Mammals Study Materials

Total Page:16

File Type:pdf, Size:1020Kb

Mammals Study Materials Mammals Study Materials Mammals Study Materials and therian mammals (marsupials and placentals) and all descendants of that ancestor.[6] Since this ancestor lived in the Jurassic period, Rowe's Mammals are the vertebrates within definition excludes all animals from the the class Mammalia a clade of endothermic amniot earlier Triassic, despite the fact that Triassic fossils es distinguished from reptiles (including birds) by in the Haramiyida have been referred to the the possession of a neocortex (a region of the Mammalia since the mid-19th century. brain), hair, three middle ear bones, and mammary glands. Females of all mammal species nurse their Class Mammalia young with milk, secreted from the mammary glands. Subclass Prototheria: monotremes: echidnas and the platypus Classification Subclass Theriiformes: live-bearing mammals and their prehistoric relatives Mammal classification has been through several Infraclass † Allotheria: multituberculates iterations since Carl Linnaeus initially defined the Infraclass † Eutriconodonta: eutriconodonts class. No classification system is universally Infraclass Holotheria: modern live-bearing accepted; McKenna & Bell (1997) and Wilson & mammals and their prehistoric relatives Reader (2005) provide useful recent Superlegion †Kuehneotheria compendiums. George Gaylord Simpson's Supercohort Theria: live-bearing mammals "Principles of Classification and a Classification of Cohort Marsupialia: marsupials Mammals" (AMNH Bulletin v. 85, 1945) Magnorder Australidelphia: Australian provides systematics of mammal origins and marsupials and the monito del monte relationships that were universally taught until the Magnorder Ameridelphia: New World end of the 20th century. Since Simpson's marsupials. Now considered paraphyletic, classification, the paleontological record has been with shrew opossums being closer to recalibrated, and the intervening years have seen australidelphians.[13] much debate and progress concerning the Cohort Placentalia: placentals theoretical underpinnings of systematization itself, Magnorder Xenarthra: xenarthrans partly through the new concept of cladistics. Magnorder Epitheria: epitheres Though field work gradually made Simpson's Superorder †Leptictida classification outdated, it remains the closest thing Superorder Preptotheria to an official classification of mammals. Grandorder Anagalida: lagomorphs, rodents and elephant shrews Definitions Grandorder Ferae: carnivorans, pangolins, †creodonts and relatives The word "mammal" is modern, from the scientific Grandorder Lipotyphla: insectivorans name Mammalia coined by Carl Linnaeus in 1758, Grandorder Archonta: bats, primates, colugo derived from the Latin mamma ("teat, pap"). In an s and treeshrews influential 1988 paper, Timothy Rowe defined Grandorder Ungulata: ungulates Mammalia phylogenetically as the crown group of Order Tubulidentata incertae sedis: aardvark mammals, the clade consisting of the most recent Mirorder Eparctocyona: common ancestor of †condylarths, whales and artiodactyls (even- living monotremes(echidnas and platypuses) toed ungulates) 1 Download Study Materials on www.examsdaily.in Follow us on FB for exam Updates: ExamsDaily Mammals Study Materials Mirorder †Meridiungulata: South American horns have a single cervix that connects to the ungulates vagina, a bicornuate, which consists where two Mirorder Altungulata: perissodactyls (odd- uterine horns that are connected distally but toed separate medially creating a Y-shape, and a ungulates), elephants, manatees and hyraxes. simplex, which has a single uterus. Reproductive system Humans and other mammals The ancestral condition for mammal reproduction is In human culture the birthing of relatively undeveloped, either through direct vivipary or a short period as soft- Non-human mammals play a wide variety of roles shelled eggs. This is likely due to the fact that the in human culture. They are the most popular of pets, torso could not expand due to the presence with tens of millions of dogs, cats and other animals of epipubic bones. The oldest demonstration of this including rabbits and mice kept by families around reproductive style is with Kayentatherium, which the world. Mammals such as mammoths, horses and produced undeveloped perinates, but at much higher deer are among the earliest subjects of art, being litter sizes than any modern mammal, 38 found in Upper Paleolithic cave paintings such as specimens.