Lafforgue and Voevodsky Receive Fields Medals, Volume 49, Number

Total Page:16

File Type:pdf, Size:1020Kb

Lafforgue and Voevodsky Receive Fields Medals, Volume 49, Number Lafforgue and Voevodsky Receive Fields Medals the rules for awarding the medals, Fields specified that the medals “should be of a character as purely international and im- personal as possible.” During the 1960s, in light of the great expansion of mathe- matics research, the possible number of medals to be awarded was increased from two to four. Today the Fields Medal is rec- ognized as the world’s highest honor in mathematics. Previous recipients are: Lars V. Ahlfors and Jesse Douglas (1936); Laurent Schwartz and Atle Selberg (1950); Kunihiko Laurent Lafforgue Vladimir Voevodsky Kodaira and Jean-Pierre Serre (1954); Klaus F. Roth and René Thom (1958); Lars Hör- On August 20, 2002, two Fields Medals were mander and John W. Milnor (1962); Michael F. awarded at the opening ceremonies of the Inter- Atiyah, Paul J. Cohen, Alexandre Grothendieck, national Congress of Mathematicians (ICM) in Bei- and Stephen Smale (1966); Alan Baker, Heisuke Hi- jing, China. The medalists are LAURENT LAFFORGUE and ronaka, Sergei P. Novikov, and John G. Thompson VLADIMIR VOEVODSKY. (1970); Enrico Bombieri and David B. Mumford The Fields Medals are presented in conjunction (1974); Pierre R. Deligne, Charles L. Fefferman, with the ICM, which is held every four years at dif- Grigorii A. Margulis, and Daniel G. Quillen (1978); ferent locations around the world. Although there Alain Connes, William P. Thurston, and Shing-Tung is no formal age limit for recipients, the medals have Yau (1982); Simon K. Donaldson, Gerd Faltings, traditionally been presented to mathematicians and Michael H. Freedman (1986); Vladimir Drinfeld, not older than 40 years of age, as an encourage- Vaughan F. R. Jones, Shigefumi Mori, and Edward ment for future achievement. The medal is named Witten (1990); Jean Bourgain, Pierre-Louis Lions, after the Canadian mathematician John Charles Jean-Christoph Yoccoz, and Efim Zelmanov (1994); Fields (1863–1932), who organized the 1924 ICM Richard Borcherds, William Timothy Gowers, Maxim in Toronto. At a 1931 meeting of the Committee Kontsevich, and Curtis T. McMullen (1998). of the International Congress, chaired by Fields, it The medals are awarded by the International was decided that the $2,500 left over from the Mathematical Union, on the advice of a selection Toronto ICM “should be set apart for two medals committee. The selection committee for the 2002 to be awarded in connection with successive In- Fields Medalists consisted of: James Arthur, Spencer ternational Mathematical Congresses.” In outlining Bloch, Jean Bourgain, Helmut Hofer, Yasutaka Ihara, 1264 NOTICES OF THE AMS VOLUME 49, NUMBER 10 H. Blaine Lawson, Sergei Novikov, George Papani- mathematics from Harvard University (1992). He colaou, Yakov Sinai (chair), and Efim Zelmanov. held visiting positions at the Institute for Advanced Study, Harvard University, and the Max-Planck- Laurent Lafforgue Institut für Mathematik before joining the faculty Laurent Lafforgue was born on November 6, 1966, of Northwestern University in 1996. In 2002 he in Antony, France. He graduated from the École Nor- was named a permanent professor in the School of male Supérieure in Paris (1986). He became a chargé Mathematics at the Institute for Advanced Study de recherche of the Centre National de la Recherche in Princeton, New Jersey. Scientifique (CNRS) (1990) and worked on the Arith- Vladimir Voevodsky made one of the most out- metic and Algebraic Geometry team at the Univer- standing advances in algebraic geometry in the sité Paris-Sud, where he received his doctorate past few decades by developing new cohomology (1994). In fall 2000 he was promoted to directeur theories for algebraic varieties. This achievement de recherche of the CNRS in the mathematics de- has its roots in the work of 1966 Fields Medalist partment of the Université Paris-Sud. Shortly there- Alexandre Grothendieck. Grothendieck suggested after he became a permanent professor of mathe- that there should be objects, which he called “mo- matics at the Institut des Hautes Études tives”, that are at the root of the unity between num- Scientifiques in Bures-sur-Yvette, France. ber theory and geometry. Laurent Lafforgue has made an enormous ad- One of the most important of the generalized vance in the Langlands Program by proving the cohomology theories is topological K-theory, de- global Langlands correspondence for function veloped chiefly by another 1966 Fields Medalist, fields. The Langlands Program, formulated by Michael Atiyah. An important