LANEF-Dossier Scientifique

Total Page:16

File Type:pdf, Size:1020Kb

LANEF-Dossier Scientifique 200nm ICT Energies Health LABEX Décembre Appel à projet 2010 Investissements d’Avenir Appel à projet Investissements d’Avenir LABEX DécembreDé b 2010 200nm ICT Energies Health APPEL A PROJETS LABEX/ LANEF CALL FOR PROPOSALS 2010 DOCUMENT SCIENTIFIQUE B / SCIENTIFIC SUBMISSION FORM B Acronym of the LANEF project Titre du projet en Laboratoire d'Alliances Nanosciences et Energies du Futur français Project title in English Laboratory of Alliances on Nanosciences and Energy for the Future Nom / Name : Joel CIBERT Coordinator of the Etablissement / Institution : CNRS project Laboratoire / Laboratory : Institut Néel Numéro d’unité/Unit number : UPR2940 13 324 000 € Requested funding 3 Santé, bien-être, alimentation et biotechnologies / Health, well- being, nutrition and biotechnologies 2 Urgence environnementale et écotechnologies / Environemental urgency, ecotechnologies Disciplinary field 1 Information, communication et nanotechnologies / Information, communication and nantechnologies □ Sciences humaines et sociales / Social sciences □ Autre champ disciplinaire / Other disciplinary scope Physics, materials science, nanosciences, electrical engineering, electrical energy, nanosensors for health. scientific areas Participation in an « Initiatives X oui □ non d’excellence » project Organisation of the coordinating partner Laboratoire(s)/Etablissement(s) Numéro(s) d’unité/ Tutelle(s) /Research Laboratory/Institution(s) Unit number Organisation reference PRES NA NA Organization of the partner(s) Laboratoire(s)/Etablissement(s) Numéro(s) d’unité/ Tutelle(s)/Research Laboratory/Institution(s) Unit number Organisation reference NEEL UPR 2940 CNRS / UJF / Grenoble-INP INAC To be started in January 2011 CEA / UJF G2Elab UMR 5269 CNRS/Grenoble-INP/UJF LNCMI UPR 3228 CNRS / UJF LPMMC UMR 5493 UJF/CNRS 1/106 APPEL A PROJETS LABEX/ LANEF CALL FOR PROPOSALS 2010 DOCUMENT SCIENTIFIQUE B / SCIENTIFIC SUBMISSION FORM B 1. SUMMARY ............................................................................................. 3 2. APPLICATION TO THE ACTIONS OF THE PROGRAMME « INVESTISSEMENTS D’AVENIR » ........................................................................................... 6 3. MANAGEMENT OF THE PARTNERSHIP .............................................................. 7 3.1. Composition of the partnership ............................................................. 7 3.2. Relevant experience of the project coordinator .................................... 7 4. DESCRIPTION OF THE EXISTING ................................................................... 8 4.1. Présentation of partners ....................................................................... 8 4.1.1 Partner 1 : PRES Université de Grenoble 10 4.1.1.1 Research and innovation 10 4.1.1.2 Exploitation of results 11 4.1.1.3 Higher education 12 4.1.1.4 Organisation 12 4.1.2 Partner 2 : Institut Néel (NEEL) 12 4.1.2.1 Research and innovation 12 4.1.2.2 Exploitation of results 13 4.1.2.3 Higher education 14 4.1.2.4 Organisation 14 4.1.3 Partner 3 : Institut Nanosciences et Cryogénie (INAC) 14 4.1.3.1 Research and innovation 14 4.1.3.2 Exploitation of results 15 4.1.3.3 Higher education 16 4.1.3.4 Organisation 16 4.1.4 Partner 4 : Grenoble Electrical Engineering Lab (G2ELab) 16 4.1.4.1 Research and innovation 17 4.1.4.2 Exploitation of results 17 4.1.4.3 Higher education 18 4.1.4.4 Organisation 18 4.1.5 Partner 5 : Laboratoire National des Champs Magnétiques Intenses (LNCMI) 19 4.1.5.1 Research and innovation 19 4.1.5.2 Exploitation of results 20 4.1.5.3 Higher education 20 4.1.5.4 Organisation 20 4.1.6 Partner 6 : Laboratoire de Physique et de Modélisation des Milieux Condensés (LPMMC) 20 4.1.6.1 Research and innovation 20 4.1.6.2 Exploitation of results 21 4.1.6.3 Higher education 21 4.1.6.4 Organisation 21 4.2. Existing collaborations ........................................................................ 22 5. TECHNICAL AND SCIENTIFIC DESCRIPTION OF THE PROJECT ................................. 24 5.1. State of the art ................................................................................... 24 5.2. Objectives of the project compared to the state of the art and in relation to the SNRI ......................................................................................... 