PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Magmatic water contents determined through clinopyroxene: 10.1002/2015GC005800 Examples from the Western Canary Islands, Spain Key Points: Franz A. Weis1,2, Henrik Skogby1, Valentin R. Troll2,3, Frances M. Deegan2,4, and Borje€ Dahren2 Hydrogen-associated structural defects are experimentally 1Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden, 2Department of Earth Sciences, rehydrated in degassed pyroxene Center of Experimental Mineralogy, Petrology and Geochemistry, Uppsala University, Uppsala, Sweden, 3Department of Rehydrated NAMs yield parental Physics (GEOVOL), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain, 4Department of magmatic H2O contents Rehydrating NAMs can become a Geological Science, Stockholm University, Stockholm, Sweden method for reconstructing magmatic H2O contents Abstract Water is a key parameter in magma genesis, magma evolution, and resulting eruption styles, Correspondence to: because it controls the density, the viscosity, as well as the melting and crystallization behavior of a melt. The F. A. Weis, parental water content of a magma is usually measured through melt inclusions in minerals such as olivine, a
[email protected] method which may be hampered, however, by the lack of melt inclusions suitable for analysis, or postentrap- ment changes in their water content. An alternative way to reconstruct the water content of a magma is to Citation: use nominally anhydrous minerals (NAMs), such as pyroxene, which take up low concentrations of hydrogen Weis, F. A., H. Skogby, V. R. Troll, F. M. Deegan, and B. Dahren (2015), as a function of the magma’s water content. During magma degassing and eruption, however, NAMs may Magmatic water contents determined dehydrate.