result in topological Robert Langlands in the 1960s, proposes a web of K-theory is the Atiyah-Hirzebruch spectral se- relationships connecting Galois representations quence, developed by Atiyah and Friedrich Hirze- and automorphic forms. The influence of the Lang- bruch, which relates singular cohomology and topo- lands Program has grown over the years, with each logical K-theory. new advance hailed as an important achievement. For about forty years mathematicians worked The roots of the Langlands program are found hard to develop good cohomology theories for al- in one of the deepest results in number theory, the gebraic varieties; the best understood of these was Law of Quadratic Reciprocity, which was first the algebraic version of K-theory. A major advance proved by Carl Friedrich Gauss in 1801. This law came when Voevodsky, building on a little-under- allows one to describe, for any positive integer d, stood idea proposed by Andrei Suslin, created a the primes p for which the congruence theory of “motivic cohomology”. In analogy with the x2 ≡ d mod p has a solution. Despite many proofs topological setting, there is a relationship between of this law (Gauss himself produced six different motivic cohomology and algebraic K-theory. In proofs), it remains one of the most mysterious addition, Voevodsky provided a framework for facts in number theory. The search for general- describing many new cohomology theories for algebraic varieties. One consequence of Voevodsky’s izations of the Law of Quadratic Reciprocity stim- work, and one of his most celebrated achievements, ulated a great deal of research in number theory is the solution of the Milnor Conjecture, which for in the nineteenth century. Landmark work by Emil three decades was the main outstanding problem Artin in the 1920s produced the most general rec- in algebraic K-theory. This result has striking con- iprocity law known up to that time. One of the sequences in several areas, including Galois coho- original motivations behind the Langlands Pro- mology, quadratic forms, and the cohomology of gram was to provide a complete understanding of complex algebraic varieties. reciprocity laws. —Allyn Jackson The global Langlands correspondence for GLn proved by Lafforgue provides a complete under- standing of reciprocity laws for function fields. Lafforgue established, for any given function field, a precise link between the representations of its Ga- lois groups and the automorphic forms associated with the field. He built on work of 1990 Fields Medalist Vladimir Drinfeld, who in the 1970s proved the global Langlands correspondence for GL2 . Vladimir Voevodsky Vladmir Voevodsky was born on June 4, 1966, in Russia. He received his B.S. in mathematics from Moscow State University (1989) and his Ph.D. in NOVEMBER 2002 NOTICES OF THE AMS 1265.
Recommended publications
  • 2006 Annual Report
    Contents Clay Mathematics Institute 2006 James A. Carlson Letter from the President 2 Recognizing Achievement Fields Medal Winner Terence Tao 3 Persi Diaconis Mathematics & Magic Tricks 4 Annual Meeting Clay Lectures at Cambridge University 6 Researchers, Workshops & Conferences Summary of 2006 Research Activities 8 Profile Interview with Research Fellow Ben Green 10 Davar Khoshnevisan Normal Numbers are Normal 15 Feature Article CMI—Göttingen Library Project: 16 Eugene Chislenko The Felix Klein Protocols Digitized The Klein Protokolle 18 Summer School Arithmetic Geometry at the Mathematisches Institut, Göttingen, Germany 22 Program Overview The Ross Program at Ohio State University 24 PROMYS at Boston University Institute News Awards & Honors 26 Deadlines Nominations, Proposals and Applications 32 Publications Selected Articles by Research Fellows 33 Books & Videos Activities 2007 Institute Calendar 36 2006 Another major change this year concerns the editorial board for the Clay Mathematics Institute Monograph Series, published jointly with the American Mathematical Society. Simon Donaldson and Andrew Wiles will serve as editors-in-chief, while I will serve as managing editor. Associate editors are Brian Conrad, Ingrid Daubechies, Charles Fefferman, János Kollár, Andrei Okounkov, David Morrison, Cliff Taubes, Peter Ozsváth, and Karen Smith. The Monograph Series publishes Letter from the president selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. The next volume in the series will be Ricci Flow and the Poincaré Conjecture, by John Morgan and Gang Tian. Their book will appear in the summer of 2007. In related publishing news, the Institute has had the complete record of the Göttingen seminars of Felix Klein, 1872–1912, digitized and made available on James Carlson.