30 5.2.1 Scientific programme 30 5.2.2 Exploitation of results, transfer and expertise 38 5.2.3 Higher education, Integration into the workplace 41 5.2.4 Governance 44 5.2.5 Attraction 46 5.3. Strategy of the supervising institution ................................................ 47 5.4. Connections to the socio-economic world ........................................... 50 5.5. Pull effect ........................................................................................... 52 2/106 APPEL A PROJETS LABEX/ LANEF CALL FOR PROPOSALS 2010 DOCUMENT SCIENTIFIQUE B / SCIENTIFIC SUBMISSION FORM B 6. FINANCIAL AND SCIENTIFIC JUSTIFICATION FOR THE MOBILISATION OF THE RESOURCES ......................................................................................... 54 6.1. Justification des moyens demandés (sur 10 ans) / Justification for the mobilisation of the resources ..................................... Erreur ! Signet non défini. 6.1.1 Research project Erreur ! Signet non défini. 6.1.2 Projet pédagogique/ Educational project Erreur ! Signet non défini. 6.1.3 Valorisation/ Exploitation of results Erreur ! Signet non défini. 6.1.4 Gouvernance/ governance Erreur ! Signet non défini. 6.2. Autres ressources / others resources ................. Erreur ! Signet non défini. 7. ANNEXES / APPENDICES .......................................................................... 54 7.1. Références bibliographiques de l’etat de l’art/State of the art references ........................................................................................................ 54 7.2. Références bibliographiques des partenaires/Partners’ references .... 58 7.3. Estimate ............................................................................................. 62 7.4. Appendices ......................................................................................... 63 7.4.1 contributors 63 7.4.2 List of acronyms 64 7.4.3 Scanned documents 65 1. SUMMARY Goals & Challenges: LANEF addresses three major research, technological, economical and societal challenges: ICT, energy & electricity, and health & wellness. Fundamental, groundbreaking R&D is the wellspring of innovation and a major challenge is to build a unique environment where basic multidisciplinary research (with an emphasis on physics and electrical engineering) will be integrated in a larger campus for research & innovation, that is the Grenoble GIANT1 project [ref GIANT]. Interdisciplinary research appears more and more at the heart of innovation, and a close link between fundamental and applied research is mandatory to sustain innovation on the long run. The mission of LANEF is to be the reservoir and provider of basic research in nanosciences and materials research to the integrative network of Grenoble, within the frame of the new national strategy: SNRI, NanoINNOV, the Grenoble IRT "Nano-microelectronics", and, the Grenoble IEED "INEDI". Thanks to their exceptional international position and visibility acquired over the long term, the teams of the LANEF will facilitate access to forefront research in Grenoble for hundreds of students, R&D engineers, SMEs and start-up companies. Grenoble is the place to develop such an integrative network since it hosts major basic research laboratories, which will be partners of LANEF, a unique combination of large instrument facilities (ESRF and ILL), technological research centres and industry. When combined, Grenoble’s Minatec and GIANT reach the critical mass needed to ensure national and international visibility. This provides a favourable environment for research and innovation. The concomitant high level connections between LANEF teams and both the international community and local industrial partners, including technological facilities, produces a fruitful environment for the mixing of ideas. This will benefit the production of scientific knowledge and the societal impact of the research through intellectual property and transfer of know-how to industry. Strategy of the institutions The objectives of LANEF directly address the objectives of the Université de Grenoble (with UJF and Grenoble-INP at the forefront), and of the CNRS and CEA. 1 Acronyms are defined in the appendices. 3/106 APPEL A PROJETS LABEX/ LANEF CALL FOR PROPOSALS 2010 DOCUMENT SCIENTIFIQUE B / SCIENTIFIC SUBMISSION FORM B All have placed ICT, energy, health, as well as innovation and transfer, advancement of knowledge and education, at the heart of their strategy. Research project: The project identifies nine major research fields, required for Grenoble innovation, where LANEF provides a critical mass and fore-front expertise to produce significant breakthroughs: • Photonics and semiconductors (quantum optics, production and conversion of light, silicon photonics), • Spintronics and nanomagnetism (Electric field control of magnetism, synthesis and advanced magnetic microscopy for spintronics), • Quantum nanoelectronics (growth, fabrication and scanning probe microscopy of nanostructures , coherent spintronics, hybrid nanostructures), • Electrical energy (Magnetism for sustainable energy, Exotic materials for novel Energy Systems and Power-MEMS, From hydrogen to electricity, Green power electronics), • Advanced superconductivity (Innovative