[108] In placental mammals, a radical at Lascaux. Major artists such as Albrecht change happened, the conversion of the epipubic Dürer, George Stubbs and Edwin Landseer are into genital bacculum bones or complete loss; this known for their portraits of mammals. Many species allowed the torso to be able to expand and thus of mammals have been hunted for sport and for produce developed offspring. food; deer and wild boar are especially popular as game animals. Mammals such In male placentals, the penis is used both for as horses and dogs are widely raced for sport, often urination and copulation. Depending on the species, combined with betting on the outcome. There is a an erection may be fueled by blood flow into tension between the role of animals as companions vascular, spongy tissue or by muscular action. A to humans, and their existence as individuals penis may be contained in a sheath when not erect, with rights of their own. Mammals further play a and some placentals also have a penis bone wide variety of roles in literature, film, mythology, (baculum). Marsupials typically have forked penises and religion. while the monotreme penis generally has four heads with only two functioning. The testes of most Hybrids mammals descend into the scrotum which is typically posterior to the penis but is often anterior Hybrids are offspring resulting from the breeding of in marsupials. Female mammals generally have two genetically distinct individuals, which usually a clitoris, labia majora and labia minora on the will result in a high degree of heterozygosity, outside, while the internal system contains though hybrid and heterozygous are not paired oviducts, 1-2 uteri, 1-2 cervices and a vagina. synonymous. The deliberate or accidental Marsupials have two lateral vaginas and a medial hybridizing of two or more species of closely vagina. The "vagina" of monotremes is better related animals through captive breeding is a human understood as a "urogenital sinus". The uterine activity which has been in existence for millennia systems of placental mammals can vary between a and has grown for economic purposes. Hybrids duplex, were there are two uteri and cervices which between different subspecies within a species (such open into the vagina, a bipartite, were two uterine as between the Bengal tiger and Siberian tiger) are 2 Download Study Materials on www.examsdaily.in Follow us on FB for exam Updates: ExamsDaily Mammals Study Materials known as intra-specific hybrids. Hybrids between the same or adjacent areas will interbreed with each different species within the same genus (such as other. Some hybrids have been recognized as between lions and tigers) are known as interspecific species, such as the red wolf (though this is hybrids or crosses. Hybrids between different controversial) genera (such as between sheep and goats) are known as intergeneric hybrids. Natural hybrids will occur in hybrid zones, where two populations of species within the same genera or species living in Join Us on FB For English – Examsdaily For Tamil – Examsdaily Tamil For WhatsAPP Group - Click Here Telegram Channel Click Here 3 Download Study Materials on www.examsdaily.in Follow us on FB for exam Updates: ExamsDaily .
Recommended publications
  • Digital Reconstruction of the Inner Ear of Leptictidium Auderiense
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Published in "Paläontologische Zeitschrift 90(1): 153–171, 2016" which should be cited to refer to this work. Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility Irina Ruf1,2 • Virginie Volpato1,3 • Kenneth D. Rose4 • Guillaume Billet2,5 • Christian de Muizon5 • Thomas Lehmann1 Abstract Leptictida are basal Paleocene to Oligocene semicircular canals than the leptictids under study. Our eutherians from Europe and North America comprising estimations reveal that Leptictidium was a very agile ani- species with highly specialized postcranial features mal with agility score values (4.6 and 5.5, respectively) including elongated hind limbs. Among them, the Euro- comparable to Macroscelidea and extant bipedal saltatory pean Leptictidium was probably a bipedal runner or jum- placentals. Leptictis and Palaeictops have lower agility per. Because the semicircular canals of the inner ear are scores (3.4 to 4.1), which correspond to the more gener- involved in detecting angular acceleration of the head, their alized types of locomotion (e.g., terrestrial, cursorial) of morphometry can be used as a proxy to elucidate the agility most extant mammals. In contrast, the angular velocity in fossil mammals. Here we provide the first insight into magnitude predicted from semicircular canal angles sup- inner ear anatomy and morphometry of Leptictida based on ports a conflicting pattern of agility among leptictidans, but high-resolution computed tomography of a new specimen the significance of these differences might be challenged of Leptictidium auderiense from the middle Eocene Messel when more is known about intraspecific variation and the Pit (Germany) and specimens of the North American pattern of semicircular canal angles in non-primate Leptictis and Palaeictops.
