Aquatic and Wet Marchantiophyta, Pelliales

Total Page:16

File Type:pdf, Size:1020Kb

Aquatic and Wet Marchantiophyta, Pelliales Glime, J. M. 2021. Aquatic and Wet Marchantiophyta, Pelliales. Chapt. 1-16. In: Glime, J. M. Bryophyte Ecology. Volume 4. 1-16-1 Habitat and Role. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 24 May 2021 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 1-16 AQUATIC AND WET MARCHANTIOPHYTA, PELLIALES TABLE OF CONTENTS SUBCLASS PELLIIDAE ................................................................................................................................. 1-16-2 Pelliales: Pelliaceae.......................................................................................................................................... 1-16-2 Pellia.......................................................................................................................................................... 1-16-2 Pellia appalachiana ................................................................................................................................... 1-16-3 Pellia endiviifolia....................................................................................................................................... 1-16-5 Pellia epiphylla ........................................................................................................................................ 1-16-12 Pellia neesiana......................................................................................................................................... 1-16-25 Summary .........................................................................................................................................................1-16-33 Acknowledgments...........................................................................................................................................1-16-33 Literature Cited ...............................................................................................................................................1-16-33 1-16-2 Chapter 1-16: Aquatic and Wet Marchantiophyta, Pelliales CHAPTER 1-16 AQUATIC AND WET MARCHANTIOPHYTA, PELLIALES Figure 1. Pellia endiviifolia by stream. Photo by J. Claude, through Creative Commons. Nomenclature for this subchapter is based primarily on Söderström et al. (2016). In addition, Lars Söderström provided me with correct names for species that I could not link to the names on that list. TROPICOS also permitted me to link names by tracking the basionym. I have ignored varieties, forms, and subspecies unless I could verify a current name for them. These unverifiable taxa have been included in the species. SUBCLASS PELLIIDAE Pelliales: Pelliaceae Pellia (Figure 1Figure 3-Figure 4, Figure 19-Figure 20, Figure 49-Figure 52, Figure 96-Figure 103) Pellia sp. occurs at the base of the Flume wall and on ledges of the Flume at Franconia Notch, New Hampshire, USA (Figure 2) (Glime 1982), an environment that is always humid. In West Virginia, USA, mountain streams, Figure 2. Flume, Franconia Notch, New Hampshire, USA, a members of this genus preferred pH 6.6 (Stephenson et al. habitat where one can find Pellia on the ledges and the base of the 1995). cliffs. Photo by Janice Glime. Chapter 1-16: Aquatic and Wet Marchantiophyta, Pelliales 1-16-3 Pellia appalachiana (Figure 3-Figure 4) germinate. Such habitats are available in rockhouses (shallow cave-like opening at the base of a bluff or cliff; Distribution Figure 8). Zartman and Pittilo (1998) found it in spray cliff Pellia appalachiana (Figure 3-Figure 4) is endemic to communities of the Chattooga Basin in the southern Blue the southeastern USA (Alabama, Georgia, Kentucky, North Ridge. Carolina, South Carolina, Tennessee) (Southern Appalachian Bryophytes 2019). Figure 5. Pellia appalachiana on soil that is periodically inundated at edge of stream. Photo by Paul G. Davison, with Figure 3. Pellia appalachiana female with involucres. permission. Photo by Paul G. Davison, with permission. Figure 6. Pellia appalachiana habitat at edge of stream. Photo by Paul G. Davison, with permission. Figure 4. Pellia appalachiana forming a large rosette, suggesting it originated from a single spore. Arrows indicate female with involucres. Photo by Paul G. Davison, with permission. Aquatic and Wet Habitats The species of Pellia included here have similar habitats. Pellia appalachiana (Figure 3-Figure 4) is intolerant of desiccation, so its habitats are ones that are constantly moist (Southern Appalachian Bryophytes 2019). It thrives where the habitat has periodic disturbance, especially stream banks (Figure 5-Figure 7) that experience episodes of scouring or muddy-rocky shelves associated with waterfalls. When it grows on vertical walls, mats