Recommended publications
  • Light-Matter Interaction and Optical Spectroscopy from Infrared to X-Rays
    24th ETSF Workshop on Electronic Excitations Light-Matter Interaction and Optical Spectroscopy from Infrared to X-Rays Jena, Germany 16 – 20 September 2019 Welcome The workshop series of the European Theoretical Spectroscopy Facility (ETSF) provides a fo- rum for excited states and spectroscopy in condensed-matter physics, chemistry, nanoscience, materials science, and molecular physics attracting theoreticians, code developers, and experi- mentalists alike. Light-matter interaction will be at core of the 2019 edition of the ETSF workshop. Cutting-edge spectroscopy experiments allow to probe electrons, plasmons, excitons, and phonons across different energy and time scales with unprecedented accuracy. A deep physical understanding of the underlying quantum many-body effects is of paramount importance to analyze exper- imental observations and render theoretical simulations predictive. The workshop aims at discussing the most recent advances in the theoretical description of the interaction between light and matter focusing on first-principles methods. This broad subject will be covered in its diverse declinations, from core-level spectroscopy to collective low-energy excitations, dis- cussing also matter under extreme conditions, and systems driven out of equilibrium by strong laser pulses. Exchange between theorists and experimentalists is fostered to open new horizons towards the next generation of novel spectroscopy techniques. The workshop will also face the challenges posed by the formidable complexity of heterogeneous and nanostructured systems such as those of interest for light harvesting and energy generation, prompting to bridge the gap be- tween experimental and in silico spectroscopy. Workshop topics include: Linear and nonlinear optical spectroscopy • Core-level spectroscopies • Ultrafast excitation dynamics • Electron-phonon coupling • Light harvesting in natural and synthetic systems • We are glad to welcome you in Jena, the city of light, and wish you an inspiring workshop with lots of interesting science and fruitful discussions.
    [Show full text]
  • D7.2 Second Report on the Activity of the High-Level Support Services (Second Year)
    Ref. Ares(2020)7219471 - 30/11/2020 HORIZON2020 European Centre of Excellence ​ ​ Deliverable D7.2 Second report on the activity of the High-Level Support services (second year) D7.2 Second report on the activity of the High-Level Support services (second year) Mariella Ippolito, Francisco Ramirez, Giovanni Pizzi, and Elsa Passaro ​ ​ Due date of deliverable: 30/11/2020 Actual submission date: 30/11/2020 Final version: 30/11/2020 Lead beneficiary: CINECA (participant number 8) Dissemination level: PU - Public www.max-centre.eu 1 HORIZON2020 European Centre of Excellence ​ ​ Deliverable D7.2 Second report on the activity of the High-Level Support services (second year) Document information Project acronym: MaX Project full title: Materials Design at the Exascale Research Action Project type: European Centre of Excellence in materials modelling, simulations and design EC Grant agreement no.: 824143 Project starting / end date: 01/12/2018 (month 1) / 30/11/2021 (month 36) Website: www.max-centre.eu Deliverable No.: D7.2 Authors: M. Ippolito, F. Ramirez, G. Pizzi, and E. Passaro To be cited as: M. Ippolito et al., (2020): Second report on the activity of the High-Level Support services (second year). Deliverable D7.2 of the H2020 project MaX (final version as of 30/11/2020). EC grant agreement no: 824143, CINECA, Bologna, Italy. Disclaimer: This document’s contents are not intended to replace consultation of any applicable legal sources or the necessary advice of a legal expert, where appropriate. All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose.