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • A Dated Phylogeny of Marsupials Using a Molecular Supermatrix and Multiple Fossil Constraints
    Journal of Mammalogy, 89(1):175–189, 2008 A DATED PHYLOGENY OF MARSUPIALS USING A MOLECULAR SUPERMATRIX AND MULTIPLE FOSSIL CONSTRAINTS ROBIN M. D. BECK* School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Downloaded from https://academic.oup.com/jmammal/article/89/1/175/1020874 by guest on 25 September 2021 Phylogenetic relationships within marsupials were investigated based on a 20.1-kilobase molecular supermatrix comprising 7 nuclear and 15 mitochondrial genes analyzed using both maximum likelihood and Bayesian approaches and 3 different partitioning strategies. The study revealed that base composition bias in the 3rd codon positions of mitochondrial genes misled even the partitioned maximum-likelihood analyses, whereas Bayesian analyses were less affected. After correcting for base composition bias, monophyly of the currently recognized marsupial orders, of Australidelphia, and of a clade comprising Dasyuromorphia, Notoryctes,and Peramelemorphia, were supported strongly by both Bayesian posterior probabilities and maximum-likelihood bootstrap values. Monophyly of the Australasian marsupials, of Notoryctes þ Dasyuromorphia, and of Caenolestes þ Australidelphia were less well supported. Within Diprotodontia, Burramyidae þ Phalangeridae received relatively strong support. Divergence dates calculated using a Bayesian relaxed molecular clock and multiple age constraints suggested at least 3 independent dispersals of marsupials from North to South America during the Late Cretaceous or early Paleocene. Within the Australasian clade, the macropodine radiation, the divergence of phascogaline and dasyurine dasyurids, and the divergence of perameline and peroryctine peramelemorphians all coincided with periods of significant environmental change during the Miocene. An analysis of ‘‘unrepresented basal branch lengths’’ suggests that the fossil record is particularly poor for didelphids and most groups within the Australasian radiation.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • A Species-Level Phylogenetic Supertree of Marsupials
    J. Zool., Lond. (2004) 264, 11–31 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904005539 A species-level phylogenetic supertree of marsupials Marcel Cardillo1,2*, Olaf R. P. Bininda-Emonds3, Elizabeth Boakes1,2 and Andy Purvis1 1 Department of Biological Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, U.K. 2 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, U.K. 3 Lehrstuhl fur¨ Tierzucht, Technical University of Munich, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany (Accepted 26 January 2004) Abstract Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia: Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important differences in supertrees based on source phylogenies published before 1995 and those published more recently. The supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework for phylogenetically explicit comparative studies of marsupial evolution and ecology.
    [Show full text]
  • B.Sc. II YEAR CHORDATA
    B.Sc. II YEAR CHORDATA CHORDATA 16SCCZO3 Dr. R. JENNI & Dr. R. DHANAPAL DEPARTMENT OF ZOOLOGY M. R. GOVT. ARTS COLLEGE MANNARGUDI CONTENTS CHORDATA COURSE CODE: 16SCCZO3 Block and Unit title Block I (Primitive chordates) 1 Origin of chordates: Introduction and charterers of chordates. Classification of chordates up to order level. 2 Hemichordates: General characters and classification up to order level. Study of Balanoglossus and its affinities. 3 Urochordata: General characters and classification up to order level. Study of Herdmania and its affinities. 4 Cephalochordates: General characters and classification up to order level. Study of Branchiostoma (Amphioxus) and its affinities. 5 Cyclostomata (Agnatha) General characters and classification up to order level. Study of Petromyzon and its affinities. Block II (Lower chordates) 6 Fishes: General characters and classification up to order level. Types of scales and fins of fishes, Scoliodon as type study, migration and parental care in fishes. 7 Amphibians: General characters and classification up to order level, Rana tigrina as type study, parental care, neoteny and paedogenesis. 8 Reptilia: General characters and classification up to order level, extinct reptiles. Uromastix as type study. Identification of poisonous and non-poisonous snakes and biting mechanism of snakes. 9 Aves: General characters and classification up to order level. Study of Columba (Pigeon) and Characters of Archaeopteryx. Flight adaptations & bird migration. 10 Mammalia: General characters and classification up
    [Show full text]
  • Supplemental File 1: Addressing Claims of “Zombie” Lineages on Phillips’ (2016) Timetree
