A Surgical Precision Hammer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microkernel Mechanisms for Improving the Trustworthiness of Commodity Hardware
Microkernel Mechanisms for Improving the Trustworthiness of Commodity Hardware Yanyan Shen Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Computer Science and Engineering Faculty of Engineering March 2019 Thesis/Dissertation Sheet Surname/Family Name : Shen Given Name/s : Yanyan Abbreviation for degree as give in the University calendar : PhD Faculty : Faculty of Engineering School : School of Computer Science and Engineering Microkernel Mechanisms for Improving the Trustworthiness of Commodity Thesis Title : Hardware Abstract 350 words maximum: (PLEASE TYPE) The thesis presents microkernel-based software-implemented mechanisms for improving the trustworthiness of computer systems based on commercial off-the-shelf (COTS) hardware that can malfunction when the hardware is impacted by transient hardware faults. The hardware anomalies, if undetected, can cause data corruptions, system crashes, and security vulnerabilities, significantly undermining system dependability. Specifically, we adopt the single event upset (SEU) fault model and address transient CPU or memory faults. We take advantage of the functional correctness and isolation guarantee provided by the formally verified seL4 microkernel and hardware redundancy provided by multicore processors, design the redundant co-execution (RCoE) architecture that replicates a whole software system (including the microkernel) onto different CPU cores, and implement two variants, loosely-coupled redundant co-execution (LC-RCoE) and closely-coupled redundant co-execution (CC-RCoE), for the ARM and x86 architectures. RCoE treats each replica of the software system as a state machine and ensures that the replicas start from the same initial state, observe consistent inputs, perform equivalent state transitions, and thus produce consistent outputs during error-free executions. -
SMASH: Synchronized Many-Sided Rowhammer Attacks from Javascript
SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript Finn de Ridder Pietro Frigo Emanuele Vannacci Herbert Bos ETH Zurich VU Amsterdam VU Amsterdam VU Amsterdam VU Amsterdam Cristiano Giuffrida Kaveh Razavi VU Amsterdam ETH Zurich Abstract has instead been lagging behind. In particular, rather than Despite their in-DRAM Target Row Refresh (TRR) mitiga- addressing the root cause of the Rowhammer bug, DDR4 in- tions, some of the most recent DDR4 modules are still vul- troduced a mitigation known as Target Row Refresh (TRR). nerable to many-sided Rowhammer bit flips. While these TRR, however, has already been shown to be ineffective bit flips are exploitable from native code, triggering them against many-sided Rowhammer attacks from native code, in the browser from JavaScript faces three nontrivial chal- at least in its current in-DRAM form [12]. However, it is lenges. First, given the lack of cache flushing instructions in unclear whether TRR’s failing also re-exposes end users to JavaScript, existing eviction-based Rowhammer attacks are TRR-aware, JavaScript-based Rowhammer attacks from the already slow for the older single- or double-sided variants browser. In fact, existing many-sided Rowhammer attacks and thus not always effective. With many-sided Rowhammer, require frequent cache flushes, large physically-contiguous mounting effective attacks is even more challenging, as it re- regions, and certain access patterns to bypass in-DRAM TRR, quires the eviction of many different aggressor addresses from all challenging in JavaScript. the CPU caches. Second, the most effective many-sided vari- In this paper, we show that under realistic assumptions, it ants, known as n-sided, require large physically-contiguous is indeed possible to bypass TRR directly from JavaScript, memory regions which are not available in JavaScript. -
Intermediate X86 Part 2
Intermediate x86 Part 2 Xeno Kovah – 2010 xkovah at gmail All materials are licensed under a Creative Commons “Share Alike” license. • http://creativecommons.org/licenses/by-sa/3.0/ 2 Paging • Previously we discussed how segmentation translates a logical address (segment selector + offset) into a 32 bit linear address. • When paging is disabled, linear addresses map 1:1 to physical addresses. • When paging is enabled, a linear address must be translated to determine the physical address it corresponds to. • It’s called “paging” because physical memory is divided into fixed size chunks called pages. • The analogy is to books in a library. When you need to find some information first you go to the library where you look up the relevant book, then you select the book and look up a specific page, from there you maybe look for a specific specific sentence …or “word”? ;) • The internets ruined the analogy! 3 Notes and Terminology • All of the figures or references to the manual in this section refer to the Nov 2008 manual (available in the class materials). This is because I think the manuals <= 2008 organized and presented much clearer than >= 2009 manuals. • When I refer to a “frame” it means “a page- sized chunk of physical memory” • When paging is enabled, a “linear address” is the same thing as a “virtual memory ” “ ” address or virtual address 4 The terrifying truth revealed! And now you knowAHHHHHHHH!!!…the rest of the story.(Nah, Good it’s not so bad day. :)) 5 Virtual Memory • When paging is enabled, the 32 bit linear address space can be mapped to a physical address space less than 32 bits. -
