brained Homo erectus from Asia, which spread to Europe and evolved into Nean­ derthals, which evolved into Homo sapiens. But what lay between the australopiths and H. erectus, the first known human? BETTING ON AFRICA Until the 1960s, H. erectus had been found only in Asia. But when primitive stone-chop­ LIBRARY PICTURE EVANS MUSEUM/MARY HISTORY NATURAL ping tools were uncovered at Olduvai Gorge in Tanzania, Leakey became convinced that this is where he would find the earliest stone- tool makers, who he assumed would belong to our genus. Maybe, like the australopiths, our human ancestors also originated in Africa. In 1931, Leakey began intensive prospect­ ing and excavation at Olduvai Gorge, 33 years before he announced the new human species. Now tourists travel to Olduvai on paved roads in air-conditioned buses; in the 1930s in the rainy season, the journey from Nairobi could take weeks. The ravines at Olduvai offered unparalleled access to ancient strata, but field­ work was no picnic in the park. Water was often scarce. Leakey and his team had to learn to share Olduvai with all of the wild animals that lived there, lions included.
    [Show full text]
  • Hands-On Human Evolution: a Laboratory Based Approach
    Hands-on Human Evolution: A Laboratory Based Approach Developed by Margarita Hernandez Center for Precollegiate Education and Training Author: Margarita Hernandez Curriculum Team: Julie Bokor, Sven Engling A huge thank you to….. Contents: 4. Author’s note 5. Introduction 6. Tips about the curriculum 8. Lesson Summaries 9. Lesson Sequencing Guide 10. Vocabulary 11. Next Generation Sunshine State Standards- Science 12. Background information 13. Lessons 122. Resources 123. Content Assessment 129. Content Area Expert Evaluation 131. Teacher Feedback Form 134. Student Feedback Form Lesson 1: Hominid Evolution Lab 19. Lesson 1 . Student Lab Pages . Student Lab Key . Human Evolution Phylogeny . Lab Station Numbers . Skeletal Pictures Lesson 2: Chromosomal Comparison Lab 48. Lesson 2 . Student Activity Pages . Student Lab Key Lesson 3: Naledi Jigsaw 77. Lesson 3 Author’s note Introduction Page The validity and importance of the theory of biological evolution runs strong throughout the topic of biology. Evolution serves as a foundation to many biological concepts by tying together the different tenants of biology, like ecology, anatomy, genetics, zoology, and taxonomy. It is for this reason that evolution plays a prominent role in the state and national standards and deserves thorough coverage in a classroom. A prime example of evolution can be seen in our own ancestral history, and this unit provides students with an excellent opportunity to consider the multiple lines of evidence that support hominid evolution. By allowing students the chance to uncover the supporting evidence for evolution themselves, they discover the ways the theory of evolution is supported by multiple sources. It is our hope that the opportunity to handle our ancestors’ bone casts and examine real molecular data, in an inquiry based environment, will pique the interest of students, ultimately leading them to conclude that the evidence they have gathered thoroughly supports the theory of evolution.
    [Show full text]
  • 2009 Trip Report KENYA
    KENYA and TANZANIA TRIP REPORT Sept 25-Oct 23, 2009 PART 1 - Classic Kenya text and photos by Adrian Binns Sept 25 / Day 1: Blue Post Thika; Castle Forest We began the morning with an unexpected Little Sparrowhawk followed by a Great Sparrowhawk, both in the skies across the main road from the Blue Post Hotel in Thika. The lush grounds of the Blue Post are bordered by the twin waterfalls of the Chania and Thika, both rivers originating from the nearby Aberdare Mountain Range. It is a good place to get aquatinted with some of the more common birds, especially as most can be seen in close proximity and very well. Eastern Black-headed Oriole, Cinnamon-chested Bee- eater, Little Bee-eater, White-eyed Slaty Flycatcher, Collared Sunbird, Bronzed Mannikin, Speckled Mousebird and Yellow-rumped Tinkerbird were easily found. Looking down along the river course and around the thundering waterfall we found a pair of Giant Kingfishers as well as Great Cormorant, Grey Heron and Common Sandpiper, and two Nile Monitors slipped behind large boulders. A fruiting tree provided a feast for Yellow-rumped Seedeaters, Violet-backed Starlings, Spot-flanked Barbet (right), White-headed Barbet as a Grey-headed Kingfisher, an open woodland bird, made sorties from a nearby perch. www.wildsidenaturetours.com www.eastafricanwildlifesafaris.com © Adrian Binns Page 1 It was a gorgeous afternoon at the Castle Forest Lodge set deep in forested foothills of the southern slope of Mt. Kenya. While having lunch on the verandah, overlooking a fabulous valley below, we had circling Long-crested Eagle (above right), a distant Mountain Buzzard and African Harrier Hawk.