may Figure 7. Pellia appalachiana habitat on stream bank. slough off, providing a bare surface for spores to Photo by Paul G. Davison, with permission 1-16-4 Chapter 1-16: Aquatic and Wet Marchantiophyta, Pelliales Figure 10. Pellia appalachiana with young antheridial pustules. Photo by Paul Davison, with permission. Figure 8. Pellia appalachiana rock house habitat, Alabama. Photo by Paul G. Davison, with permission. Adaptations Pellia appalachiana (Figure 3-Figure 4) can grow with other bryophytes that are not too aggressive, most likely benefitting from greater moisture-holding ability. The ribbon-like structure also helps to minimize the effects of abrasion in their streamside habitat where inundation can bring mud and sand or small stones (Southern Appalachian Bryophytes 2019). Figure 11. Pellia appalachiana with maturing antheridia. Photo by Paul G. Davison, with permission. Figure 12. Pellia appalachiana female showing involucres (arrows). Photo by Paul G. Davison, with permission. Figure 9. Pellia appalachianus growing with Pellia epiphylla, Pallavicinia lyellii, Nardia lescurii, and Sphagnum sp. Photo by Paul Davison, with permission. Reproduction Pellia appalachiana (Figure 3-Figure 4) is dioicous (Southern Appalachian Bryophytes 2019). Its antheridia (Figure 10- Figure 11) are sunken in dorsal pustules that are scattered along the midrib area. The archegonia (Figure 12-Figure 18) are at the base of a lobed involucre. The reproductive organs are typically absent on the new spring growth, but can often be located on older thalli hidden by Figure 13. Pellia appalachiana female involucres (arrows). the new growth. Photo by Paul G. Davison, with permission. Chapter 1-16: Aquatic and Wet Marchantiophyta, Pelliales 1-16-5 Figure 14. Pellia appalachiana female involucres (arrows). Photo by Paul G. Davison, with permission. Figure 17. Pellia appalachiana lobed female involucre. Photo by Paul G. Davison, with permission. Figure 15. Pellia appalachiana female involucre with tip of archegonium protruding. Photo by Paul G. Davison, with permission. Figure 18. Comparison of the lobed involucre of Pellia appalachiana with the unlobed involucre of Pellia epiphylla. Photo modified from Paul G. Davison, with permission. Pellia endiviifolia (Figure 19-Figure 20) (syn. = Pellia calycina, Pellia endivifolia, Pellia fabroniana var. lorea) Distribution Pellia endiviifolia (Figure 19-Figure 20) is widely distributed in the Northern Hemisphere (Parzych et al. 2018). Dhien (1983) considers it to be circumboreal. It occurs through a large portion of Europe from Denmark and Belgium, southward to Italy, Spain, and Portugal, and further to North Africa (Schuster 1992). In Asia it is known from Japan, Siberia, Taiwan, China, and possibly India. Schuster disallows reports from North America, instead considering these to be Pellia epiphylla (Figure 49- Figure 16. Pellia appalachiana female involucre showing Figure 51), P. neesiana (Figure 96-Figure 103), and P. lobes. Photo by Paul G. Davison, with permission. megaspora (Figure 21). 1-16-6 Chapter 1-16: Aquatic and Wet Marchantiophyta, Pelliales Germany, it can be found in the Platyhypnidium (Figure 23)-Fontinalis antipyretica (Figure 24) association (Marstaller 1987). The streams are typically oligotrophic (Tremp 2003), as in the Alsatian Rhine valley (Vanderpoorten & Palm 1998; Vanderpoorten et al. 1999), in Belgian streams (Vanderpoorten & Tignon 2000), and in Iskur River and its main tributaries in Bulgaria (Papp et al. 2006). Figure 19. Pellia endiviifolia. Photo from Snappy Goat, through public domain. Figure 22. Fissidens grandifrons wet at stream edge where it might occur with Pellia endiviifolia. Photo by Scot Loring, through Creative Commons. Figure 20. Pellia endiviifolia with dark coloration that suggests exposure to bright light. Photo by Des Callaghan, with permission. Figure 23. Platyhypnidium riparioides in water, inhabiting the type of stream where one might find Pellia endiviifolia. Photo by Hermann Schachner, through Creative Commons. Figure 21. Pellia megaspora, one of the species Schuster accepted as occurring in North America. Photo by Jean Faubert, with permission. Aquatic and Wet Habitats Szoszkiewicz et al. (2006) listed Pellia endiviifolia (Figure 19-Figure 20) among the river species. It is among the most common bryophytes in the River Tweed, UK (Holmes & Whitton 1975). It is scattered in the River Swale, Yorkshire, UK (Holmes & Whitton 1977b). The species occurs on travertine in the Cratoneuron association of Lorraine River, Belgium (de Sloover & Goossens 1984) Figure 24. Fontinalis antipyretica, a species that may and in the Fissidens grandifrons (Figure 22) community in indicate habitat suitability for Pellia endiviifolia. Photo by Matt calcareous water (Gil & Ruiz 1985).