Multiprocessing Contents
Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References ............................................. -
Drammer: Deterministic Rowhammer Attacks on Mobile Platforms
Drammer: Deterministic Rowhammer Attacks on Mobile Platforms Victor van der Veen Yanick Fratantonio Martina Lindorfer Vrije Universiteit Amsterdam UC Santa Barbara UC Santa Barbara [email protected] [email protected] [email protected] Daniel Gruss Clémentine Maurice Giovanni Vigna Graz University of Technology Graz University of Technology UC Santa Barbara [email protected] [email protected] [email protected] Herbert Bos Kaveh Razavi Cristiano Giuffrida Vrije Universiteit Amsterdam Vrije Universiteit Amsterdam Vrije Universiteit Amsterdam [email protected] [email protected] [email protected] ABSTRACT 1. INTRODUCTION Recent work shows that the Rowhammer hardware bug can The Rowhammer hardware bug allows an attacker to mod- be used to craft powerful attacks and completely subvert a ify memory without accessing it, simply by repeatedly ac- system. However, existing efforts either describe probabilis- cessing, i.e., \hammering", a given physical memory loca- tic (and thus unreliable) attacks or rely on special (and often tion until a bit in an adjacent location flips. Rowhammer unavailable) memory management features to place victim has been used to craft powerful attacks that bypass all cur- objects in vulnerable physical memory locations. Moreover, rent defenses and completely subvert a system [16,32,35,47]. prior work only targets x86 and researchers have openly won- Until now, the proposed exploitation techniques are either dered whether Rowhammer attacks on other architectures, probabilistic [16,35] or rely on special memory management such as ARM, are even possible. features such as memory deduplication [32], MMU paravir- We show that deterministic Rowhammer attacks are feasi- tualization [47], or the pagemap interface [35]. -
X86 Memory Protection and Translation
2/5/20 COMP 790: OS Implementation COMP 790: OS Implementation Logical Diagram Binary Memory x86 Memory Protection and Threads Formats Allocators Translation User System Calls Kernel Don Porter RCU File System Networking Sync Memory Device CPU Today’s Management Drivers Scheduler Lecture Hardware Interrupts Disk Net Consistency 1 Today’s Lecture: Focus on Hardware ABI 2 1 2 COMP 790: OS Implementation COMP 790: OS Implementation Lecture Goal Undergrad Review • Understand the hardware tools available on a • What is: modern x86 processor for manipulating and – Virtual memory? protecting memory – Segmentation? • Lab 2: You will program this hardware – Paging? • Apologies: Material can be a bit dry, but important – Plus, slides will be good reference • But, cool tech tricks: – How does thread-local storage (TLS) work? – An actual (and tough) Microsoft interview question 3 4 3 4 COMP 790: OS Implementation COMP 790: OS Implementation Memory Mapping Two System Goals 1) Provide an abstraction of contiguous, isolated virtual Process 1 Process 2 memory to a program Virtual Memory Virtual Memory 2) Prevent illegal operations // Program expects (*x) – Prevent access to other application or OS memory 0x1000 Only one physical 0x1000 address 0x1000!! // to always be at – Detect failures early (e.g., segfault on address 0) // address 0x1000 – More recently, prevent exploits that try to execute int *x = 0x1000; program data 0x1000 Physical Memory 5 6 5 6 1 2/5/20 COMP 790: OS Implementation COMP 790: OS Implementation Outline x86 Processor Modes • x86 -
Throwhammer: Rowhammer Attacks Over the Network and Defenses
Throwhammer: Rowhammer Attacks over the Network and Defenses Andrei Tatar Radhesh Krishnan Konoth Elias Athanasopoulos VU Amsterdam VU Amsterdam University of Cyprus Cristiano Giuffrida Herbert Bos Kaveh Razavi VU Amsterdam VU Amsterdam VU Amsterdam Abstract never progressed beyond local privilege escalations or sandbox escapes. The attacker needs the ability to run Increasingly sophisticated Rowhammer exploits allow an code on the victim machine in order to flip bits in sen- attacker that can execute code on a vulnerable system sitive data. Hence, Rowhammer posed little threat from to escalate privileges and compromise browsers, clouds, attackers without code execution on the victim machines. and mobile systems. In all these attacks, the common In this paper, we show that this is no longer true and