Dynein Activators and Adaptors at a Glance Mara A

Total Page:16

File Type:pdf, Size:1020Kb

Dynein Activators and Adaptors at a Glance Mara A © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs227132. doi:10.1242/jcs.227132 CELL SCIENCE AT A GLANCE Dynein activators and adaptors at a glance Mara A. Olenick and Erika L. F. Holzbaur* ABSTRACT ribonucleoprotein particles for BICD2, and signaling endosomes for Cytoplasmic dynein-1 (hereafter dynein) is an essential cellular motor Hook1. In this Cell Science at a Glance article and accompanying that drives the movement of diverse cargos along the microtubule poster, we highlight the conserved structural features found in dynein cytoskeleton, including organelles, vesicles and RNAs. A long- activators, the effects of these activators on biophysical parameters, standing question is how a single form of dynein can be adapted to a such as motor velocity and stall force, and the specific intracellular wide range of cellular functions in both interphase and mitosis. functions they mediate. – Recent progress has provided new insights dynein interacts with a KEY WORDS: BICD2, Cytoplasmic dynein, Dynactin, Hook1, group of activating adaptors that provide cargo-specific and/or Microtubule motors, Trafficking function-specific regulation of the motor complex. Activating adaptors such as BICD2 and Hook1 enhance the stability of the Introduction complex that dynein forms with its required activator dynactin, leading Microtubule-based transport is vital to cellular development and to highly processive motility toward the microtubule minus end. survival. Microtubules provide a polarized highway to facilitate Furthermore, activating adaptors mediate specific interactions of the active transport by the molecular motors dynein and kinesin. While motor complex with cargos such as Rab6-positive vesicles or many types of kinesins drive transport toward microtubule plus- ends, there is only one major form of dynein, cytoplasmic dynein-1, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, which drives the trafficking of a wide array of minus-end-directed USA. cargo within the cell. Recent work has brought new insight into the spatial and temporal regulation of cytoplasmic dynein by adaptor *Author for correspondence ([email protected]) proteins, which link dynein to cargo (Fu and Holzbaur, 2014; E.L.F.H., 0000-0001-5389-4114 Kardon and Vale, 2009; Reck-Peterson et al., 2018). Interestingly, Journal of Cell Science 1 CELL SCIENCE AT A GLANCE Journal of Cell Science (2019) 132, jcs227132. doi:10.1242/jcs.227132 many of these adaptors modulate the motile properties of dynein, heads of the dynein dimer are reoriented to facilitate motility either enhancing or inhibiting movement, while some act as motility (Zhang et al., 2017); single-molecule studies have shown that the switches by co-ordinately regulating dynein and kinesin. Here, we complex between dynein–dynactin and an activating adaptor is use ‘adaptor’ as a more general term to discuss proteins that can link superprocessive compared to the motility of dynein alone dynein to cargo and use ‘activating adaptor’ or ‘activator’ to identify (McKenney et al., 2014; Schlager et al., 2014a), moving at a subclass of adaptor proteins that have been shown to enhance the velocities ranging from ∼0.4 to 1.4 µm/s over run-lengths of up to processivity of dynein. Below, and in the accompanying poster, we 40 µm. Furthermore, some activating adaptors such as Hook3 can summarize our current understanding of both the structure and recruit two dynein dimers to one dynactin complex, enhancing both function of dynein adaptor proteins. the velocity and the force produced by the motor complex (Urnavicius et al., 2018; Grotjahn et al., 2018). While it is Dynein and dynactin difficult to compare velocity and run length data across multiple Cytoplasmic dynein 1 (henceforth referred to as dynein) is a 1.4 studies due to differing experimental conditions such as buffer MDa motor complex consisting of dimerized heavy chains (DHCs; composition and ionic strength, studies that have directly compared symbol DYNC1H1), each with an N-terminal tail and a C-terminal dynein activators have found differences in velocities and force motor domain (see poster). The N-terminal tail mediates production that suggest that these cofactors can fine-tune dynein homodimerization of the heavy chains, along with binding sites motor function (McKenney et al., 2014; Olenick et al., 2016; for non-catalytic subunits, including two intermediate chains (DICs; Redwine et al., 2017; Urnavicius et al., 2018). DYNC1I1 and DYNC1I2) and two light intermediate chains (LIC1 and LIC2, also known as DYNC1LI1 and DYNC1LI2). Dynein activators Additional light chains (LCs) are also bound to the DICs. These BICD proteins were initially identified in Drosophila where non-catalytic subunits of dynein are thought to stabilize the mutations cause abnormal development of the abdomen resulting complex and may contribute to the regulation