Interval Mathematics Foundations, Algebraic Structures, and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Interval Mathematics Foundations, Algebraic Structures, and Applications Interval Mathematics Foundations, Algebraic Structures, and Applications By Hend Dawood A Thesis Submitted to Department of Mathematics, Faculty of Science Cairo University In Partial Fulfillment of the Requirements For the Degree of Master of Science In Computer Science March 2012 c Copyright 2012 by Hend Dawood All Rights Reserved Approval Sheet for Submission Thesis Title: Interval Mathematics: Foundations, Algebraic Structures, and Applications. Name of Candidate: Hend Dawood Mohamed. This thesis has been approved for submission by the supervisors: 1. Assoc. Prof. Dr. Hassan A. M. Aly Signature: 2. Assoc. Prof. Dr. Hossam A. H. Fahmy Signature: Prof. Dr. Mohamed Zeidan Abdalla Signature: Chairman of Mathematics Department Faculty of Science, Cairo University. Addresses Hend Dawood (Author) Department of Mathematics Faculty of Science, Cairo University Giza, PO Box: 12613 Egypt. Hassan A. M. Aly (Principal Adviser) Associate Professor of Information Security and Cryptography Department of Mathematics Faculty of Science, Cairo University Giza, PO Box: 12613 Egypt Hossam A. H. Fahmy (Adviser) Associate Professor of Electronics and Communications Engineering Department of Electronics and Communications Engineering Faculty of Engineering, Cairo University Giza, PO Box: 12613 Egypt To my family. Abstract Student Name: Hend Dawood Mohamed. Thesis Title: Interval Mathematics: Foundations, Algebraic Structures, and Applications. Degree: Master of Science in Computer Science. We begin by constructing the algebra of classical intervals and prove that it is a nondistributive abelian semiring. Next, we formalize the notion of interval dependency, along with discussing the algebras of two alternate theories of intervals: modal intervals, and constraint intervals. With a view to treating some problems of the present interval theories, we present an alternate theory of intervals, namely the “theory of optimizational intervals”,and prove that it constitutes a rich -field algebra, which extends the ordinary field of the reals, then we construct an S optimizational complex interval algebra. Furthermore, we define an order on the set of interval numbers, then we present the proofs that it is a total order, compatible with the interval operations, dense, and weakly Archimedean. Finally, we prove that this order extends the usual order on the reals, Moore’s partial order, and Kulisch’s partial order on interval numbers. Keywords. Classical interval arithmetic; Machine interval arithmetic; Interval dependency; Constraint intervals; Modal intervals; Classical complex intervals; Optimizational intervals; Optimizational complex intervals; -field algebra; Ordering interval numbers. S Supervisors: 1. Assoc. Prof. Dr. Hassan A. M. Aly Signature: 2. Assoc. Prof. Dr. Hossam A. H. Fahmy Signature: Prof. Dr. Mohamed Zeidan Abdalla Signature: Chairman of Mathematics Department Faculty of Science, Cairo University. vii Publications from the Thesis During the course of the thesis work, we published the following book that provides a bit of perspective on some topics of this research. Some ideas and figures of the thesis have appeared previously in this book. Hend Dawood; Theories of Interval Arithmetic: Mathematical Foundations and Applications; LAP Lambert Academic Publishing; Saarbrücken; 2011; ISBN 978-3- 8465-0154-2. http://books.google.com/books?id=Q0jPygAACAAJ ix Acknowledgments I am deeply indebted to my teacher and supervisor Assoc. Prof. Dr. Hassan A. M. Aly, who showed a lot of interest in guiding this work, for his continual support and wise advice and for so many most fruitful discussions. My discussions with Dr. Hassan inspired me to think in a radically new way that permeated the present work. I owe great thanks to my supervisor Assoc. Prof. Dr. Hossam A. H. Fahmy for encouraging my early interests in interval arithmetic and for his fruitful discussions and valuable suggestions. Dr. Hossam spent a lot of his time introducing me to the concepts of the interval theory. It is a pleasure to acknowledge the substantial help which I have received from many emi- nent professors and dear friends in the Department of Mathematics, Faculty of Science, Cairo University, throughout the course of this thesis. Special thanks are due to Prof. Dr. Nefertiti Megahed and Prof. Dr. Mohamed A. Amer for giving me so much of their precious time and for their moral and scientific support throughout this work. I would like also to acknowledge Prof. Dr. Jürgen Wolff von Gudenberg, Lehrstuhl für Informatik II, Universität Würzburg, and Prof. Dr. G. William (Bill) Walster, Computer Sys- tems Research, Sun Microsystems Laboratories, for their constructive comments and valuable feedbacks from which I have benefited greatly. Finally, my greatest debt is to my family who has always been supportive and encouraging. Hend Dawood Cairo University, Cairo, March, 2012. [email protected] xi Notation and Conventions Most of our notation is standard, and notational conventions are characterized, in detail, on their first occurrence. However, we have many theories of intervals being discussed throughout the text, with each theory has naturally its own pe- culiar notation; along with some basic logical, set-theoretic, and order-theoretic symbols. So, for the purpose of legibility, we give here a consolidated list of symbols for the entire text. Logical Symbols = Identity (equality). Logical Negation (not). : Implication (if ..., then ...). ) Equivalence (if, and only if ). , Conjunction (and). ^ Inclusive disjunction (or). _ Universal quantifier (for all). 