    [Show full text]
  • Potential Automorphy of $\Widehat {G} $-Local Systems
    Potential automorphy of G-local systems Jack A. Thorneb September 4, 2019 Abstract Vincent Lafforgue has recently made a spectacular breakthrough in the setting of the global Langlands correspondence for global fields of positive characteristic, by constructing the ‘automorphic–to–Galois’ direction of the correspondence for an arbitrary reductive group G. We discuss a result that starts with Lafforgue’s work and proceeds in the opposite (‘Galois– to–automorphic’) direction. 1 Introduction Let Fq be a finite field, and let G be a split reductive group over Fq. Let X be a smooth projective connected curve over Fq, and let K be its function field. Let AK denote the ring of ad`eles of K. Automorphic forms on G are locally constant functions f : G(AK ) → Q which are invariant under left translation 1 by the discrete group G(K) ⊂ G(AK ). The space of automorphic forms is a representation of G(AK ), and its irreducible constituents are called automorphic representations. Let ℓ ∤ q be a prime. According to the Langlands conjectures, any automor- phic representation π of G(AK ) should give rise to a continuous representation ´et ρ(π): π1 (U) → G(Qℓ) (for some open subscheme U ⊂ X). This should be com- patible with the (known) unramified local Langlands correspondence, which de- arXiv:1909.00655v1 [math.NT] 2 Sep 2019 b ´et scribes the pullback of ρ(π) to π1 (Fqv ) for every closed point v : Spec Fqv ֒→ U ′ in terms of the components πv of a factorization π = ⊗vπv into representations of the local groups G(Kv).
    [Show full text]
  • Arxiv:1701.01653V1 [Math.CV] 6 Jan 2017 32J25
    Bimeromorphic geometry of K¨ahler threefolds Andreas H¨oring and Thomas Peternell Abstract. We describe the recently established minimal model program for (non-algebraic) K¨ahler threefolds as well as the abundance theorem for these spaces. 1. Introduction Given a complex projective manifold X, the Minimal Model Program (MMP) predicts that either X is covered by rational curves (X is uniruled) or X has a ′ - slightly singular - birational minimal model X whose canonical divisor KX′ is nef; and then the abundance conjecture says that some multiple mKX′ is spanned by global sections (so X′ is a good minimal model). The MMP also predicts how to achieve the birational model, namely by a sequence of divisorial contractions and flips. In dimension three, the MMP is completely established (cf. [Kwc92], [KM98] for surveys), in dimension four, the existence of minimal models is es- tablished ([BCHM10], [Fuj04], [Fuj05]), but abundance is wide open. In higher dimensions minimal models exists if X is of general type [BCHM10]; abundance not being an issue in this case. In this article we discuss the following natural Question 1.1. Does the MMP work for general (non-algebraic) compact K¨ahler manifolds? Although the basic methods used in minimal model theory all fail in the K¨ahler arXiv:1701.01653v1 [math.CV] 6 Jan 2017 case, there is no apparent reason why the MMP should not hold in the K¨ahler category. And in fact, in recent papers [HP16], [HP15] and [CHP16], the K¨ahler MMP was established in dimension three: Theorem 1.2. Let X be a normal Q-factorial compact K¨ahler threefold with terminal singularities.
