Predicting the Phase Behaviors of Superionic Water at Planetary Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Predicting the Phase Behaviors of Superionic Water at Planetary Conditions Predicting the phase behaviors of superionic water at planetary conditions Bingqing Cheng,1, 2, ∗ Mandy Bethkenhagen,3 Chris J. Pickard,4, 5 and Sebastien Hamel6 1Department of Computer Science and Technology, J. J. Thomson Avenue, Cambridge, CB3 0FD, United Kingdom 2Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom 3Ecole´ Normale Sup´erieure de Lyon, Universit´eLyon 1, Laboratoire de G´eologie de Lyon, CNRS UMR 5276, 69364 Lyon Cedex 07, France 4Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom 5Advanced Institute for Materials Research, Tohoku University, Sendai, Japan 6Lawrence Livermore National Laboratory, Livermore, California 94550, USA (Dated: March 17, 2021) Most water in the universe may be superionic, and its thermodynamic and transport properties are crucial for planetary science but difficult to probe experimentally or theoretically. We use machine learning and free energy methods to overcome the limitations of quantum mechanical simulations, and characterize hydrogen diffusion, superionic transitions, and phase behaviors of water at extreme conditions. We predict that a close-packed superionic phase with mixed stacking is stable over a wide temperature and pressure range, while a body-centered cubic phase is only thermodynamically stable in a small window but is kinetically favored. Our phase boundaries, which are consistent with the existing-albeit scarce-experimental observations, help resolve the fractions of insulating ice, different superionic phases, and liquid water inside of ice giants. Water is the dominant constituent of Uranus' and Nep- gen lattice. In the experimental studies of superionic wa- tune's mantle [1], and superionic water is believed to be ter [2,4, 11{13], sample preparation is extremely chal- stable at depths greater than about one-third of the ra- lenging, hydrogen positions cannot be determined, and dius of these ice giants [2]. Water superionicity is marked temperature measurements in dynamical compression ex- by exceptionally high hydrogen diffusivity and ionic con- periments are not straightforward [2,4]. Notably, recent ductivity, as hydrogen atoms become liquid-like while dynamical compression experiments combined with x-ray oxygen atoms remain solid-like on a lattice with a certain diffraction (XRD) found a superionic phase with fcc oxy- crystallographic order. Although superionic water was gen lattice, ice XVIII, above 2000 K [2]. Static compres- postulated over three decades ago [3], its optical proper- sion experiments combined with synchrotron XRD sug- ties (it is partially opaque) and oxygen lattices were only gest a triple point between liquid, ice VII0, and ice VII00 accurately measured recently [2,4], and many properties (a bcc superionic phase) at 14.6 GPa and 850 K [13]. of this hot \black ice" are still uncharted. Amongst the many mysteries regarding superionic wa- Theoretical computation of the high-P water phase ter, the phase behaviors over a large range of pressure (P ) boundaries is also difficult. No reliable empirical force and temperature (T ) are particularly important in plan- fields are available for this system. FPMD simulations etary science: The location of various coexistence lines are computationally expensive, and are thus confined to (including the high-pressure melting line, the insulating short trajectories and small system sizes, which may in- ice to superionic transition line, and the phase boundaries troduce artifacts leading to contradictory results on the between competing superionic phases of water) are essen- locations of phase boundaries [5,7{10, 14{16] and diffu- tial for understanding the formation, evolution, interior sivity [8,9] between various studies based on the same structure and magnetic fields of planets [1,5,6] How- assumption of the underlying electronic structure. An- ever, the locations of these coexistence lines and even other shortcoming of most FPMD simulations is that the the possible types of oxygen lattices for superionic wa- nuclei are treated as classical point masses even though ter have long been debated. Initial computational stud- they are wave-like quantum mechanical particles. Yet, ies [3] proposed a face-centered-cubic (fcc) oxygen lattice for light elements such as hydrogen, nuclear quantum ef- while early first-principles electronic structure molecular fects (NQEs) are particularly acute. Molecular dynamics dynamics (FPMD) considered superionic water with a (MD) combined with the Feynman path integral (PIMD) body-centered cubic (bcc) oxygen lattice as a high tem- can