    Supplemental File 1: Addressing claims of “zombie” lineages on Phillips’ (2016) timetree The soft explosive model of placental mammal evolution Matthew J. Phillips*,1 and Carmelo Fruciano1 1School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Australia *Corresponding author: E-mail: [email protected] Contents Addressing claims of “zombie” lineages on Phillips’ (2016) timetree ................................................... 1 Incorrect or poorly supported fossil placements ................................................................................. 1 Figure S1 ............................................................................................................................................ 4 Table S1 .............................................................................................................................................. 6 References .............................................................................................................................................. 7 Addressing claims of “zombie lineages” on Phillips’ (2016) timetree Phillips [1] found extreme divergence underestimation among large, long-lived taxa that were not calibrated, and argued that calibrating these taxa instead shifted the impact of the underlying rate model misspecification to inflating dates deeper in the tree. To avoid this “error-shift inflation”, Phillips [1] first inferred divergences with dos Reis et al.’s [2] calibrations, most of which are set among taxa
    [Show full text]
  • Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology
    Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology by Paul David Polly B.A. (University of Texas at Austin) 1987 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Paleontology in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA at BERKELEY Committee in charge: Professor William A. Clemens, Chair Professor Kevin Padian Professor James L. Patton Professor F. Clark Howell 1993 Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology © 1993 by Paul David Polly To P. Reid Hamilton, in memory. iii TABLE OF CONTENTS Introduction ix Acknowledgments xi Chapter One--Revolution and Evolution in Taxonomy: Mammalian Classification Before and After Darwin 1 Introduction 2 The Beginning of Modern Taxonomy: Linnaeus and his Predecessors 5 Cuvier's Classification 10 Owen's Classification 18 Post-Darwinian Taxonomy: Revolution and Evolution in Classification 24 Kovalevskii's Classification 25 Huxley's Classification 28 Cope's Classification 33 Early 20th Century Taxonomy 42 Simpson and the Evolutionary Synthesis 46 A Box Model of Classification 48 The Content of Simpson's 1945 Classification 50 Conclusion 52 Acknowledgments 56 Bibliography 56 Figures 69 Chapter Two: Hyaenodontidae (Creodonta, Mammalia) from the Early Eocene Four Mile Fauna and Their Biostratigraphic Implications 78 Abstract 79 Introduction 79 Materials and Methods 80 iv Systematic Paleontology 80 The Four Mile Fauna and Wasatchian Biostratigraphic Zonation 84 Conclusion 86 Acknowledgments 86 Bibliography 86 Figures 87 Chapter Three: A New Genus Eurotherium (Creodonta, Mammalia) in Reference to Taxonomic Problems with Some Eocene Hyaenodontids from Eurasia (With B. Lange-Badré) 89 Résumé 90 Abstract 90 Version française abrégéé 90 Introduction 93 Acknowledgments 96 Bibliography 96 Table 3.1: Original and Current Usages of Genera and Species 99 Table 3.2: Species Currently Included in Genera Discussed in Text 101 Chapter Four: The skeleton of Gazinocyon vulpeculus n.
    [Show full text]
  • 0 Introduction
    Cambridge University Press 978-0-521-78117-6 - Evolution of Tertiary Mammals of North America, Volume 2: Small Mammals, Xenarthrans, and Marine Mammals Christine M. Janis, Gregg F. Gunnell and Mark D. Uhen Excerpt More information 0 Introduction christine m. janis,1 gregg f. gunnell2 and mark d. uhen3 1Brown University, Providence, RI, USA 2Museum of Paleontology, University of Michigan, Ann Arbor, MI, USA 3Smithsonian Institution, Washington, DC, USA AIMS OF VOLUME 2 the chapter are presented according to a standardized format, and the institutional abbreviations have also been standardized and are This enterprise was originally conceived of as a single volume. How- listed in an appendix (Appendix III). ever, after a span of 10 years from its original conception, the current senior editor (Christine Janis), and the then junior editors (Kathleen Scott and Louis Jacobs) realized that it would be more realistic THE STANDARDIZED LAYOUT OF EACH CHAPTER to proceed with chapters then in hand, which could more or less be assembled into the conceptually useful, if taxonomically para- The chapters are laid out in a similar fashion to those in Volume 1. phyletic, rubric of “Terrestrial Carnivores and Ungulates” (Janis, The contributors were requested to adhere to a common layout for Scott, and Jacobs, 1998). This in part reflected the chapters that had each chapter, in order to provide uniform information throughout been assembled to date, although it should be noted that some of the book. The “Introduction” for each chapter introduces the group. the chapters in this current volume, most notably those by Darryl The “Defining features” section lays out the basic cranial, dental, Domning on sirenians and desmostylians, were among the first ones and postcranial features of the taxon.