    [Show full text]
  • George Muia the “Turkana Grits”: Potential Hydrocarbon Reservoirs
    THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Sciences de la Terre Ecole Doctorale Sciences de la Matière présentée par George Muia Préparée à l’unité de recherche UMR 6118 Géosciences Rennes Observatoire des Sciences de l’Univers de Rennes Thèse soutenue à Rennes The “Turkana Grits”: le 24/07/2015 Potential Hydrocarbon devant le jury composé de : Jean-Luc POTDEVIN Reservoirs Professeur, Université de Lille 1 / rapporteur of the Northern Stéphane DUCROCQ Directeur de Recherche, and Central Kenya Rifts CNRS-Université de Poitiers / rapporteur Jean-Yves REYNAUD Professeur, Université de Lille 1 / examinateur Mathieu SCHUSTER Chargé de Recherche, CNRS Université de Strasbourg / examinateur Peter R. COBBOLD Directeur de Recherche Emérite, CNRS Université de Rennes 1/ examinateur Jean-Jacques TIERCELIN Directeur de Recherche, CNRS-Université de Rennes 1 / directeur de thèse Erwan HALLOT Maître de Conférences Université de Rennes 1 / co-directeur de thèse The “Turkana Grits”: Potential Hydrocarbon Reservoirs of the Northern and Central Kenya Rifts 3 Table of contents Acknowledgements 6 Abstract 8 General Introduction 9 Chapter I 21 1. Introduction 30 2. Field study, sampling and analytical methods 35 3. Regional background of the Central and Northern Kenya Rifts 37 3.1. Physiography and climate of the Central and Northern Kenya Rifts 37 3.2. Geological outline of the Kerio and Baringo Basins 40 3.3. Geological outline of the North Kerio Basin 43 4. The Kimwarer Formation 45 4.1. Lithostratigraphy 45 4.1.1. The “Lower Kimwarer Formation” 47 4.1.2.
    [Show full text]
  • Paranthropus Boisei: Fifty Years of Evidence and Analysis Bernard A
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences Fall 11-28-2007 Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard A. Wood George Washington University Paul J. Constantino Biological Sciences, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Biological and Physical Anthropology Commons Recommended Citation Wood B and Constantino P. Paranthropus boisei: Fifty years of evidence and analysis. Yearbook of Physical Anthropology 50:106-132. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. YEARBOOK OF PHYSICAL ANTHROPOLOGY 50:106–132 (2007) Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard Wood* and Paul Constantino Center for the Advanced Study of Hominid Paleobiology, George Washington University, Washington, DC 20052 KEY WORDS Paranthropus; boisei; aethiopicus; human evolution; Africa ABSTRACT Paranthropus boisei is a hominin taxon ers can trace the evolution of metric and nonmetric var- with a distinctive cranial and dental morphology. Its iables across hundreds of thousands of years. This pa- hypodigm has been recovered from sites with good per is a detailed1 review of half a century’s worth of fos- stratigraphic and chronological control, and for some sil evidence and analysis of P. boi se i and traces how morphological regions, such as the mandible and the both its evolutionary history and our understanding of mandibular dentition, the samples are not only rela- its evolutionary history have evolved during the past tively well dated, but they are, by paleontological 50 years.
    [Show full text]
  • Curren T Anthropology
    Forthcoming Current Anthropology Wenner-Gren Symposium Curren Supplementary Issues (in order of appearance) t Humanness and Potentiality: Revisiting the Anthropological Object in the Anthropolog Current Context of New Medical Technologies. Klaus Hoeyer and Karen-Sue Taussig, eds. Alternative Pathways to Complexity: Evolutionary Trajectories in the Anthropology Middle Paleolithic and Middle Stone Age. Steven L. Kuhn and Erella Hovers, eds. y THE WENNER-GREN SYMPOSIUM SERIES Previously Published Supplementary Issues December 2012 HUMAN BIOLOGY AND THE ORIGINS OF HOMO Working Memory: Beyond Language and Symbolism. omas Wynn and Frederick L. Coolidge, eds. GUEST EDITORS: SUSAN ANTÓN AND LESLIE C. AIELLO Engaged Anthropology: Diversity and Dilemmas. Setha M. Low and Sally Early Homo: Who, When, and Where Engle Merry, eds. Environmental and Behavioral Evidence V Dental Evidence for the Reconstruction of Diet in African Early Homo olum Corporate Lives: New Perspectives on the Social Life of the Corporate Form. Body Size, Body Shape, and the Circumscription of the Genus Homo Damani Partridge, Marina Welker, and Rebecca Hardin, eds. Ecological Energetics in Early Homo e 5 Effects of Mortality, Subsistence, and Ecology on Human Adult Height 3 e Origins of Agriculture: New Data, New Ideas. T. Douglas Price and Plasticity in Human Life History Strategy Ofer Bar-Yosef, eds. Conditions for Evolution of Small Adult Body Size in Southern Africa Supplement Growth, Development, and Life History throughout the Evolution of Homo e Biological Anthropology of Living Human Populations: World Body Size, Size Variation, and Sexual Size Dimorphism in Early Homo Histories, National Styles, and International Networks. Susan Lindee and Ricardo Ventura Santos, eds.