be used to treat the NQEs, but PIMD multiplies the perature analog of the ice X [7]. Later FPMD studies re- computational cost by about another 20-fold [17]. How- arXiv:2103.09035v1 [physics.comp-ph] 16 Mar 2021 proposed a fcc [8,9], suggested a close-packed (cp) [10], ever, machine-learning potentials (MLPs) can help over- and, at pressures higher than 1 TPa, a P21/c [10] oxy- come these limits by first learning a data-driven model of atomic interactions from first-principles calculations [18], and then driving large-scale simulations at an affordable computational cost. Thanks to their low cost and high ∗ [email protected] accuracy, MLPs have helped reproduce the low-pressure 2 a 100 GPa 3250 K b 300 GPa 4000 K c 600 GPa 4000 K 2 .4 4 0 0 0 4 0 0 0 4 0 0 0 3 5 0 0 b cc 3 5 0 0 fcc 3 5 0 0 h cp ) 1 3 .2 3 0 0 0 3 0 0 0 3 0 0 0 s 2 2 5 0 0 2 5 0 0 2 5 0 0 / cm T [K] T [K] T [K] H 4 .0 600 GPa 1000 K 2 0 0 0 100 GPa 1000 K 2 0 0 0 300 GPa 1000 K 2 0 0 0 (D 10 1 5 0 0 1 5 0 0 1 5 0 0 log 4 .8 1 0 0 0 1 0 0 0 1 0 0 0 5 0 0 5 0 0 5 0 0 2 0 0 4 0 0 6 0 0 2 0 0 4 0 0 6 0 0 2 0 0 4 0 0 6 0 0 P [GPa ] P [GPa ] P [GPa ] FIG. 1. The diffusion of hydrogen in water with bcc, fcc, and hcp lattice of oxygen. On the left of each panel, the diffusion coefficients of hydrogen DH are shown logarithmically as a function of pressure (P ) and temperature (T ). The dashed lines illustrate the ice to superionic transition temperatures Ts as defined in the main text. On the right, the distributions of hydrogen atoms are indicated using gray contours, and the instantaneous positions of oxygen atoms are indicated using red spheres. For bcc, fcc, and hcp lattices, both a low-temperature ice structure (lower) and a high-temperature superionic structure (upper) are shown. phase diagram of water [19, 20], as well as elucidate We analyze the hydrogen diffusion in the fcc lattice, the nucleation behaviour of gallium [21], the liquid-liquid as the results for bcc and hcp are similar (Supplemen- transition of high-pressure hydrogen [22], and the struc- tary Materials). At pressure and temperature condi- tural transition mechanisms in disordered silicon [23]. tions where the lattice remains stable, the diffusivity of In this study, we construct a MLP for high-pressure hydrogen changes rapidly but smoothly across the ice- water using an artificial neural network architecture [24] superionic transition region, as evident in Fig.2a that based on Perdew-Burke-Ernzerhof (PBE) [25] density shows DH (on the log scale in the inset) with respect to functional theory (DFT). Combining the MLP with ad- T . Above Ts, when the system is fully superionic, DH vanced free energy methods, we predict the properties increases gradually as a function of temperature, and is of superionic and liquid water at the PBE level of the- only weakly dependent on pressure (see the Supplemen- ory, using large system sizes, long time scales and con- tary Materials). sidering NQEs. We elucidate the mechanisms for ice- The detailed and microscopic picture of the hydro- superionic transitions and hydrogen transport, map the gen motion revealed in Fig.1 complements experiments, high-pressure water phase diagram, and probe the kinet- which cannot determine the positions of hydrogen at the ics of phase transition. high P; T conditions. The H diffusion coefficients can be used to derive the ionic conductivity of superionic water using a generalized Einstein formula [26], which is a key Hydrogen diffusivity in superionic phases quantity in magnetic dynamo simulations for reproduc- ing the complex magnetic field geometry of the Uranus To probe hydrogen diffusion, the aforementioned bcc and Neptune [6]. and fcc lattices of oxygen, and a hexagonal close-packed (hcp) lattice that has a low-T ice analog with the Pbcm space group (structures are in the Supplementary Mate- A physical model of ice-superionic transitions rials) are considered. The insulating structures become superionic when the temperature rises, as marked by the To rationalize the ice-superionic transition and the hy- fast diffusion of hydrogen atoms inside the oxygen lat- drogen diffusion, we start from an interstitial formation tices. The distributions of position of hydrogen are shown model [27]: Taking x to be the fraction of the conduct- in the contour plots of Fig.1: at low T hydrogen atoms ing hydrogen atoms, the free energy of the system can be are confined to their equilibrium sites, while at high T expressed as only a fraction occupy these sites at any given time. The diffusivity of hydrogen DH is shown for a wide range of thermodynamic conditions in Fig.1. At about λ 2 f(x; T ) = (0 − T s0)x − x 2000 K, there is a rapid increase of DH, which marks the 2 insulating ice-superionic transition.