    [Show full text]
  • A Mathematical Tonic
    NATURE|Vol 443|14 September 2006 BOOKS & ARTS reader nonplussed. For instance, he discusses a problem in which a mouse runs at constant A mathematical tonic speed round a circle, and a cat, starting at the centre of the circle, runs at constant speed Dr Euler’s Fabulous Formula: Cures Many mathematician. This is mostly a good thing: directly towards the mouse at all times. Does Mathematical Ills not many mathematicians know much about the cat catch the mouse? Yes, if, and only if, it by Paul Nahin signal processing or the importance of complex runs faster than the mouse. In the middle of Princeton University Press: 2006. 404 pp. numbers to engineers, and it is fascinating to the discussion Nahin suddenly abandons the $29.95, £18.95 find out about these subjects. Furthermore, it mathematics and puts a discrete approximation is likely that a mathematician would have got into his computer to generate some diagrams. Timothy Gowers hung up on details that Nahin cheerfully, and His justification is that an analytic formula for One of the effects of the remarkable success rightly, ignores. However, his background has the cat’s position is hard to obtain, but actu- of Stephen Hawking’s A Brief History Of Time the occasional disadvantage as well, such as ally the problem can be neatly solved without (Bantam, 1988) was a burgeoning of the mar- when he discusses the matrix formulation of such a formula (although it is good to have ket for popular science writing. It did not take de Moivre’s theorem, the fundamental result his diagrams as well).
    [Show full text]
  • FIELDS MEDAL for Mathematical Efforts R
    Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study,
    [Show full text]
  • Why U.S. Immigration Barriers Matter for the Global Advancement of Science
    DISCUSSION PAPER SERIES IZA DP No. 14016 Why U.S. Immigration Barriers Matter for the Global Advancement of Science Ruchir Agarwal Ina Ganguli Patrick Gaulé Geoff Smith JANUARY 2021 DISCUSSION PAPER SERIES IZA DP No. 14016 Why U.S. Immigration Barriers Matter for the Global Advancement of Science Ruchir Agarwal Patrick Gaulé International Monetary Fund University of Bath and IZA Ina Ganguli Geoff Smith University of Massachusetts Amherst University of Bath JANUARY 2021 Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity. The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society. IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author. ISSN: 2365-9793 IZA – Institute of Labor Economics Schaumburg-Lippe-Straße 5–9 Phone: +49-228-3894-0 53113 Bonn, Germany Email: [email protected] www.iza.org IZA DP No. 14016 JANUARY 2021 ABSTRACT Why U.S.
    [Show full text]
  • A Short Survey of Cyclic Cohomology
    Clay Mathematics Proceedings Volume 10, 2008 A Short Survey of Cyclic Cohomology Masoud Khalkhali Dedicated with admiration and affection to Alain Connes Abstract. This is a short survey of some aspects of Alain Connes’ contribu- tions to cyclic cohomology theory in the course of his work on noncommutative geometry over the past 30 years. Contents 1. Introduction 1 2. Cyclic cohomology 3 3. From K-homology to cyclic cohomology 10 4. Cyclic modules 13 5. Thelocalindexformulaandbeyond 16 6. Hopf cyclic cohomology 21 References 28 1. Introduction Cyclic cohomology was discovered by Alain Connes no later than 1981 and in fact it was announced in that year in a conference in Oberwolfach [5]. I have reproduced the text of his abstract below. As it appears in his report, one of arXiv:1008.1212v1 [math.OA] 6 Aug 2010 Connes’ main motivations to introduce cyclic cohomology theory came from index theory on foliated spaces. Let (V, ) be a compact foliated manifold and let V/ denote the space of leaves of (V, ).F This space, with its natural quotient topology,F is, in general, a highly singular spaceF and in noncommutative geometry one usually replaces the quotient space V/ with a noncommutative algebra A = C∗(V, ) called the foliation algebra of (V,F ). It is the convolution algebra of the holonomyF groupoid of the foliation and isF a C∗-algebra. It has a dense subalgebra = C∞(V, ) which plays the role of the algebra of smooth functions on V/ . LetA D be a transversallyF elliptic operator on (V, ). The analytic index of D, index(F D) F ∈ K0(A), is an element of the K-theory of A.