of specific dynein in a bicaudal (‘two-tailed’) phenotype (Mohler and Wieschaus, functions (recently reviewed by Reck-Peterson et al., 2018). The 1986). Drosophila BICD was found to be vital for mRNA transport motor domain of dynein is composed of six concatenated AAA+ in ribonucleoprotein (RNP) complexes and nuclear positioning domains that form a motor ring with a protruding flexible 15-nm- (Wharton and Struhl, 1989; Suter and Steward, 1991; Swan and long stalk with the microtubule-binding domain localized to the end Suter, 1996; Swan et al., 1999; Mach and Lehmann, 1997; Bullock (Gee et al., 1997; Burgess et al., 2003; Kon et al., 2011). AAA1 is and Ish-Horowicz, 2001). In mammals, there are two BICD the primary site of ATP hydrolysis, while the nucleotide state orthologs, BICD1 and BICD2, as well as two related proteins, of AAA3 has an allosteric effect on the motile properties of BICDR1 and BICDR2, which are slightly shorter. BICD proteins dynein (Takahide Kon et al., 2004; DeWitt et al., 2015; Nicholas form dimers characterized by long coiled-coil domains. Cryo-EM et al., 2015). analysis of the N-terminus of BICD2 shows an extended coiled-coil Dynein requires the co-factor dynactin, a 1 MDa, 23-subunit of ∼250 amino acid residues that extends for ∼30 nm and docks complex, the first identified activator for dynein and essential for onto the Arp1 filament of dynactin (Chowdhury et al., 2015; most cellular functions of the motor (see poster). The core of Urnavicius et al., 2015). BICD2 also interacts with the N-terminal dynactin is comprised of an ∼37-nm-long actin-like filament tail of the DHC (Chowdhury et al., 2015; Urnavicius et al., 2015) called the Arp1 filament (Schroer, 2004), which is composed of and the dynein LIC1, via coiled-coil interactions (Schroeder et al., eight Arp1 subunits (also known as ACTR1A), one β-actin 2014; Lee et al., 2018). Together, these interactions enhance the molecule and one Arp11 molecule (also known as ACTR10). affinity of the dynein–dynactin interaction (Splinter et al., 2012; Arp11 interacts with p25, p27 and p62 (also known as DCTN5, McKenney et al., 2014; Schlager et al., 2014a). While BICD2 is DCTN6 and DCTN4, respectively) to form the pointed-end mainly found in a complex with one dynein and one dynactin, complex of dynactin. The barbed end of the Arp1 filament within BICDR1 can recruit two dynein dimers to a single dynactin, which dynactin is capped by actin capping protein, a heterodimer of a further enhances the force and velocity of the motor complex CapZα and CapZβ family protein. A shoulder complex sits on the (Urnavicius et al., 2018; Grotjahn et al., 2018; Schlager et al., barbed-end, comprised of two copies of p24 (DCTN3), four 2014b). In mammalian cells, BICD proteins have been implicated copies of p50 (dynamtin or DCTN2) and two copies of p150Glued in Golgi vesicle transport via a C-terminal interaction with the (DCTN1) (Chowdhury et al., 2015; Urnavicius et al., 2015). The small GTPase Rab6 proteins (Hoogenraad et al., 2001; Matanis pointed-end of dynactin has been suggested to play a role in et al., 2002; Schlager et al., 2010; Short et al., 2002). BICD2 has facilitating cargo interaction (Zhang et al., 2011; Yeh et al., 2012; also been implicated in nuclear positioning (Splinter et al., 2012; Qiu et al., 2018) while the p150Glued subunit has an independent Hu et al., 2013). Furthermore, the C-terminal region of BICD and ATP-insensitive microtubule-binding domain (Waterman- proteins can bend back on itself to produce an autoinhibited state Storer et al., 1995). (Terawaki et al., 2015; Liu et al., 2013; Wharton and Struhl, 1989; Urnavicius et al., 2015), which can be relieved by cargo binding Activation of dynein (Liu et al., 2013; Huynh and Vale, 2017; McClintock et al., 2018; Dynein is responsible for the long-distance transport of many Sladewski et al., 2018), suggesting an efficient mechanism to cargos, some of which display highly processive motility. In vitro, regulate dynein motility. isolated or recombinant mammalian dynein is poorly processive Members of the Hook protein family activate dynein in a similar unless bound to a bead or other surface. Electron microscopy (EM) manner. There are three Hook proteins expressed in mammalian studies have indicated that in the absence of binding partners, cells, characterized by three conserved regions: a globular mammalian dynein is found in an auto-inhibited or phi state, which N-terminal Hook domain, a central coiled-coil domain that drives has a low affinity for microtubules (Torisawa et al., 2014; Zhang dimerization and forms a 31-nm helix that aligns along the Arp1 et al., 2017). In the presence of dynactin and a coiled-coil activating filament, and a divergent, predicted unstructured C-terminal domain adaptor, such as Bicaudal D (BICD) protein 2 (BICD2), the motor thought to mediate cargo binding (Walenta et al., 2001; Lee et al., Journal of Cell Science 2 CELL SCIENCE AT A GLANCE Journal of Cell Science (2019) 132, jcs227132.