Recommended publications
  • Early Land Plants Today: Index of Liverworts & Hornworts 2015–2016
    Phytotaxa 350 (2): 101–134 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.350.2.1 Early Land Plants Today: Index of Liverworts & Hornworts 2015–2016 LARS SÖDERSTRÖM1, ANDERS HAGBORG2 & MATT VON KONRAT2 1 Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway; lars.soderstrom@ ntnu.no 2 Department of Research and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605–2496, U.S.A.; [email protected], [email protected] Abstract A widely accessible list of known plant species is a fundamental requirement for plant conservation and has vast uses. An index of published names of liverworts and hornworts between 2015 and 2016 is provided as part of a continued effort in working toward maintaining an updated world checklist of these groups. The list herein includes 64 higher taxon names, 225 specific names, 35 infraspecific names, two infrageneric autonyms and 21 infraspecific autonyms for 2015 and 2016, including also names of fossils and invalid and illegitimate names. Thirty-three older names omitted in the earlier indices are included. Key words: Liverworts, hornworts, index, nomenclature, fossils, new names Introduction Under the auspices of the Early Land Plants Today project, there has been a strong community-driven effort attempting to address the critical need to synthesize the vast nomenclatural, taxonomic and global distributional data for liverworts (Marchantiophyta) and hornworts (Anthocerotophyta) (von Konrat et al. 2010a). These endeavors, building on decades of previous efforts, were critical in providing the foundation to develop a working checklist of liverworts and hornworts worldwide published in 2016 (Söderström et al.
    [Show full text]
  • Phytotaxa, a Synthesis of Hornwort Diversity
    Phytotaxa 9: 150–166 (2010) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2010 • Magnolia Press ISSN 1179-3163 (online edition) A synthesis of hornwort diversity: Patterns, causes and future work JUAN CARLOS VILLARREAL1 , D. CHRISTINE CARGILL2 , ANDERS HAGBORG3 , LARS SÖDERSTRÖM4 & KAREN SUE RENZAGLIA5 1Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269; [email protected] 2Centre for Plant Biodiversity Research, Australian National Herbarium, Australian National Botanic Gardens, GPO Box 1777, Canberra. ACT 2601, Australia; [email protected] 3Department of Botany, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605-2496; [email protected] 4Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; [email protected] 5Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901; [email protected] Abstract Hornworts are the least species-rich bryophyte group, with around 200–250 species worldwide. Despite their low species numbers, hornworts represent a key group for understanding the evolution of plant form because the best–sampled current phylogenies place them as sister to the tracheophytes. Despite their low taxonomic diversity, the group has not been monographed worldwide. There are few well-documented hornwort floras for temperate or tropical areas. Moreover, no species level phylogenies or population studies are available for hornworts. Here we aim at filling some important gaps in hornwort biology and biodiversity. We provide estimates of hornwort species richness worldwide, identifying centers of diversity. We also present two examples of the impact of recent work in elucidating the composition and circumscription of the genera Megaceros and Nothoceros.