at- assumption is that attackers first need to obtain code tackers can flip bits by only sending network packets to execution on the victim machine to be able to exploit a victim machine connected to RDMA-enabled networks Rowhammer either by having (unprivileged) code exe- commonly used in clouds and data centers [1, 20, 45, 62]. cution on the victim machine or by luring the victim to a website that employs a malicious JavaScript applica- Rowhammer exploits today Rowhammer allows at- tion. In this paper, we revisit this assumption and show tackers to flip a bit in one physical memory location that an attacker can trigger and exploit Rowhammer bit by aggressively reading (or writing) other locations (i.e., flips directly from a remote machine by only sending hammering). As bit flips occur at the physical level, they network packets. -
Operating Systems & Virtualisation Security Knowledge Area
Operating Systems & Virtualisation Security Knowledge Area Issue 1.0 Herbert Bos Vrije Universiteit Amsterdam EDITOR Andrew Martin Oxford University REVIEWERS Chris Dalton Hewlett Packard David Lie University of Toronto Gernot Heiser University of New South Wales Mathias Payer École Polytechnique Fédérale de Lausanne The Cyber Security Body Of Knowledge www.cybok.org COPYRIGHT © Crown Copyright, The National Cyber Security Centre 2019. This information is licensed under the Open Government Licence v3.0. To view this licence, visit: http://www.nationalarchives.gov.uk/doc/open-government-licence/ When you use this information under the Open Government Licence, you should include the following attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2018, li- censed under the Open Government Licence: http://www.nationalarchives.gov.uk/doc/open- government-licence/. The CyBOK project would like to understand how the CyBOK is being used and its uptake. The project would like organisations using, or intending to use, CyBOK for the purposes of education, training, course development, professional development etc. to contact it at con- [email protected] to let the project know how they are using CyBOK. Issue 1.0 is a stable public release of the Operating Systems & Virtualisation Security Knowl- edge Area. However, it should be noted that a fully-collated CyBOK document which includes all of the Knowledge Areas is anticipated to be released by the end of July 2019. This will likely include updated page layout and formatting of the individual Knowledge Areas KA Operating Systems & Virtualisation Security j October 2019 Page 1 The Cyber Security Body Of Knowledge www.cybok.org INTRODUCTION In this Knowledge Area, we introduce the principles, primitives and practices for ensuring se- curity at the operating system and hypervisor levels. -
Chapter 3 Protected-Mode Memory Management
CHAPTER 3 PROTECTED-MODE MEMORY MANAGEMENT This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory management facilities, including the physical memory requirements, segmentation mechanism, and paging mechanism. See also: Chapter 5, “Protection” (for a description of the processor’s protection mechanism) and Chapter 20, “8086 Emulation” (for a description of memory addressing protection in real-address and virtual-8086 modes). 3.1 MEMORY MANAGEMENT OVERVIEW The memory management facilities of the IA-32 architecture are divided into two parts: segmentation and paging. Segmentation provides a mechanism of isolating individual code, data, and stack modules so that multiple programs (or tasks) can run on the same processor without interfering with one another. Paging provides a mech- anism for implementing a conventional demand-paged, virtual-memory system where sections of a program’s execution environment are mapped into physical memory as needed. Paging can also be used to provide isolation between multiple tasks. When operating in protected mode, some form of segmentation must be used. There is no mode bit to disable segmentation. The use of paging, however, is optional. These two mechanisms (segmentation and paging) can be configured to support simple single-program (or single- task) systems, multitasking systems, or multiple-processor systems that used shared memory. As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s addressable memory space (called the linear address space) into smaller protected address spaces called segments. Segments can be used to hold the code, data, and stack for a program or to hold system data structures (such as a TSS or LDT). -
Can Microkernels Mitigate Microarchitectural Attacks?⋆