Recommended publications
  • Business of the City Council City of Mercer Island, Wa
    AB 5444 BUSINESS OF THE CITY COUNCIL July 17, 2018 CITY OF MERCER ISLAND, WA Study Session REVIEW RFQ CRITERIA FOR TRANSIT Action: Discussion Only COMMUTER PARKING AND A PUBLIC- Review proposed RFQ criteria and Action Needed: PRIVATE, MIXED-USE DEVELOPMENT selection process. Motion Ordinance PROJECT ON THE TULLY’S/PARCEL 12 Resolution SITE DEPARTMENT OF City Manager (Julie Underwood) COUNCIL LIAISON n/a EXHIBITS 1. Request For Qualifications (RFQ) - Mercer Island Commuter Parking & Town Center Mixed-Use Project 2018-2019 CITY COUNCIL GOAL 1. Prepare for Light Rail/Improve Mobility APPROVED BY CITY MANAGER AMOUNT OF EXPENDITURE $ n/a AMOUNT BUDGETED $ n/a APPROPRIATION REQUIRED $ n/a SUMMARY At its meeting on June 5, the City Council authorized the City Manager to execute a Purchase and Sale Agreement with the Parkway Management Group, et al. to acquire the former Tully’s property, located at 7810 SE 27th Street (see AB 5434). This property will be combined with a portion of adjacent land the City already owns at Sunset Highway, known as Parcel 12. These properties could be developed through a public-private partnership to build an underground, transit commuter parking facility and potential mixed-use development (see AB 5418). The April 2018 Citizen Survey (see AB 5440) showed that 59% of respondents were unsatisfied with the availability of commuter parking, and the majority of respondents selected commuter parking as their top transportation priority. This public-private partnership presents an opportunity to provide much-needed commuter parking in Town Center, while significantly reducing the City’s contribution of funds (other than the Sound Transit contribution) by utilizing City-owned land in a key geographic location near the future East Link light rail station.
    [Show full text]
  • First Experimental Evidence for Superionic Ice 6 February 2018
    First experimental evidence for superionic ice 6 February 2018 In a paper published today by Nature Physics, a research team from Lawrence Livermore National Laboratory (LLNL), the University of California, Berkeley and the University of Rochester provides experimental evidence for superionic conduction in water ice at planetary interior conditions, verifying the 30-year-old prediction. Using shock compression, the team identified thermodynamic signatures showing that ice melts near 5000 Kelvin (K) at 200 gigapascals (GPa—2 million times Earth's atmosphere)—4000 K higher than the melting point at 0.5 megabar (Mbar) and almost the surface temperature of the sun. Time-integrated image of a laser-driven shock compression experiment to recreate planetary interior conditions and study the properties of superionic water. "Our experiments have verified the two main Credit: M. Millot/E. Kowaluk/J.Wickboldt/LLNL/LLE/NIF predictions for superionic ice: very high protonic/ionic conductivity within the solid and high melting point," said lead author Marius Millot, a physicist at LLNL. "Our work provides experimental Among the many discoveries on matter at high evidence for superionic ice and shows that these pressure that garnered him the Nobel Prize in predictions were not due to artifacts in the 1946, scientist Percy Bridgman discovered five simulations, but actually captured the extraordinary different crystalline forms of water ice, ushering in behavior of water at those conditions. This provides more than 100 years of research into how ice an important validation of state-of-the-art quantum behaves under extreme conditions. simulations using density-functional-theory-based molecular dynamics (DFT-MD)." One of the most intriguing properties of water is that it may become superionic when heated to "Driven by the increase in computing resources several thousand degrees at high pressure, similar available, I feel we have reached a turning point," to the conditions inside giant planets like Uranus added Sebastien Hamel, LLNL physicist and co- and Neptune.