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Anthocerotophyta
    Glime, J. M. 2017. Anthocerotophyta. Chapt. 2-8. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-8-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 5 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-8 ANTHOCEROTOPHYTA TABLE OF CONTENTS Anthocerotophyta ......................................................................................................................................... 2-8-2 Summary .................................................................................................................................................... 2-8-10 Acknowledgments ...................................................................................................................................... 2-8-10 Literature Cited .......................................................................................................................................... 2-8-10 2-8-2 Chapter 2-8: Anthocerotophyta CHAPTER 2-8 ANTHOCEROTOPHYTA Figure 1. Notothylas orbicularis thallus with involucres. Photo by Michael Lüth, with permission. Anthocerotophyta These plants, once placed among the bryophytes in the families. The second class is Leiosporocerotopsida, a Anthocerotae, now generally placed in the phylum class with one order, one family, and one genus. The genus Anthocerotophyta (hornworts, Figure 1), seem more Leiosporoceros differs from members of the class distantly related, and genetic evidence may even present
    [Show full text]
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • The Supramolecular Organization of Self-Assembling Chlorosomal Bacteriochlorophyll C, D,Ore Mimics
    The supramolecular organization of self-assembling chlorosomal bacteriochlorophyll c, d,ore mimics Tobias Jochum*†, Chilla Malla Reddy†‡, Andreas Eichho¨ fer‡, Gernot Buth*, Je¸drzej Szmytkowski§¶, Heinz Kalt§¶, David Moss*, and Teodor Silviu Balaban‡¶ʈ *Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany; ‡Institute for Nanotechnology, Karlsruhe Institute of Technology, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany; §Institute of Applied Physics, Karlsruhe Institute of Technology, Universita¨t Karlsruhe (TH), D-76131 Karslruhe, Germany; and ¶Center for Functional Nanostructures, Universita¨t Karlsruhe (TH), D-76131 Karslruhe, Germany Edited by James R. Norris, University of Chicago, Chicago, IL, and accepted by the Editorial Board July 18, 2008 (received for review March 22, 2008) Bacteriochlorophylls (BChls) c, d, and e are the main light-harvesting direct structural evidence from x-ray single crystal structures, the pigments of green photosynthetic bacteria that self-assemble into exact nature of BChl superstructures remain elusive and these nanostructures within the chlorosomes forming the most efficient have been controversially discussed in the literature (1–3, 7, antennas of photosynthetic organisms. All previous models of the 11–17). It is now generally accepted that the main feature of chlorosomal antennae, which are quite controversially discussed chlorosomes is the self-assembly of BChls and that these pig- because no single crystals could be grown so far from these or- ments are not bound by a rigid protein matrix as is the case of ganelles, involve a strong hydrogen-bonding interaction between the other, well characterized light-harvesting systems (1). Small- 31 hydroxyl group and the 131 carbonyl group.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Cycad Forensics: Tracing the Origin of Poached Cycads Using Stable Isotopes, Trace Element Concentrations and Radiocarbon Dating Techniques
    Cycad forensics: Tracing the origin of poached cycads using stable isotopes, trace element concentrations and radiocarbon dating techniques by Kirsten Retief Supervisors: Dr Adam West (UCT) and Ms Michele Pfab (SANBI) Submitted in partial fulfillment of the requirements for the degree of Masters of Science in Conservation Biology 5 June 2013 Percy FitzPatrick Institution of African Ornithology, UniversityDepartment of Biologicalof Cape Sciences Town University of Cape Town, Rondebosch Cape Town South Africa 7701 i The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Table of Contents Acknowledgements iii Plagiarism declaration iv Abstract v Chapter 1: Status of cycads and background to developing a forensic technique 1 1. Why are cycads threatened? 2 2. Importance of cycads 4 3. Current conservation strategies 5 4. Stable isotopes in forensic science 7 5. Trace element concentrations 15 6. Principles for using isotopes as a tracer 15 7. Radiocarbon dating 16 8. Cycad life history, anatomy and age of tissues 18 9. Recapitulation 22 Chapter 2: Applying stable isotope and radiocarbon dating techniques to cycads 23 1. Introduction 24 2. Methods 26 2.1 Sampling selection and sites 26 2.2 Sampling techniques 30 2.3 Processing samples 35 2.4 Cellulose extraction 37 2.5 Oxygen and sulphur stable isotopes 37 2.6 CarbonUniversity and nitrogen stable of isotopes Cape Town 38 2.7 Strontium, lead and elemental concentration analysis 39 2.8 Radiocarbon dating 41 2.9 Data analysis 42 3.