    [Show full text]
  • Lake Turkana and the Lower Omo the Arid and Semi-Arid Lands Account for 50% of Kenya’S Livestock Production (Snyder, 2006)
    Lake Turkana & the Lower Omo: Hydrological Impacts of Major Dam & Irrigation Development REPORT African Studies Centre Sean Avery (BSc., PhD., C.Eng., C. Env.) © Antonella865 | Dreamstime © Antonella865 Consultant’s email: [email protected] Web: www.watres.com LAKE TURKANA & THE LOWER OMO: HYDROLOGICAL IMPACTS OF MAJOR DAM & IRRIGATION DEVELOPMENTS CONTENTS – VOLUME I REPORT Chapter Description Page EXECUTIVE(SUMMARY ..................................................................................................................................1! 1! INTRODUCTION .................................................................................................................................... 12! 1.1! THE(CONTEXT ........................................................................................................................................ 12! 1.2! THE(ASSIGNMENT .................................................................................................................................. 14! 1.3! METHODOLOGY...................................................................................................................................... 15! 2! DEVELOPMENT(PLANNING(IN(THE(OMO(BASIN ......................................................................... 18! 2.1! INTRODUCTION(AND(SUMMARY(OVERVIEW(OF(FINDINGS................................................................... 18! 2.2! OMO?GIBE(BASIN(MASTER(PLAN(STUDY,(DECEMBER(1996..............................................................19! 2.2.1! OMO'GIBE!BASIN!MASTER!PLAN!'!TERMS!OF!REFERENCE...........................................................................19!
    [Show full text]
  • Lake Turkana Archaeology: the Holocene
    Lake Turkana Archaeology: The Holocene Lawrence H. Robbins, Michigan State University Abstract. Pioneering research in the Holocene archaeology of Lake Turkana con- tributed significantly to the development of broader issues in the prehistory of Africa, including the aquatic civilization model and the initial spread of domes- ticated livestock in East Africa. These topics are reviewed following retrospective discussion of the nature of pioneering fieldwork carried out in the area in the1960s. The early research at Lake Turkana uncovered the oldest pottery in East Africa as well as large numbers of bone harpoons similar to those found along the Nile Valley and elsewhere in Africa. The Lake Turkana area remains one of the major building blocks in the interpretation of the later prehistory of Africa as a whole, just as it is a key area for understanding the early phases of human evolution. Our way had at first led us up hills of volcanic origin. I can’t imagine landscape more barren, dried out and grim. At 1.22 pm the Bassonarok appeared, an enormous lake of blue water dotted with some islands. The northern shores cannot be seen. At its southern end it must be about 20 kilometers wide. As far as the eye can see are barren and volcanic shores. I give it the name of Lake Rudolf. (Teleki 1965 [1886–95]: 5 March 1888) From yesterday’s campsite we could overlook nearly the whole western and north- ern shores of the lake. The soil here is different again. I observed a lot of conglom- erates and fossils (petrification).