    [Show full text]
  • Download File
    International Journal of Current Advanced Research ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: 6.614 Available Online at www.journalijcar.org Volume 7; Issue 6(I); June 2018; Page No. 13658-13661 DOI: http://dx.doi.org/10.24327/ijcar.2018.13661.2450 Research Article FLUORIDE INCIDENCE IN GROUNDWATER AND ITS POTENTIAL HEALTH EFFECTS IN PARTS OF BILASPURAREA, CHHATTISGARH, INDIA Manish Upadhyay and Raman C.V University Kargi Road, Kota Bilaspur (C.G) ARTICLE INFO ABSTRACT Article History: Although fluoride was once considered an essential nutrient, the U.S. National Research Council has since removed this designation due to the lack of studies showing it is essential Received 20th March, 2018 th for human growth, though still considering fluoride a "beneficial element" due to its Received in revised form 27 positive impact on oral health. The U.S. specifies the optimal level of fluoride to range April, 2018 Accepted 5th May, 2018 th from 0.7 to 1.2 mg/L (milligrams per liter, equivalent to parts per million), depending on Published online 28 June, 2018 the average maximum daily air temperature; the optimal level is lower in warmer climates, where people drink more water, and is higher in cooler climates.High concentrations of Key words: fluoride (F-) in drinking water are harmful to human health.This communication reports F- incidence in groundwaterand its relation with the prevalence of dental and skeletal Climate, dosage, fluorosis,permissible fluorosisin Sarguja , Chhattisgarh,India. In 1994 a World Health Organization expert limit,consumption. committee on fluoride use stated that 1.0 mg/L should be an absolute upper bound, even in cold climates, and that 0.5 mg/L may be an appropriate lower limit A 2007 Australian systematic review recommended a range from 0.6 to 1.1 mg/L Assayof fluoride concentration in ground water samples around in some parts of Bilaspur revealed that fluoride content in beyond the permissible limit in a some residential areas.
    [Show full text]
  • Bulloch Times (Statesboro News-Statesboro Eagle)
    Georgia Southern University Digital Commons@Georgia Southern Bulloch County Newspapers (Single Issues) Bulloch County Historical Newspapers 1-5-1928 Bulloch Times (Statesboro News-Statesboro Eagle) Notes Condition varies. Some pages missing or in poor condition. Originals provided for filming by the publisher. Gift of tS atesboro Herald and the Bulloch County Historical Society. Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/bulloch-news- issues Recommended Citation "Bulloch Times (Statesboro News-Statesboro Eagle)" (1928). Bulloch County Newspapers (Single Issues). 1360. https://digitalcommons.georgiasouthern.edu/bulloch-news-issues/1360 This newspaper is brought to you for free and open access by the Bulloch County Historical Newspapers at Digital Commons@Georgia Southern. It has been accepted for inclusion in Bulloch County Newspapers (Single Issues) by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. (STATESBORO NEW �- STATESBOR ) EAGLE) STATESBORO. GA., THURSDAY, JM�. 5, 1928 CHfVROUT COM NY :��i;;;�i�f¥�:;:;::;�;;j STAHS80RO MAR�H STAusmo' Bll'iiYtfIWlHVnAR'S FREEZI nOELS wheels as standard equ.ip!nent. Other 8RINGS ABUNDANT ICE PRESENTS NEW standard equipment includes stop- GETS (NDORSfMENT MARINES CARAGU�' " When the weather forecnstel' Sun- rear vision BETTER" CAR light, mirror, gasoline AUTHORITY SPEAKS "BIGGER AND TOBACCO the of the se­ RECORDS DUCLOSE gauge, complete tool set, and theft­ day foretold. coming EXA«. HAS MANY NEW ADVAN. WORD OF ENCOURAGEMENT COST " vorcst cold of the season, with tem­ OF PROOUCTIOIII' FOIt. proo steering and lock. Ad­ TAGES AND REFINEMENTS., ignition TO STATESBORO. perature to below 20. he MEMBERS OF 6-ACRE CLUB•• ditional oquipment is standard with likely drop hulf the truth-c-for individual models.