8 Existential quantifier (there exists). 9 Q , A quantifier variable symbol (with or without subscripts). 2 f8 9g A quantification matrix, (Q1x1) ... (Qnxn), where x1, ..., xn are vari- Q able symbols and each Qi is or . 8 9 n xk The universal quantification matrix, ( x1) ... ( xn). 8k=1 8 8 n xk The existential quantification matrix, ( x1) ... ( xn). 9k=1 9 9 ' A quantifier-free formula. A prenex sentence, ', where is a quantification matrix and ' Q Q is a quantifier-free formula. xiii NOTATION AND CONVENTIONS Set-Theoretic and Order-Theoretic Symbols ? The empty set. , , Set variable symbols (with or without subscripts). S T U } ( ) The powerset of a set . S S n The n-th Cartesian power of a set . Sh i S The set membership relation. 2 The set inclusion relation. The set intersection operator. \ The set union operator. [ n k The finitary set intersection 1 ... n. \k=1S S \ \S n k The finitary set union 1 ... n. [k=1S S [ [S A relation variable symbol (with or without subscripts). < dom ( ) The domain of a relation . < < ran ( ) The range of a relation . < < fld ( ) The field of a relation . < < The converse of a relation . < < Idb The identity relation on a set . S S -inf ( ) The infimum of a set relative to an ordering relation . < S S < -sup ( ) The supremum of a set relative to an ordering relation . < S S < g The lattice binary join operator. f The lattice binary meet operator. Interval-Theoretic Symbols R The set of real numbers. x, y, z Real variable symbols (with or without subscripts, and with or with- out lower or upper hyphens). xiv NOTATION AND CONVENTIONS a, b, c Real constant symbols (with or without subscripts, and with or with- out lower or upper hyphens). +, A binary algebraic operator. 2 f g , 1 A unary algebraic operator. 2 f g [R] The set of classical interval numbers. [R]p The set of point (singleton) classical interval numbers [x, x]. [R] The set of symmetric classical interval numbers [ x, x]. s [R]0 The set of zeroless classical interval numbers. X, Y, Ze Interval variable symbols (with or without subscripts). A, B, C Interval constant symbols (with or without subscripts). inf (X) The infimum of an interval number X. sup (X) The supremum of an interval number X. w (X) The width of an interval number X. r (X) The radius of an interval number X. m (X) The midpoint of an interval number X. X The absolute value of an interval number X. j j d (X, Y ) The distance (metric) between two interval numbers X and Y . M R The set of machine-representable real numbers. Mn The set of machine real numbers with n significant digits. [M] The set of machine interval numbers. Downward rounding operator. 5 Upward rounding operator. 4 Outward rounding operator. If (X1, ..., Xn) The image of the real closed intervals X1, ..., Xn under a real-valued function f. Y DX The interval variable Y is dependent on the interval variable X. Y X The interval variable Y is independent on the interval variable X. = xv NOTATION AND CONVENTIONS n (Xk) All the interval variables X1, ..., Xn are pairwise mutually independent. =k=1 The set of modal intervals. M The set of existential (proper) modal intervals. M9 The set of universal (improper) modal intervals. M8 mX, mY, mZ Modal interval variable symbols (with or without subscripts). mA, mB, mC Modal interval constant symbols (with or without subscripts). mode (mX) The mode of a modal interval mX. set (mX) The set of a modal interval mX. dual (mX) The dual of a modal interval mX. proper (mX) The proper of a modal interval mX. improper (mX) The improper of a modal interval mX. inf (mX) The infimum of a modal interval mX. sup (mX) The supremum of a modal interval mX. t [R] The set of constraint intervals. t [R]p The set of point constraint intervals. t [R]s The set of symmetric constraint intervals. t [R]0 The set of zeroless constraint intervals. o [Re] The set of optimizational interval numbers. o [R]p The set of point optimizational interval numbers. o [R]s The set of symmetric optimizational interval numbers. o [R]0 The set of zeroless optimizational interval numbers. Ce The set of ordinary complex numbers. i = p 1 The ordinary imaginary unit. x, y, z Complex variable symbols (with or without subscripts). a, b, c Complex constant symbols (with or without subscripts). [C] The set of classical complex intervals. [C]p The set of point classical complex intervals.