    [Show full text]
  • Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids
    Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Tancogne-Dejean, Nicolas et al. “Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids.” Physical Review Letters 118.8 (2017): n. pag. © 2017 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevLett.118.087403 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/107908 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. week ending PRL 118, 087403 (2017) PHYSICAL REVIEW LETTERS 24 FEBRUARY 2017 Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids † Nicolas Tancogne-Dejean,1,2,* Oliver D. Mücke,3,4 Franz X. Kärtner,3,4,5,6 and Angel Rubio1,2,3,5, 1Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany 2European Theoretical Spectroscopy Facility (ETSF), Luruper Chaussee 149, 22761 Hamburg, Germany 3Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany 4The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany 5Physics Department, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany 6Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA (Received 29 September 2016; published 24 February 2017) An accurate analytic model describing the microscopic mechanism of high-harmonic generation (HHG) in solids is derived.
    [Show full text]
  • Grenoble Isere, France the Smart Move! March 11 Th , 2010
    Grenoble Isere, France the smart move! March 11 th , 2010 grenoble - isere - france A powerful industrial region in the heart of Europe Gen ève Rhône -Alpes Lyon Grenoble Is ère With a sizable market and labor pool • Rhône-Alpes 1/10 of France’s population & 2 nd economic region in term of GDP • Isere 1,203,050 inhabitants • Grenoble area 700,000 inhabitants 2 grenoble-isere-france le logo de l’AEPI est indissociable de cette présentation - aucune modification ne peut être apportée à ce document sans l’accord préalable de l’AEPI with public policy makers and industrial players addressing together today’s society’s challenges Be more energy efficient Communicate Stay healthy 3 grenoble-isere-france le logo de l’AEPI est indissociable de cette présentation - aucune modification ne peut être apportée à ce document sans l’accord préalable de l’AEPI Actualisation 2008 Born in Grenoble … Hydroelectricity (19th century ) 1st French scanner (1972) Airbag sensors (1985) 1st video decoder and LCD displays (1993) Smallest worldwide transistor (1999) Arva system (2005) Biochip for avian flu detection (2006) 4 grenoble-isere-france le logo de l’AEPI est indissociable de cette présentation - aucune modification ne peut être apportée à ce document sans l’accord préalable de l’AEPI Actualisation 2008 Born in Grenoble … • Grenoble number one for cooperation between public & private research in France • 79 projects financed by OSEO in 2008, representing an input of +20 million € • €13,7 million raised Dec 2008 Success stories • Acquisition of US Californian company and • new US Texas based production facility in 2008 • Movea (motion sensors), a spin off from LETI, acquires US company Gyration in 2008 • And others….
    [Show full text]
  • Programming Models for Quantum Many-Body Methods on Multicore and Manycore Processors
    Programming models for quantum many-body methods on multicore and manycore processors Jeff Hammond1 and Eugene DePrince2 1 Argonne 2 Georgia Tech 6 February 2011 Jeff Hammond Electronic Structure Calculation Methods on Accelerators Abstract The growing diversity in computer processor architectures poses a serious challenge to the computational chemistry community. This talk considers some of the key issues, including disjoint address spaces, non-standard architectures and execution models, and the different APIs required to use them. Specifically, we will describe our experiences in developing coupled-cluster methods for Intel multicore, Intel MIC, NVIDIA Fermi and Blue Gene/Q in both a clean-sheet implementation and NWChem. Of fundamental interest is the development of codes that scale not only within the node but across thousands of nodes; hence, the interaction between the processor and the network will be analyzed in detail. Jeff Hammond Electronic Structure Calculation Methods on Accelerators Software Automation Jeff Hammond Electronic Structure Calculation Methods on Accelerators The practical TCE { NWChem many-body codes What does it do? 1 GUI input quantum many-body theory e.g. CCSD. 2 Operator specification of theory. 3 Apply Wick's theory to transform operator expressions into array expressions. 4 Transform input array expression to operation tree using many types of optimization. 5 Produce Fortran+Global Arrays+NXTVAL implementation. Developer can intercept at various stages to modify theory, algorithm or implementation. Jeff Hammond Electronic Structure Calculation Methods on Accelerators The practical TCE { Success stories First parallel implementation of many (most) CC methods. First truly generic CC code (not string-based): fRHF,ROHF,UHF}×CCfSD,SDT,SDTQ}×{T /Λ,EOM,LR/QRg Most of the largest calculations of their kind employ TCE: CR-EOMCCSD(T), CCSD-LR α, CCSD-QR β, CCSDT-LR α Reduces implementation time for new methods from years to hours, TCE codes are easy to verify.