    [Show full text]
  • Phytolith Analysed to Compare Changes in Vegetation Structure of Koobi Fora and Olorgesailie Basins Through the Mid- Pleistocene-Holocene Periods
    Phytolith analysed to Compare Changes in Vegetation Structure of Koobi Fora and Olorgesailie Basins through the Mid- Pleistocene-Holocene Periods. By KINYANJUI, Rahab N. Student number: 712138 Submitted on 28th February, 2017 Submitted the revised version on 22nd February, 2018 Declaration A thesis submitted to the Faculty of Science in fulfilment of the requirements for PhD degree. At School of Geosciences, Evolutionary Studies Institute (ESI) University of Witwatersrand, Johannesburg South Africa. I declare that this is my own unaided work and has not been submitted elsewhere for degree purposes KINYANJUI, Rahab N. Student No. 712138 ii Abstract Phytolith analyses to compare changes in vegetation structure of Koobi Fora and Olorgesailie Basins through Mid-Pleistocene-Holocene Periods. By Rahab N Kinyanjui (Student No: 712138) Doctor of Philosophy in Palaeontology University of Witwatersrand, South Africa School of Geological Sciences, Evolutionary Science Institute (GEOS/ESI) Supervisor: Prof Marion Bamford. The Koobi Fora and Olorgesailie Basins are renowned Hominin sites in the Rift Valley of northern and central Kenya, respectively with fluvial, lacustrine and tuffaceous sediments spanning the Pleistocene and Holocene. Much research has been done on the fossil fauna, hominins and flora with the aim of trying to understand when and how the hominins evolved, and how the environment impacted on their behaviour, land-use and distribution over time. One of the most important factors in trying to understand the hominin-environment relationship is firstly to reconstruct the environment. Important environmental factors are the climate, rate or degree of climate change, vegetation structure and resources, floral and faunal resources. Vegetation structure/composition is a key component of the environments and, it has been hypothesized the openness and/or closeness of vegetation structure played a key role in shaping the evolutionary history not only of man but also other mammals.
    [Show full text]
  • Lieberman 2001E.Pdf
    news and views Another face in our family tree Daniel E. Lieberman The evolutionary history of humans is complex and unresolved. It now looks set to be thrown into further confusion by the discovery of another species and genus, dated to 3.5 million years ago. ntil a few years ago, the evolutionary history of our species was thought to be Ureasonably straightforward. Only three diverse groups of hominins — species more closely related to humans than to chim- panzees — were known, namely Australo- pithecus, Paranthropus and Homo, the genus to which humans belong. Of these, Paran- MUSEUMS OF KENYA NATIONAL thropus and Homo were presumed to have evolved between two and three million years ago1,2 from an early species in the genus Australopithecus, most likely A. afarensis, made famous by the fossil Lucy. But lately, confusion has been sown in the human evolutionary tree. The discovery of three new australopithecine species — A. anamensis3, A. garhi 4 and A. bahrelghazali5, in Kenya, Ethiopia and Chad, respectively — showed that genus to be more diverse and Figure 1 Two fossil skulls from early hominin species. Left, KNM-WT 40000. This newly discovered widespread than had been thought. Then fossil is described by Leakey et al.8. It is judged to represent a new species, Kenyanthropus platyops. there was the finding of another, as yet poorly Right, KNM-ER 1470. This skull was formerly attributed to Homo rudolfensis1, but might best be understood, genus of early hominin, Ardi- reassigned to the genus Kenyanthropus — the two skulls share many similarities, such as the flatness pithecus, which is dated to 4.4 million years of the face and the shape of the brow.
    [Show full text]
  • Lake Turkana National Parks - 2017 Conservation Outlook Assessment (Archived)
    IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Lake Turkana National Parks - 2017 Conservation Outlook Assessment (archived) IUCN Conservation Outlook Assessment 2017 (archived) Finalised on 26 October 2017 Please note: this is an archived Conservation Outlook Assessment for Lake Turkana National Parks. To access the most up-to-date Conservation Outlook Assessment for this site, please visit https://www.worldheritageoutlook.iucn.org. Lake Turkana National Parks عقوملا تامولعم Country: Kenya Inscribed in: 1997 Criteria: (viii) (x) The most saline of Africa's large lakes, Turkana is an outstanding laboratory for the study of plant and animal communities. The three National Parks serve as a stopover for migrant waterfowl and are major breeding grounds for the Nile crocodile, hippopotamus and a variety of venomous snakes. The Koobi Fora deposits, rich in mammalian, molluscan and other fossil remains, have contributed more to the understanding of paleo-environments than any other site on the continent. © UNESCO صخلملا 2017 Conservation Outlook Critical Lake Turkana’s unique qualities as a large lake in a desert environment are under threat as the demands for water for development escalate and the financial capital to build major dams becomes available. Historically, the lake’s level has been subject to natural fluctuations in response to the vicissitudes of climate, with the inflow of water broadly matching the amount lost through evaporation (as the lake basin has no outflow). The lake’s major source of water, Ethiopia’s Omo River is being developed with a series of major hydropower dams and irrigated agricultural schemes, in particular sugar and other crop plantations.
    [Show full text]