    [Show full text]
  • Density of Algebraic Points on Noetherian Varieties 3
    DENSITY OF ALGEBRAIC POINTS ON NOETHERIAN VARIETIES GAL BINYAMINI Abstract. Let Ω ⊂ Rn be a relatively compact domain. A finite collection of real-valued functions on Ω is called a Noetherian chain if the partial derivatives of each function are expressible as polynomials in the functions. A Noether- ian function is a polynomial combination of elements of a Noetherian chain. We introduce Noetherian parameters (degrees, size of the coefficients) which measure the complexity of a Noetherian chain. Our main result is an explicit form of the Pila-Wilkie theorem for sets defined using Noetherian equalities and inequalities: for any ε> 0, the number of points of height H in the tran- scendental part of the set is at most C ·Hε where C can be explicitly estimated from the Noetherian parameters and ε. We show that many functions of interest in arithmetic geometry fall within the Noetherian class, including elliptic and abelian functions, modular func- tions and universal covers of compact Riemann surfaces, Jacobi theta func- tions, periods of algebraic integrals, and the uniformizing map of the Siegel modular variety Ag . We thus effectivize the (geometric side of) Pila-Zannier strategy for unlikely intersections in those instances that involve only compact domains. 1. Introduction 1.1. The (real) Noetherian class. Let ΩR ⊂ Rn be a bounded domain, and n denote by x := (x1,...,xn) a system of coordinates on R . A collection of analytic ℓ functions φ := (φ1,...,φℓ): Ω¯ R → R is called a (complex) real Noetherian chain if it satisfies an overdetermined system of algebraic partial differential equations, i =1,...,ℓ ∂φi = Pi,j (x, φ), (1) ∂xj j =1,...,n where P are polynomials.
    [Show full text]
  • The History of the Abel Prize and the Honorary Abel Prize the History of the Abel Prize
    The History of the Abel Prize and the Honorary Abel Prize The History of the Abel Prize Arild Stubhaug On the bicentennial of Niels Henrik Abel’s birth in 2002, the Norwegian Govern- ment decided to establish a memorial fund of NOK 200 million. The chief purpose of the fund was to lay the financial groundwork for an annual international prize of NOK 6 million to one or more mathematicians for outstanding scientific work. The prize was awarded for the first time in 2003. That is the history in brief of the Abel Prize as we know it today. Behind this government decision to commemorate and honor the country’s great mathematician, however, lies a more than hundred year old wish and a short and intense period of activity. Volumes of Abel’s collected works were published in 1839 and 1881. The first was edited by Bernt Michael Holmboe (Abel’s teacher), the second by Sophus Lie and Ludvig Sylow. Both editions were paid for with public funds and published to honor the famous scientist. The first time that there was a discussion in a broader context about honoring Niels Henrik Abel’s memory, was at the meeting of Scan- dinavian natural scientists in Norway’s capital in 1886. These meetings of natural scientists, which were held alternately in each of the Scandinavian capitals (with the exception of the very first meeting in 1839, which took place in Gothenburg, Swe- den), were the most important fora for Scandinavian natural scientists. The meeting in 1886 in Oslo (called Christiania at the time) was the 13th in the series.
    [Show full text]
  • TRINITY COLLEGE Cambridge Trinity College Cambridge College Trinity Annual Record Annual
    2016 TRINITY COLLEGE cambridge trinity college cambridge annual record annual record 2016 Trinity College Cambridge Annual Record 2015–2016 Trinity College Cambridge CB2 1TQ Telephone: 01223 338400 e-mail: [email protected] website: www.trin.cam.ac.uk Contents 5 Editorial 11 Commemoration 12 Chapel Address 15 The Health of the College 18 The Master’s Response on Behalf of the College 25 Alumni Relations & Development 26 Alumni Relations and Associations 37 Dining Privileges 38 Annual Gatherings 39 Alumni Achievements CONTENTS 44 Donations to the College Library 47 College Activities 48 First & Third Trinity Boat Club 53 Field Clubs 71 Students’ Union and Societies 80 College Choir 83 Features 84 Hermes 86 Inside a Pirate’s Cookbook 93 “… Through a Glass Darkly…” 102 Robert Smith, John Harrison, and a College Clock 109 ‘We need to talk about Erskine’ 117 My time as advisor to the BBC’s War and Peace TRINITY ANNUAL RECORD 2016 | 3 123 Fellows, Staff, and Students 124 The Master and Fellows 139 Appointments and Distinctions 141 In Memoriam 155 A Ninetieth Birthday Speech 158 An Eightieth Birthday Speech 167 College Notes 181 The Register 182 In Memoriam 186 Addresses wanted CONTENTS TRINITY ANNUAL RECORD 2016 | 4 Editorial It is with some trepidation that I step into Boyd Hilton’s shoes and take on the editorship of this journal. He managed the transition to ‘glossy’ with flair and panache. As historian of the College and sometime holder of many of its working offices, he also brought a knowledge of its past and an understanding of its mysteries that I am unable to match.