    [Show full text]
  • Propriétés Structurales, Opto-Électroniques, Élastiques Et Dynamiques Des Semi-Conducteurs Type II-VI
    REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE FERHAT ABBAS – SETIF THESE Présentée à la faculté des Sciences Département de Physique Pour l’obtention du diplôme de DOCTORAT EN SCIENCES Option : physique du solide Par Mr. Benamrani Ammar Thème Propriétés structurales, opto-électroniques, élastiques et dynamiques des Semi-conducteurs type II-VI Soutenue le : 02/06/2012 Devant la commission d’examen : Dr. L. Louail Prof. U. F. A. SETIF Président Dr. K. Kassali Prof. U. F. A. SETIF Rapporteur Dr. Kh. Bouamama Prof. U. F. A. SETIF Co-Encadreur Dr. B. Bennecer Prof. U. Guelma Examinateur Dr. A. El Akrmi Prof. U. Annaba Examinateur Dr. H. Belkhir Prof. U. Annaba Examinateur À la mémoire de mon père, À ma mère, qui m’a enseigné le sens de la patience et de l’espoir, À ma femme, À toute ma famille À toute personne qui explore honnêtement les secrets de ce monde vaste, Je dédie ce modeste travail Remerciements REMERCIEMENTS Ce travail a été réalisé au laboratoire d’optoélectronique et des composants à l’université Ferhat Abbes à Sétif. Je tiens à remercier profondément Pr. Kamel Kassali, mon directeur de thèse pour m’avoir proposé ce thème intéressant et pour sa patience durant toutes les années de préparation de la thèse ainsi que ses conseils précieux et ses réponses à toutes mes questions reliées à mon sujet de thèse. J’exprime également toute ma reconnaissance à Mr. Kh. Bouamama, Professeur à l’université Ferhat Abbes de Sétif, qui m’a grandement fait profiter de ses fructueuses discussions en codes de calcul et dans mon sujet de thèse.
    [Show full text]
  • DFT-Absorption Spectra
    2054-9 Structure and Dynamics of Hydrogen-Bonded Systems 26 - 27 October 2009 Effect of Proton Disorder on the Excited State Properties of Ice Olivia PULCI Universita' di Roma II "Tor Vergata" Dipt. di Fisica, Via della Ricerca Scientfica 1, 00133 Rome Italy EffectEffect ofof protonproton disorderdisorder onon thethe excitedexcited statestate propertiesproperties ofof iceice V. Garbuio,Garbuio M. Cascella, R. Del Sole, O. Pulci OUTLINE: •Theoretical approaches •Ice Ic(bulk) • Ice Ih surface Theoretical approaches c MBPT c c EXC W hν hν ωcv hν ωcv ωcv v v v DFT GW BSE 1) 2) 3) Ground state properties Electronic band Optical spectra structure, I, A TDDFT (Step 2) Lars Hedin 1965 Σ = iGW G: single particle Green’s function −1 W: screened Coulomb interaction = ε VW Theoretical approaches c MBPT c c EXC W hν hν ωcv hν ωcv ωcv v v v DFT GW BSE 1) 2) 3) Ground state properties Electronic band Optical spectra structure, I, A TDDFT Step 3: calculation of optical spectra within the Bethe Salpeter Equation c Absorption spectra A photon excites an electron from an occupied state to a conduction state hν e 4 4 4 4 4 PPPP=IQP +IQP Ξ v h Bethe Salpeter Equation (BSE) Kernel: Ξ v= − W e-h exchange bound excitons GWBSE ApplicableApplicable to:to: Ab-initio: (NOT “one puts nothing in, one gets nothing out”!!) •Generality, transferability 0D-3D Biological systems •Detailed physical informations •Complex theory+large comp.cost 3-D 0-D 1-D 2-D Nanowires Surfaces Nanoclusters bulks OUTLINE: •Theoretical approaches •Ic Ice (bulk) • Ice Ih surface HH2OO phasephase diagramdiagram CubicCubic iceice ((IcIc)) • It is a metastable form of ice that can be formed, by condensation of water vapor, at ambient pressure but low temperatures Cubic ice (Ic) – diamond lattice 153 K down to 113 K Studied within DFT and Tight-binding G.