Recommended publications
  • Interval Notation and Linear Inequalities
    CHAPTER 1 Introductory Information and Review Section 1.7: Interval Notation and Linear Inequalities Linear Inequalities Linear Inequalities Rules for Solving Inequalities: 86 University of Houston Department of Mathematics SECTION 1.7 Interval Notation and Linear Inequalities Interval Notation: Example: Solution: MATH 1300 Fundamentals of Mathematics 87 CHAPTER 1 Introductory Information and Review Example: Solution: Example: 88 University of Houston Department of Mathematics SECTION 1.7 Interval Notation and Linear Inequalities Solution: Additional Example 1: Solution: MATH 1300 Fundamentals of Mathematics 89 CHAPTER 1 Introductory Information and Review Additional Example 2: Solution: 90 University of Houston Department of Mathematics SECTION 1.7 Interval Notation and Linear Inequalities Additional Example 3: Solution: Additional Example 4: Solution: MATH 1300 Fundamentals of Mathematics 91 CHAPTER 1 Introductory Information and Review Additional Example 5: Solution: Additional Example 6: Solution: 92 University of Houston Department of Mathematics SECTION 1.7 Interval Notation and Linear Inequalities Additional Example 7: Solution: MATH 1300 Fundamentals of Mathematics 93 Exercise Set 1.7: Interval Notation and Linear Inequalities For each of the following inequalities: Write each of the following inequalities in interval (a) Write the inequality algebraically. notation. (b) Graph the inequality on the real number line. (c) Write the inequality in interval notation. 23. 1. x is greater than 5. 2. x is less than 4. 24. 3. x is less than or equal to 3. 4. x is greater than or equal to 7. 25. 5. x is not equal to 2. 6. x is not equal to 5 . 26. 7. x is less than 1. 8.
    [Show full text]
  • Interval Computations: Introduction, Uses, and Resources
    Interval Computations: Introduction, Uses, and Resources R. B. Kearfott Department of Mathematics University of Southwestern Louisiana U.S.L. Box 4-1010, Lafayette, LA 70504-1010 USA email: [email protected] Abstract Interval analysis is a broad field in which rigorous mathematics is as- sociated with with scientific computing. A number of researchers world- wide have produced a voluminous literature on the subject. This article introduces interval arithmetic and its interaction with established math- ematical theory. The article provides pointers to traditional literature collections, as well as electronic resources. Some successful scientific and engineering applications are listed. 1 What is Interval Arithmetic, and Why is it Considered? Interval arithmetic is an arithmetic defined on sets of intervals, rather than sets of real numbers. A form of interval arithmetic perhaps first appeared in 1924 and 1931 in [8, 104], then later in [98]. Modern development of interval arithmetic began with R. E. Moore’s dissertation [64]. Since then, thousands of research articles and numerous books have appeared on the subject. Periodic conferences, as well as special meetings, are held on the subject. There is an increasing amount of software support for interval computations, and more resources concerning interval computations are becoming available through the Internet. In this paper, boldface will denote intervals, lower case will denote scalar quantities, and upper case will denote vectors and matrices. Brackets “[ ]” will delimit intervals while parentheses “( )” will delimit vectors and matrices.· Un- derscores will denote lower bounds of· intervals and overscores will denote upper bounds of intervals. Corresponding lower case letters will denote components of vectors.