    [Show full text]
  • Shtukas for Reductive Groups and Langlands Correspondence for Functions Fields
    SHTUKAS FOR REDUCTIVE GROUPS AND LANGLANDS CORRESPONDENCE FOR FUNCTIONS FIELDS VINCENT LAFFORGUE This text gives an introduction to the Langlands correspondence for function fields and in particular to some recent works in this subject. We begin with a short historical account (all notions used below are recalled in the text). The Langlands correspondence [49] is a conjecture of utmost impor- tance, concerning global fields, i.e. number fields and function fields. Many excellent surveys are available, for example [39, 14, 13, 79, 31, 5]. The Langlands correspondence belongs to a huge system of conjectures (Langlands functoriality, Grothendieck’s vision of motives, special val- ues of L-functions, Ramanujan-Petersson conjecture, generalized Rie- mann hypothesis). This system has a remarkable deepness and logical coherence and many cases of these conjectures have already been es- tablished. Moreover the Langlands correspondence over function fields admits a geometrization, the “geometric Langlands program”, which is related to conformal field theory in Theoretical Physics. Let G be a connected reductive group over a global field F . For the sake of simplicity we assume G is split. The Langlands correspondence relates two fundamental objects, of very different nature, whose definition will be recalled later, • the automorphic forms for G, • the global Langlands parameters , i.e. the conjugacy classes of morphisms from the Galois group Gal(F =F ) to the Langlands b dual group G(Q`). b For G = GL1 we have G = GL1 and this is class field theory, which describes the abelianization of Gal(F =F ) (one particular case of it for Q is the law of quadratic reciprocity, which dates back to Euler, Legendre and Gauss).
    [Show full text]
  • Contemporary Mathematics 224
    CONTEMPORARY MATHEMATICS 224 Recent Progress in Algebra An International Conference on Recent Progress in Algebra August 11-15, 1997 KAIST, Taejon, South Korea Sang Geun Hahn Hyo Chul Myung Efim Zelmanov Editors http://dx.doi.org/10.1090/conm/224 Selected Titles in This Series 224 Sang Geun Hahn, Hyo Chul Myung, and Efim Zelmanov, Editors, Recent progress in algebra, 1999 223 Bernard Chazelle, Jacob E. Goodman, and Richard Pollack, Editors, Advances in discrete and computational geometry, 1999 222 Kang-Tae Kim and Steven G. Krantz, Editors, Complex geometric analysis in Pohang, 1999 221 J. Robert Dorroh, Gisela Ruiz Goldstein, Jerome A. Goldstein, and Michael Mudi Tom, Editors, Applied analysis, 1999 220 Mark Mahowald and Stewart Priddy, Editors, Homotopy theory via algebraic geometry and group representations, 1998 219 Marc Henneaux, Joseph Krasil'shchik, and Alexandre Vinogradov, Editors, Secondary calculus and cohomological physics, 1998 218 Jan Mandel, Charbel Farhat, and Xiao-Chuan Cai, Editors, Domain decomposition methods 10, 1998 217 Eric Carlen, Evans M. Harrell, and Michael Loss, Editors, Advances in differential equations and mathematical physics, 1998 216 Akram Aldroubi and EnBing Lin, Editors, Wavelets, multiwavelets, and their applications, 1998 215 M. G. Nerurkar, D. P. Dokken, and D. B. Ellis, Editors, Topological dynamics and applications, 1998 214 Lewis A. Coburn and Marc A. Rieffel, Editors, Perspectives on quantization, 1998 213 Farhad Jafari, Barbara D. MacCiuer, Carl C. Cowen, and A. Duane Porter, Editors, Studies on composition operators, 1998 212 E. Ramirez de Arellano, N. Salinas, M. V. Shapiro, and N. L. Vasilevski, Editors, Operator theory for complex and hypercomplex analysis, 1998 211 J6zef Dodziuk and Linda Keen, Editors, Lipa's legacy: Proceedings from the Bers Colloquium, 1997 210 V.
    [Show full text]