    [Show full text]
  • Aquatic and Wet Marchantiophyta, Order Metzgeriales: Aneuraceae
    Glime, J. M. 2021. Aquatic and Wet Marchantiophyta, Order Metzgeriales: Aneuraceae. Chapt. 1-11. In: Glime, J. M. Bryophyte 1-11-1 Ecology. Volume 4. Habitat and Role. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 11 April 2021 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 1-11: AQUATIC AND WET MARCHANTIOPHYTA, ORDER METZGERIALES: ANEURACEAE TABLE OF CONTENTS SUBCLASS METZGERIIDAE ........................................................................................................................................... 1-11-2 Order Metzgeriales............................................................................................................................................................... 1-11-2 Aneuraceae ................................................................................................................................................................... 1-11-2 Aneura .......................................................................................................................................................................... 1-11-2 Aneura maxima ............................................................................................................................................................ 1-11-2 Aneura mirabilis .......................................................................................................................................................... 1-11-7 Aneura pinguis ..........................................................................................................................................................
    [Show full text]
  • Environmental Assessment in Compliance with the National Environmental Policy Act (NEPA) and Other Relevant Federal and State Laws and Regulations
    United States Department of Environmental Agriculture Forest Assessment Service June 2007 Buck Bald Ocoee/Hiwassee and Tellico Ranger Districts, Cherokee National Forest Polk and Monroe Counties, Tennessee For Information Contact: Janan Hay 250 Ranger Station Road Tellico Plains, TN 37385 423-253-8405 southernregion.fs.fed.us/cherokee The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. Table of Contents Introduction ..................................................................................................................... 1 Document Structure .................................................................................................................... 1 Background ................................................................................................................................. 1 Purpose and Need
    [Show full text]
  • Functional Gene Losses Occur with Minimal Size Reduction in the Plastid Genome of the Parasitic Liverwort Aneura Mirabilis
    Functional Gene Losses Occur with Minimal Size Reduction in the Plastid Genome of the Parasitic Liverwort Aneura mirabilis Norman J. Wickett,* Yan Zhang, S. Kellon Hansen,à Jessie M. Roper,à Jennifer V. Kuehl,§ Sheila A. Plock, Paul G. Wolf,k Claude W. dePamphilis, Jeffrey L. Boore,§ and Bernard Goffinetà *Department of Ecology and Evolutionary Biology, University of Connecticut; Department of Biology, Penn State University; àGenome Project Solutions, Hercules, California; §Department of Energy Joint Genome Institute and University of California Lawrence Berkeley National Laboratory, Walnut Creek, California; and kDepartment of Biology, Utah State University Aneura mirabilis is a parasitic liverwort that exploits an existing mycorrhizal association between a basidiomycete and a host tree. This unusual liverwort is the only known parasitic seedless land plant with a completely nonphotosynthetic life history. The complete plastid genome of A. mirabilis was sequenced to examine the effect of its nonphotosynthetic life history on plastid genome content. Using a partial genomic fosmid library approach, the genome was sequenced and shown to be 108,007 bp with a structure typical of green plant plastids. Comparisons were made with the plastid genome of Marchantia polymorpha, the only other liverwort plastid sequence available. All ndh genes are either absent or pseudogenes. Five of 15 psb genes are pseudogenes, as are 2 of 6 psa genes and 2 of 6 pet genes. Pseudogenes of cysA, cysT, ccsA, and ycf3 were also detected. The remaining complement of genes present in M. polymorpha is present in the plastid of A. mirabilis with intact open reading frames. All pseudogenes and gene losses co-occur with losses detected in the plastid of the parasitic angiosperm Epifagus virginiana, though the latter has functional gene losses not found in A.
    [Show full text]