    [Show full text]
  • [Math.NA] 10 Jan 2001 Plctoso H Dmoetmti Ler Odsrt O Discrete to Algebra [9]– Matrix Theory
    Idempotent Interval Analysis and Optimization Problems ∗ G. L. Litvinov ([email protected]) International Sophus Lie Centre A. N. Sobolevski˘ı([email protected]) M. V. Lomonosov Moscow State University Abstract. Many problems in optimization theory are strongly nonlinear in the traditional sense but possess a hidden linear structure over suitable idempotent semirings. After an overview of ‘Idempotent Mathematics’ with an emphasis on matrix theory, interval analysis over idempotent semirings is developed. The theory is applied to construction of exact interval solutions to the interval discrete sta- tionary Bellman equation. Solution of an interval system is typically NP -hard in the traditional interval linear algebra; in the idempotent case it is polynomial. A generalization to the case of positive semirings is outlined. Keywords: Idempotent Mathematics, Interval Analysis, idempotent semiring, dis- crete optimization, interval discrete Bellman equation MSC codes: 65G10, 16Y60, 06F05, 08A70, 65K10 Introduction Many problems in the optimization theory and other fields of mathe- matics are nonlinear in the traditional sense but appear to be linear over semirings with idempotent addition.1 This approach is developed systematically as Idempotent Analysis or Idempotent Mathematics (see, e.g., [1]–[8]). In this paper we present an idempotent version of Interval Analysis (its classical version is presented, e.g., in [9]–[12]) and discuss applications of the idempotent matrix algebra to discrete optimization theory. The idempotent interval analysis appears to be best suited for treat- ing problems with order-preserving transformations of input data. It gives exact interval solutions to optimization problems with interval un- arXiv:math/0101080v1 [math.NA] 10 Jan 2001 certainties without any conditions of smallness on uncertainty intervals.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Calculus Formulas and Theorems
    Formulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9.
    [Show full text]
  • Assignment 5
    Differential Topology Assignment 5 Exercise 1: Classification of smooth 1-manifolds Let M be a compact, smooth and connected 1−manifold with boundary. Show that M is either diffeomorphic to a circle or to a closed interval [a; b] ⊂ R. This then shows that every compact smooth 1−manifold is build up from connected components each diffeomorphic to a circle or a closed interval. To prove the result, show the following steps: 1. Consider a Morse function f : M ! R. Let B denote the set of boundary points of M, and C the set of critical points of f. Show that M n (B[C) consists of a finite number of connected 1−manifolds, which we will call L1;:::;LN ⊂ M. 2. Prove that fk = fjLk : Lk ! f(Lk) is a diffeomorphism from Lk to an open interval f(Lk) ⊂ R. 3. Let L ⊂ M be a subset of a smooth 1−dimensional manifold M. Show that if L is diffeomorphic to an open interval in R, then there are at most two points a, b 2 L such that a, b2 = L. Here, L is the closure of L. 4. Consider a sequence (Li1 ;:::;Lik ) 2 fL1;:::;LN g. Such a sequence is called a chain if for every j 2 f1; : : : ; k − 1g the closures Lij and Lij+1 have a common boundary point. Show that a chain of maximal length m contains all of the 1−manifolds L1;:::;LN defined above. 5. To finish the proof, we will need a technical lemma. Let g :[a; b] ! R be a smooth function with positive derivative on [a; b] n fcg for c 2 (a; b).
    [Show full text]
  • DISTANCE SETS in METRIC SPACES 2.2. a = I>1
    DISTANCE SETS IN METRIC SPACES BY L. M. KELLY AND E. A. NORDHAUS 1. Introduction. In 1920 Steinhaus [lOjO) observed that the distance set of a linear set of positive Lebesgue measure contains an interval with end point zero (an initial interval). Subsequently considerable attention was de- voted to this and related ideas by Sierpinski [9], Ruziewicz [8], and others. S. Piccard in 1940 gathered together many of these results and carried out an extensive investigation of her own concerning distance sets of euclidean subsets, particularly linear subsets, in a tract entitled Sur les ensembles de distances (des ensembles de points d'un espace euclidien) [7]. Two principal problems suggest themselves in such investigations. First, what can be said of the distance set of a given space, and secondly, what can be said of the possible realizations, in a specified class of distance spaces, of a given distance set (that is, of a set of non-negative numbers including zero). The writers mentioned above have been principally concerned with the first problem, although Miss Piccard devotes some space to the second. In [4] efforts were made to improve and extend some of her results concerning the latter problem. By way of completing a survey of the literature known to us, we observe that Besicovitch and Miller [l ] have examined the influence of positive Carathéodory linear measure on distance sets of subsets of E2, while Coxeter and Todd [2] have considered the possibility of realizing finite distance sets in spaces with indefinite metrics. Numerous papers of Erdös, for example [3], contain isolated but interesting pertinent results.