    [Show full text]
  • Review of Research Impact Factor : 5.2331(Uif) Ugc Approved Journal No
    Review Of ReseaRch impact factOR : 5.2331(Uif) UGc appROved JOURnal nO. 48514 issn: 2249-894X vOlUme - 7 | issUe - 9 | JUne - 2018 __________________________________________________________________________________________________________________________ HIGH FLUORIDE INCIDENCE IN GROUNDWATER AND ITS POTENTIAL HEALTH EFFECTS IN PARTS OF SARGUJA AREA, CHHATTISGARH Dr. Manish Upadhyay HOD & Associate Professor, Dr. C.V. Raman University, Kota, Bilaspur, Chattisgarh. ABSTRACT : Assay of fluoride concentration in ground water samples around Surajpur district in Sarguja revealed that fluoride content in beyond the permissible limit in some residential areas. The extent of Fluoride present in different samples was obtained by spectrophotometer. the extent of fluoride was found in village Baraul found to be from minimum 2.4 to 3.0 mg/l. village Ramtirath found to be from minimum 2.1 to 3.0 mg/l. but in village Fatehpur and Barwahi found to be from minimum 2.1 to 3.50 mg/l. it is further added that extent of fluoride content in water depends on the climatic conditions and increase in summer. KEYWORDS : Fluoridation, Dosage, Fluorosis, Aesthetic, Consumption. INTRODUCTION Safe drinking water is essential to humans and other life forms. Access to safe drinking water has improved over the last decades in almost every part of the world, but approximately one billion people still lack access to safe water and over 2.5 billion lack accesses to adequate sanitation. There is a clear correlation between access to safe water and GDP per capita. However, some observers have estimated that by 2025 more than half of the world population will be facing water-based vulnerability. A recent report (November 2009) suggests that by 2030, in some developing regions of the world, water demand will exceed supply by 50%.Water plays an important role in the world economy, as it functions as a solvent for a wide variety of chemical substances and facilitates industrial cooling and transportation.
    [Show full text]
  • Plastic and Superionic Helium Ammonia Compounds Under High Pressure and High Temperature
    PHYSICAL REVIEW X 10, 021007 (2020) Featured in Physics Plastic and Superionic Helium Ammonia Compounds under High Pressure and High Temperature Cong Liu,1 Hao Gao,1 Andreas Hermann,2 Yong Wang,1 Maosheng Miao,3 Chris J. Pickard,4,5 Richard J. Needs,6 Hui-Tian Wang,1 Dingyu Xing,1 and Jian Sun 1,* 1National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China 2Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom 3Department of Chemistry and Biochemistry, California State University Northridge, Northridge, California 91330-8262, USA 4Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom 5Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan 6Theory of Condensed Matter Group, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom (Received 25 November 2019; revised manuscript received 25 February 2020; accepted 10 March 2020; published 9 April 2020) Both helium and ammonia are main components of icy giant planets. While ammonia is very reactive, helium is the most inert element in the universe. It is of great interest whether ammonia and helium can react with each other under planetary conditions, and if so, what kinds of structures and states of matter can form. Here, using crystal structure prediction methods and first-principles calculations, we report three new stable stoichiometries and eight new stable phases of He-NH3 compounds under pressures up to 500 GPa.
    [Show full text]
  • Helium Compounds at High Pressure ✉ ✉ Jingming Shi 1, Wenwen Cui 1, Jian Hao1,2, Meiling Xu1, Xianlong Wang 3 & Yinwei Li 1
    ARTICLE https://doi.org/10.1038/s41467-020-16835-z OPEN Formation of ammonia–helium compounds at high pressure ✉ ✉ Jingming Shi 1, Wenwen Cui 1, Jian Hao1,2, Meiling Xu1, Xianlong Wang 3 & Yinwei Li 1 Uranus and Neptune are generally assumed to have helium only in their gaseous atmo- spheres. Here, we report the possibility of helium being fixed in the upper mantles of these planets in the form of NH3–He compounds. Structure predictions reveal two energetically – 1234567890():,; stable NH3 He compounds with stoichiometries (NH3)2He and NH3He at high pressures. At − low temperatures, (NH3)2He is ionic with NH3 molecules partially dissociating into (NH2) + and (NH4) ions. Simulations show that (NH3)2He transforms into intermediate phase at 100 GPa and 1000 K with H atoms slightly vibrate around N atoms, and then to a superionic phase at ~2000 K with H and He exhibiting liquid behavior within the fixed N sublattice. Finally, (NH3)2He becomes a fluid phase at temperatures of 3000 K. The stability of (NH3)2He at high pressure and temperature could contribute to update models of the interiors of Uranus and Neptune. 1 Laboratory of Quantum Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China. 2 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou 221116, China. 3 Key Laboratory of Materials Physics, ✉ Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2020) 11:3164 | https://doi.org/10.1038/s41467-020-16835-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16835-z nowledge of the interior compositions of planets is crucial moments of the ice giants.