    [Show full text]
  • Monte Carlo Calculations of Pressure Profiles in Particle Accelerator Storage Rings R
    Monte Carlo Calculations of Pressure Profiles in Particle Accelerator Storage Rings R. Kersevan*, ESRF, Grenoble, France [email protected] – Tel.: +33 4 76 88 22 06 Agenda: Intro: Particle Accelerators - Where and What For? Beam Loss Mechanisms Pressure Profiles Why MC? Framework Examples Conclusions References 1 * On behalf of the Vacuum Group, Technical Services Division, ESRF - 6 Rue Jules Horowitz, Grenoble F-38043 Cedex 09 1. Intro: Particle Accelerators - Where and What For? Where: •The total number of particle accelerators, all categories included, in operation in the world as of today is practically impossible to know with precision. The are recent estimates which list at about 1,500 the number used in industrial applications, 5,000 in the medical field (radiotherapy and production of radio-isotopes), and ~200 for basic research (particle physics, synchrotron radiation). In addition, about 7,000 units are used as ion implanters or to modify the state of surfaces, and 1,000 more for non- nuclear research. The grand total is approximately 15,000 accelerators [1]; •They are located on the 5 continents, although Africa unfortunately barely makes it on the list; •Total world investment can be estimated at several billions €/year; Ex.: the ILC (Internation Linear Collider, an international project under study now) would need approximately 14 billion $US to complete in 7 years, if built now with present technology. Its vacuum system is one of the major contributors to the total budget, and a possible show-stopper for the entire project. Innovative vacuum technology solutions make the top ten list in terms of R&D [2]; 2 Monte Carlo Calculations of Pressure Profiles in Particle Accelerator Storage Rings - R.
    [Show full text]
  • New Frontiers in Quantum Chemistry Using Supercomputers
    New frontiers in quantum chemistry using supercomputers Jeff Hammond Leadership Computing Facility Argonne National Laboratory 4 May 2011 Jeff Hammond NREL Atomistic simulation in chemistry 1 classical molecular dynamics (MD) with empirical potentials 2 ab initio molecular dynamics based upon density-function theory (DFT) 3 quantum chemistry with wavefunctions e.g. perturbation theory (PT), Coupled-Cluster (CC) or Quantum Monte Carlo (QMC). Jeff Hammond NREL Classical molecular dynamics Solves Newton's equations of motion with empirical terms and classical electrostatics. Size: 100K-10M atoms Time: 1-10 ns/day Scaling: ∼ Natoms Data from K. Schulten, et al. \Biomolecular modeling in the era of petascale computing." In D. Bader, ed., Petascale Computing: Algorithms and Applications. Image courtesy of Beno^ıtRoux via ALCF. Jeff Hammond NREL Car-Parrinello molecular dynamics Forces obtained from solving an approximate single-particle Schr¨odingerequation; time-propagation via Lagrangian approach. Size: 100-1000 atoms Time: 0.01-1 ps/day x Scaling: ∼ Nel (x=1-3) F. Gygi, IBM J. Res. Dev. 52, 137 (2008); E. J. Bylaska et al. J. Phys.: Conf. Ser. 180, 012028 (2009). Image courtesy of Giulia Galli via ALCF. Jeff Hammond NREL Wavefunction theory MP2 is second-order PT and is accurate via magical cancellation of error. CC is infinite-order solution to many-body Schr¨odingerequation truncated via clusters. QMC is Monte Carlo integration applied to the Schr¨odingerequation. Size: 10-100 atoms, maybe 100-1000 atoms with MP2. Time: N/A x Scaling: ∼ Nbf (x=2-7) Image courtesy of Karol Kowalski and Niri Govind. Jeff Hammond NREL Quantum chemistry | standard model 1 Separate molecule(s) from environment (closed to both matter and energy) 2 Ignore relativity, QED, spin-orbit coupling 3 Separate electronic and nuclear degrees of freedom −! non-relativistic electronic Schr¨odingerequation in a vacuum at zero temperature.
    [Show full text]
  • Package Name Software Description Project
    A S T 1 Package Name Software Description Project URL 2 Autoconf An extensible package of M4 macros that produce shell scripts to automatically configure software source code packages https://www.gnu.org/software/autoconf/ 3 Automake www.gnu.org/software/automake 4 Libtool www.gnu.org/software/libtool 5 bamtools BamTools: a C++ API for reading/writing BAM files. https://github.com/pezmaster31/bamtools 6 Biopython (Python module) Biopython is a set of freely available tools for biological computation written in Python by an international team of developers www.biopython.org/ 7 blas The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building blocks for performing basic vector and matrix operations. http://www.netlib.org/blas/ 8 boost Boost provides free peer-reviewed portable C++ source libraries. http://www.boost.org 9 CMake Cross-platform, open-source build system. CMake is a family of tools designed to build, test and package software http://www.cmake.org/ 10 Cython (Python module) The Cython compiler for writing C extensions for the Python language https://www.python.org/ 11 Doxygen http://www.doxygen.org/ FFmpeg is the leading multimedia framework, able to decode, encode, transcode, mux, demux, stream, filter and play pretty much anything that humans and machines have created. It supports the most obscure ancient formats up to the cutting edge. No matter if they were designed by some standards 12 ffmpeg committee, the community or a corporation. https://www.ffmpeg.org FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and 13 fftw complex data (as well as of even/odd data, i.e.