Can Microkernels Mitigate Microarchitectural Attacks?? Gunnar Grimsdal1, Patrik Lundgren2, Christian Vestlund3, Felipe Boeira1, and Mikael Asplund1[0000−0003−1916−3398] 1 Department of Computer and Information Science, Link¨oping University, Sweden ffelipe.boeira,[email protected] 2 Westermo Network Technologies [email protected] 3 Sectra AB, Link¨oping,Sweden Abstract. Microarchitectural attacks such as Meltdown and Spectre have attracted much attention recently. In this paper we study how effec- tive these attacks are on the Genode microkernel framework using three different kernels, Okl4, Nova, and Linux. We try to answer the question whether the strict process separation provided by Genode combined with security-oriented kernels such as Okl4 and Nova can mitigate microar- chitectural attacks. We evaluate the attack effectiveness by measuring the throughput of data transfer that violates the security properties of the system. Our results show that the underlying side-channel attack Flush+Reload used in both Meltdown and Spectre, is effective on all in- vestigated platforms. We were also able to achieve high throughput using the Spectre attack, but we were not able to show any effective Meltdown attack on Okl4 or Nova. Keywords: Genode, Meltdown, Spectre, Flush+Reload, Okl4, Nova 1 Introduction It used to be the case that general-purpose operating systems were mostly found in desktop computers and servers. However, as IoT devices are becoming in- creasingly more sophisticated, they tend more and more to require a powerful operating system such as Linux, since otherwise all basic services must be im- plemented and maintained by the device developers. At the same time, security has become a prime concern both in IoT and in the cloud domain. -
X86 Memory Protection and Translation
x86 Memory Protection and Translation Don Porter CSE 506 Lecture Goal ò Understand the hardware tools available on a modern x86 processor for manipulating and protecting memory ò Lab 2: You will program this hardware ò Apologies: Material can be a bit dry, but important ò Plus, slides will be good reference ò But, cool tech tricks: ò How does thread-local storage (TLS) work? ò An actual (and tough) Microsoft interview question Undergrad Review ò What is: ò Virtual memory? ò Segmentation? ò Paging? Two System Goals 1) Provide an abstraction of contiguous, isolated virtual memory to a program 2) Prevent illegal operations ò Prevent access to other application or OS memory ò Detect failures early (e.g., segfault on address 0) ò More recently, prevent exploits that try to execute program data Outline ò x86 processor modes ò x86 segmentation ò x86 page tables ò Software vs. Hardware mechanisms ò Advanced Features ò Interesting applications/problems x86 Processor Modes ò Real mode – walks and talks like a really old x86 chip ò State at boot ò 20-bit address space, direct physical memory access ò Segmentation available (no paging) ò Protected mode – Standard 32-bit x86 mode ò Segmentation and paging ò Privilege levels (separate user and kernel) x86 Processor Modes ò Long mode – 64-bit mode (aka amd64, x86_64, etc.) ò Very similar to 32-bit mode (protected mode), but bigger ò Restrict segmentation use ò Garbage collect deprecated instructions ò Chips can still run in protected mode with old instructions Translation Overview 0xdeadbeef Segmentation 0x0eadbeef Paging 0x6eadbeef Virtual Address Linear Address Physical Address Protected/Long mode only ò Segmentation cannot be disabled! ò But can be a no-op (aka flat mode) x86 Segmentation ò A segment has: ò Base address (linear address) ò Length ò Type (code, data, etc). -
Bundling Spatially Correlated Prefetches for Improved Main Memory Row Buffer Locality
Bundling Spatially Correlated Prefetches for Improved Main Memory Row Buffer Locality by Patrick Judd A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Electrical and Computer Engineering University of Toronto © Copyright by Patrick Judd 2014 Bundling Spatially Correlated Prefetches for Improved Main Memory Row Buffer Locality Patrick Judd Masters of Applied Science Graduate Department of Electrical and Computer Engineering University of Toronto 2014 Abstract Row buffer locality is a consequence of programs ’ inherent spatial locality that the memory system can easily exploit for significant performance gains and power savings. However, as the number of cores on a chip increases, request streams become interleaved more frequently and row buffer locality is lost. Prefetching can help mitigate this effect, but more spatial locality remains to be recovered. In this thesis we propose Prefetch Bundling, a scheme which tags spatially correlated prefetches with information to allow the memory controller to prevent prefetches from becoming interleaved. We evaluate this scheme with a simple scheduling policy and show that it improves the row hit rate by 11%. Unfortunately, the simplicity of the scheduling policy does not translate these row hits to improved performance or power savings. However, future work may build on this framework and develop more balanced policies that leverage the row locality of Prefetch Bundling. ii Acknowledgments There are many people to thank as I reflect back on my Master’s degree. First and foremost I must thank my supervisor, Andreas Moshovos, for his support, confidence in my abilities, and most of all for his ability to keep me grounded during stressful and trying times.