    [Show full text]
  • Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina
    Palaeontologia Electronica palaeo-electronica.org An exceptionally well-preserved skeleton of Thomashuxleya externa (Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina Juan D. Carrillo and Robert J. Asher ABSTRACT We describe one of the oldest notoungulate skeletons with associated cranioden- tal and postcranial elements: Thomashuxleya externa (Isotemnidae) from Cañadón Vaca in Patagonia, Argentina (Vacan subage of the Casamayoran SALMA, middle Eocene). We provide body mass estimates given by different elements of the skeleton, describe the bone histology, and study its phylogenetic position. We note differences in the scapulae, humerii, ulnae, and radii of the new specimen in comparison with other specimens previously referred to this taxon. We estimate a body mass of 84 ± 24.2 kg, showing that notoungulates had acquired a large body mass by the middle Eocene. Bone histology shows that the new specimen was skeletally mature. The new material supports the placement of Thomashuxleya as an early, divergent member of Toxodon- tia. Among placentals, our phylogenetic analysis of a combined DNA, collagen, and morphology matrix favor only a limited number of possible phylogenetic relationships, but cannot yet arbitrate between potential affinities with Afrotheria or Laurasiatheria. With no constraint, maximum parsimony supports Thomashuxleya and Carodnia with Afrotheria. With Notoungulata and Litopterna constrained as monophyletic (including Macrauchenia and Toxodon known for collagens), these clades are reconstructed on the stem
    [Show full text]
  • Chiroptera: Vespertilionidae)
    Zoologischer Anzeiger 258 (2015) 92–98 Contents lists available at ScienceDirect Zoologischer Anzeiger jou rnal homepage: www.elsevier.com/locate/jcz Penile histomorphology of the neotropical bat Eptesicus furinalis (Chiroptera: Vespertilionidae) a a b a,∗ Manuela T. Comelis , Larissa M. Bueno , Rejane M. Góes , Eliana Morielle-Versute a Department of Zoology and Botany, São Paulo State University, UNESP, Campus São José do Rio Preto, São Paulo 15054-000, Brazil b Department of Biology, São Paulo State University, UNESP, Campus São José do Rio Preto, São Paulo 15054-000, Brazil a r a t i b s c t l e i n f o r a c t Article history: External and internal penile morphologies have evolved rapidly and divergently in many mammalian Received 19 January 2015 orders and are extremely useful for taxonomic studies, particularly in the recovery of phylogenetic rela- Received in revised form 3 August 2015 tionships. Eptesicus furinalis, a Vespertilionid bat, belongs to a taxon in which species recognition can be Accepted 6 August 2015 difficult when only traditional features are employed. Therefore, any feature that may contribute to the Available online 11 August 2015 more accurate characterization of this taxon is relevant. In this study, we describe the histomorphology Corresponding Editor: Alexander Kupfer. of the penis and baculum of this species after analyzing serial transverse sections and three-dimensional (3D) reconstructions. The glans penis was small with no epidermal projections and had an inverted Keywords: Y-shaped baculum for most of its length. Internally, the penis contained three erectile tissues: corpus cav- Glans penis Baculum ernosum, accessory cavernous tissue, and corpus spongiosum around the urethra.
    [Show full text]
  • Chapter 32: Mammals Research
    Chapter 32 Organizer Mammals Refer to pages 4T-5T of the Teacher Guide for an explanation of the National Science Education Standards correlations. Teacher Classroom Resources Activities/FeaturesObjectivesSection MastersSection TransparenciesReproducible Reinforcement and Study Guide, pp. 141-142 L2 Section Focus Transparency 77 L1 ELL Section 32.1 1. Distinguish mammalian characteristics. MiniLab 32-1: Anatomy of a Tooth, p. 869 Section 32.1 2. Explain how the characteristics of mam- Problem-Solving Lab 32-1, p. 870 Concept Mapping, p. 32 L3 ELL Basic Concepts Transparency 58 L2 ELL Mammal mals enable them to adapt to most habi- MiniLab 32-2: Mammal Skeletons, p. 871 Mammal Critical Thinking/Problem Solving, p. 32 L3 Basic Concepts Transparency 59 L2 ELL Characteristics tats on Earth. Inside Story: A Mammal, p. 872 Characteristics BioLab and MiniLab Worksheets, pp. 143-144 L2 Reteaching Skills Transparency 47 L1P ELL National Science Education Careers in Biology: Animal Trainer, p. 873 Laboratory Manual, pp. 229-238P L2 P Standards UCP.1-5; A.1, A.2; Internet BioLab: Domestic Dogs Wanted, Content Mastery, pp. 157-158, 160 L1 P B.2; C.3, C.5, C.6 (1 session, p. 882 P Tech Prep Applications, pp. 41-42 L2 P P 1 block) Biology & Society: Do we need zoos? p. 884 P LS P LS P LS Reinforcement and Study Guide, pp. 143-144 L2 Section Focus Transparency 78 L1P ELL Section 32.2 LS Section 32.2 3. Distinguish among the three groups of Focus On Placental Mammals, p. 876 BioLab and MiniLab Worksheets,LS pp.
    [Show full text]