    [Show full text]
  • Ab Initio Simulations of Superionic H2O, H2O2, and H9O4 Compounds
    Ab initio Simulations of Superionic H2O, H2O2, and H9O4 Compounds Burkhard Militzer1,2,a) and Shuai Zhang1,3 1Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA 2Department of Astronomy, University of California, Berkeley, CA 94720, USA 3Lawrence Livermore National Laboratory, Livermore, California 94550, USA a)Corresponding author: [email protected] Abstract. Using density functional molecular dynamics simulations, we study the behavior of different hydrogen-oxygen com- pounds at megabar pressures and several thousands of degrees Kelvin where water has been predicted to occur in superionic form. When we study the close packed hcp and dhcp structures of superionic water, we find that they have comparable Gibbs free en- ergies to the fcc structure that we predicted previously [Phys. Rev. Lett., 110 (2013) 151102]. Then we present a comprehensive comparison of different superionic water candidate structures with P21, P21/c, P3121, Pcca, C2/m, and Pa3¯ symmetry that are based on published ground-state structures. We find that the P21 and P21/c structures transform into a different superionic structure with P2 /c symmetry, which at 4000 K has a lower Gibbs free energy than fcc for pressures higher than 22.8 0.5 Mbar. This 1 ± novel structure may also be obtained by distorting a hcp supercell. Finally we show that H2O2 and H9O4 structures will also assume a superionic state at elevated temperatures. Based on Gibbs free energy calculations at 5000 K, we predict that superionic water decompose into H O and H O at 68.7 0.5 Mbar. 2 2 9 4 ± INTRODUCTION Water is one of the most prevalent substances in the solar system [1].
    [Show full text]
  • Open Questions on the Structures of Crystalline Water Ices ✉ Thomas Loerting 1 , Violeta Fuentes-Landete1,2, Christina M
    COMMENT https://doi.org/10.1038/s42004-020-00349-2 OPEN Open questions on the structures of crystalline water ices ✉ Thomas Loerting 1 , Violeta Fuentes-Landete1,2, Christina M. Tonauer 1 & Tobias M. Gasser1 1234567890():,; Water can form a vast number of topological frameworks owing to its hydrogen- bonding ability, with 19 different forms of ice experimentally confirmed at pre- sent. Here, the authors comment on open questions and possible future dis- coveries, covering negative to ultrahigh pressures. The hydrogen bond as envisioned by Linus Pauling is key to the structures of H2O ices. A hydrogen bond can be characterised as O–H⋯O, where the hydrogen atom is linked via a short covalent bond to the donor oxygen and via the longer bond to the acceptor. The one feature that makes ice structures so diverse is that four hydrogen bonds can be formed by a water molecule, although it has only three atoms. Thereby, two atoms may act as H donors, two as H acceptors. In ice, as opposed to water clusters or liquid water, all four hydrogen bonds are developed, resulting in a tetrahedral coordination around each water molecule. This local coordination motif is called the Walrafen pentamer and is found in almost all ice structures1. Hydrogen bonding at ultrahigh pressure Figure 1 summarises the phase diagram for water in a very broad pressure regime, up to pressures as high as encountered in the interior of the ice giants, Uranus and Neptune. Only at ultrahigh pressures, exceeding 50 GPa, the Walrafen pentamer breaks down. In this pressure regime, the hydrogen atom becomes centred between the two oxygen atoms.