    [Show full text]
  • METRIC SPACES and SOME BASIC TOPOLOGY
    Chapter 3 METRIC SPACES and SOME BASIC TOPOLOGY Thus far, our focus has been on studying, reviewing, and/or developing an under- standing and ability to make use of properties of U U1. The next goal is to generalize our work to Un and, eventually, to study functions on Un. 3.1 Euclidean n-space The set Un is an extension of the concept of the Cartesian product of two sets that was studied in MAT108. For completeness, we include the following De¿nition 3.1.1 Let S and T be sets. The Cartesian product of S and T , denoted by S T,is p q : p + S F q + T . The Cartesian product of any ¿nite number of sets S1 S2 SN , denoted by S1 S2 SN ,is j b ck p1 p2 pN : 1 j j + M F 1 n j n N " p j + S j . The object p1 p2pN is called an N-tuple. Our primary interest is going to be the case where each set is the set of real numbers. 73 74 CHAPTER 3. METRIC SPACES AND SOME BASIC TOPOLOGY De¿nition 3.1.2 Real n-space,denotedUn, is the set all ordered n-tuples of real numbers i.e., n U x1 x2 xn : x1 x2 xn + U . Un U U U U Thus, _ ^] `, the Cartesian product of with itself n times. nofthem Remark 3.1.3 From MAT108, recall the de¿nition of an ordered pair: a b a a b . def This de¿nition leads to the more familiar statement that a b c d if and only if a bandc d.
    [Show full text]
  • Notes on Metric Spaces
    Notes on Metric Spaces These notes introduce the concept of a metric space, which will be an essential notion throughout this course and in others that follow. Some of this material is contained in optional sections of the book, but I will assume none of that and start from scratch. Still, you should check the corresponding sections in the book for a possibly different point of view on a few things. The main idea to have in mind is that a metric space is some kind of generalization of R in the sense that it is some kind of \space" which has a notion of \distance". Having such a \distance" function will allow us to phrase many concepts from real analysis|such as the notions of convergence and continuity|in a more general setting, which (somewhat) surprisingly makes many things actually easier to understand. Metric Spaces Definition 1. A metric on a set X is a function d : X × X ! R such that • d(x; y) ≥ 0 for all x; y 2 X; moreover, d(x; y) = 0 if and only if x = y, • d(x; y) = d(y; x) for all x; y 2 X, and • d(x; y) ≤ d(x; z) + d(z; y) for all x; y; z 2 X. A metric space is a set X together with a metric d on it, and we will use the notation (X; d) for a metric space. Often, if the metric d is clear from context, we will simply denote the metric space (X; d) by X itself.
    [Show full text]
  • Algebraic Division by Zero Implemented As Quasigeometric Multiplication by Infinity in Real and Complex Multispatial Hyperspaces
    Available online at www.worldscientificnews.com WSN 92(2) (2018) 171-197 EISSN 2392-2192 Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces Jakub Czajko Science/Mathematics Education Department, Southern University and A&M College, Baton Rouge, LA 70813, USA E-mail address: [email protected] ABSTRACT An unrestricted division by zero implemented as an algebraic multiplication by infinity is feasible within a multispatial hyperspace comprising several quasigeometric spaces. Keywords: Division by zero, infinity, multispatiality, multispatial uncertainty principle 1. INTRODUCTION Numbers used to be identified with their values. Yet complex numbers have two distinct single-number values: modulus/length and angle/phase, which can vary independently of each other. Since values are attributes of the algebraic entities called numbers, we need yet another way to define these entities and establish a basis that specifies their attributes. In an operational sense a number can be defined as the outcome of an algebraic operation. We must know the space where the numbers reside and the basis in which they are represented. Since division is inverse of multiplication, then reciprocal/contragradient basis can be used to represent inverse numbers for division [1]. Note that dual space, as conjugate space [2] is a space of functionals defined on elements of the primary space [3-5]. Although dual geometries are identical as sets, their geometrical structures are different [6] for duality can ( Received 18 December 2017; Accepted 03 January 2018; Date of Publication 04 January 2018 ) World Scientific News 92(2) (2018) 171-197 form anti-isomorphism or inverse isomorphism [7].
    [Show full text]