    [Show full text]
  • Virt&L-Comm.3.2012.1
    Virt&l-Comm.3.2012.1 A MODERN APPROACH TO AB INITIO COMPUTING IN CHEMISTRY, MOLECULAR AND MATERIALS SCIENCE AND TECHNOLOGIES ANTONIO LAGANA’, DEPARTMENT OF CHEMISTRY, UNIVERSITY OF PERUGIA, PERUGIA (IT)* ABSTRACT In this document we examine the present situation of Ab initio computing in Chemistry and Molecular and Materials Science and Technologies applications. To this end we give a short survey of the most popular quantum chemistry and quantum (as well as classical and semiclassical) molecular dynamics programs and packages. We then examine the need to move to higher complexity multiscale computational applications and the related need to adopt for them on the platform side cloud and grid computing. On this ground we examine also the need for reorganizing. The design of a possible roadmap to establishing a Chemistry Virtual Research Community is then sketched and some examples of Chemistry and Molecular and Materials Science and Technologies prototype applications exploiting the synergy between competences and distributed platforms are illustrated for these applications the middleware and work habits into cooperative schemes and virtual research communities (part of the first draft of this paper has been incorporated in the white paper issued by the Computational Chemistry Division of EUCHEMS in August 2012) INTRODUCTION The computational chemistry (CC) community is made of individuals (academics, affiliated to research institutions and operators of chemistry related companies) carrying out computational research in Chemistry, Molecular and Materials Science and Technology (CMMST). It is to a large extent registered into the CC division (DCC) of the European Chemistry and Molecular Science (EUCHEMS) Society and is connected to other chemistry related organizations operating in Chemical Engineering, Biochemistry, Chemometrics, Omics-sciences, Medicinal chemistry, Forensic chemistry, Food chemistry, etc.
    [Show full text]
  • 0.1 Report on the 12Th Nanoquanta Workshop on Electronic Excitations
    0.1 Report on the 12th Nanoquanta Workshop on Electronic Excitations. Time-Dependent Density-Functional Theory: Advances and Prospects Aussois (France) 18-22 September 2007 SPONSORS NANOQUANTA Network of Excellence ESF Psi k Programme CNRS IdNano ORGANIZERS Valerio OLEVANO (LEPES-CNRS, Grenoble, France) John J. REHR (University of Washington, Seattle, USA) Gian-Marco RIGNANESE (Universit´eCatholique de Louvain, Louvain-la-Neuve, Belgium) Patrick RINKE (Fritz-Haber-Institut, Berlin, Germany) Francesco SOTTILE (Universidad del Pais Vasco, San Sebasti´an,Spain) Ludger WIRTZ (IEMN/ISEN, Villeneuve d’Ascq, France) WEBSITE http://lab-neel.grenoble.cnrs.fr/etsf/nanoquanta-workshop07 1 The workshop gathered 120 participants from leading international theory groups. There were 46 oral presen- tations (23 invited speakers and 23 contributed talks) and 32 posters. The workshop allowed the participants to discuss the advances in the theoretical and computational treatment of optical and dielectric spectroscopy, photoemission spectroscopy and quantum transport in the framework of time-dependent density-functional theory (TDDFT), many-body perturbation theory (MBPT) and non-equilibrium Green’s function (NEGF) theory. Invited speakers from leading international groups gave an in-depth overview of current research activities within these theories and placed recent results into context. Young researchers (Ph.D. students and Post- Docs) also had the opportunity to present their work (more than half of the oral presentations were given by non-permanent researchers). A special emphasis was placed on advances and perspectives in time-dependent density-functional theory. Indeed, the first session presented two review talks on TDDFT and DFT-like methods applied to quantum transport. A particular effort has been done by the two invited speakers to present the arguments in the most pedagogical manner, ad usum of the youngest participants to the workshop.
    [Show full text]