    [Show full text]
  • Euopean Journal of Molecular Biology and Biochemistry
    Manish Upadhyay. / European Journal of Molecular Biology and Biochemistry. 2014;1(1):7-12. e - ISSN - 2348 - 2206 Print ISSN - 2348 - 2192 European Journal of Molecular Biology and Biochemistry Journal homepage: www.mcmed.us/journal/ejmbb ANALYTICAL STUDY OF FLUORIDE ION CONCENTRATION IN THE DRINKING WATER OF BODLA BLOCK IN KABEERDHAM DISTRICT, CHHATTISGARH Manish Upadhyay Department of Chemistry, C.V.Raman University, Kota, Bilaspur, Chattisgarh, India. ARTICLE INFO A B S T R A C T Received 25/08/2013 Although fluoride was once considered an essential nutrient, the U.S. National Research Revised 15/09/2013 Council has since removed this designation due to the lack of studies showing it is essential Accepted 18/10/2013 for human growth, though still considering fluoride a "beneficial element" due to its positive impact on oral health. The U.S. specifies the optimal level of fluoride to range Key words: from 0.7 to 1.2 mg/L (milligrams per liter, equivalent to parts per million), depending on Fluoridation, Dosage, the average maximum daily air temperature; the optimal level is lower in warmer climates, Fluorosis, Aesthetic, where people drink more water, and is higher in cooler. In 1994 a World Health Consumption. Organization expert committee on fluoride use stated that 1.0 mg/L should be an absolute upper bound, even in cold climates, and that 0.5 mg/L may be an appropriate lower limit A 2007 Australian systematic review recommended a range from 0.6 to 1.1 mg/L. Fluoride's adverse effects depend on total fluoride dosage from all sources.
    [Show full text]
  • Depleting Groundwater Levels and Increasing Fluoride Concentration in Villages of Surajpur District, Chhattisgarh, India: Cost to Economy and Health
    IOSR Journal of Applied Chemistry (IOSRJAC) ISSN : 2278-5736 Volume 1, Issue 5 (July-Aug 2012), PP 15-22 www.iosrjournals.org Depleting Groundwater Levels And Increasing Fluoride Concentration In Villages Of Surajpur District, Chhattisgarh, India: Cost To Economy And Health. Dr. Manish Upadhyay HOD & Associate Professor, Dr.C.V.Raman University Kargi Road ,KotaBilaspur (C.G) Abstract: Although fluoride was once considered an essential nutrient, the U.S. National Research Council has since removed this designation due to the lack of studies showing it is essential for human growth, though still considering fluoride a "beneficial element" due to its positive impact on oral health. The U.S. specifies the optimal level of fluoride to range from 0.7 to 1.2 mg/L (milligrams per liter, equivalent to parts per million), depending on the average maximum daily air temperature; the optimal level is lower in warmer climates, where people drink more water, and is higher in cooler climates The U.S. standard, adopted in 1962, is not appropriate for all parts of the world and is based on assumptions that have become obsolete with the rise of air conditioning and increased use of soft drinks, processed food, and other sources of fluorides. In 1994 a World Health Organization expert committee on fluoride use stated that 1.0 mg/L should be an absolute upper bound, even in cold climates, and that 0.5 mg/L may be an appropriate lower limit A 2007 Australian systematic review recommended a range from 0.6 to 1.1 mg/L. A 2000 systematic review found that water fluoridation was statistically associated with a decreased proportion of children with cavities (the median of mean decreases was 14.6%, the range −5 to 64%), and with a decrease in decayed, missing, and filled primary teeth (the median of mean decreases was 2.25 teeth, the range 0.5–4.4 teeth), which is roughly equivalent to preventing 40% of cavities.
    [Show full text]
  • Multiple Superionic States in Helium-Water Compounds
    Multiple superionic states in helium-water compounds Cong Liu,1 Hao Gao,1 Yong Wang,1 Richard J. Needs,2 Chris J. Pickard,3, 4 Jian Sun,1, ∗ Hui-Tian Wang,1, y and Dingyu Xing1 1National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China 2Theory of Condensed Matter Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, UK 3Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK 4Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan (Dated: May 23, 2019) Superionic states are phases of matter that can simultaneously exhibit some of the properties of a liquid and of a solid. For example, in superionic ice, hydrogen atoms can move freely while oxygen atoms are fixed in their sublattice. \Superionicity" has attracted much attention both in fundamental science and applications. Helium is the most inert element in nature and it is generally considered to be unreactive. Here we use ab initio calculations to show that He and H2O can form stable compounds within a large pressure range which can exist even close to ambient pressure. Surprisingly, we find that they can form two previously unknown types of superionic states. In the first of these phases the helium atoms exhibit liquid behavior within a fixed ice-lattice framework. In the second of these phases, both helium and hydrogen atoms move in a liquid-like fashion within a fixed oxygen sublattice. Because the He-O interaction is weaker than the H-O interaction, the helium atoms in these superionic states have larger diffusion coefficients and lower \melting" temperatures than that of hydrogen, although helium is heavier than hydrogen.
    [Show full text]