Recommended publications
  • ENSG Gene Encodes Effector TCR Pathway Costimulation Inhibitory/Exhaustion Synapse/Adhesion Chemokines/Receptors
    ENSG Gene Encodes Effector TCR pathway Costimulation Inhibitory/exhaustion Synapse/adhesion Chemokines/receptors ENSG00000111537 IFNG IFNg x ENSG00000109471 IL2 IL-2 x ENSG00000232810 TNF TNFa x ENSG00000271503 CCL5 CCL5 x x ENSG00000139187 KLRG1 Klrg1 x ENSG00000117560 FASLG Fas ligand x ENSG00000121858 TNFSF10 TRAIL x ENSG00000134545 KLRC1 Klrc1 / NKG2A x ENSG00000213809 KLRK1 Klrk1 / NKG2D x ENSG00000188389 PDCD1 PD-1 x x ENSG00000117281 CD160 CD160 x x ENSG00000134460 IL2RA IL-2 receptor x subunit alpha ENSG00000110324 IL10RA IL-10 receptor x subunit alpha ENSG00000115604 IL18R1 IL-18 receptor 1 x ENSG00000115607 IL18RAP IL-18 receptor x accessory protein ENSG00000081985 IL12RB2 IL-12 receptor x beta 2 ENSG00000186810 CXCR3 CXCR3 x x ENSG00000005844 ITGAL CD11a x ENSG00000160255 ITGB2 CD18; Integrin x x beta-2 ENSG00000156886 ITGAD CD11d x ENSG00000140678 ITGAX; CD11c x x Integrin alpha-X ENSG00000115232 ITGA4 CD49d; Integrin x x alpha-4 ENSG00000169896 ITGAM CD11b; Integrin x x alpha-M ENSG00000138378 STAT4 Stat4 x ENSG00000115415 STAT1 Stat1 x ENSG00000170581 STAT2 Stat2 x ENSG00000126561 STAT5a Stat5a x ENSG00000162434 JAK1 Jak1 x ENSG00000100453 GZMB Granzyme B x ENSG00000145649 GZMA Granzyme A x ENSG00000180644 PRF1 Perforin 1 x ENSG00000115523 GNLY Granulysin x ENSG00000100450 GZMH Granzyme H x ENSG00000113088 GZMK Granzyme K x ENSG00000057657 PRDM1 Blimp-1 x ENSG00000073861 TBX21 T-bet x ENSG00000115738 ID2 ID2 x ENSG00000176083 ZNF683 Hobit x ENSG00000137265 IRF4 Interferon x regulatory factor 4 ENSG00000140968 IRF8 Interferon
    [Show full text]
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Unsheathing WASP's Sting
    news and views required for Swallow-mediated localiza- Cytoplasmic dynein is implicated in Minneapolis 55455, Minnesota, USA tion within the oocyte. many biological processes, including ves- e-mail:[email protected] The interaction between Swallow and icle and organelle transport, mitotic- Roger Karess is at the CNRS Centre de Génétique Dlc is a significant finding and provides spindle function and orientation, and Moléculaire, Ave de la Terrasse, 91198 Gif-sur- the basis for a model in which the dynein- now RNA transport and localization. It is Yvette, France motor complex is responsible for the important to emphasize that a single iso- e-mail: [email protected] anterior localization of bicoid RNA within form of the dynein-motor subunit is 1. St Johnston, D. Cell 81, 167–170 (1995). the oocyte. Interestingly, the transient known to be targeted to several cellular 2. Bashirullah, A., Cooperstock, R. & Lipshitz, H. Annu. Rev. localization of Swallow to the oocyte functions and molecular cargoes within Biochem. 67, 335–394 (1998). anterior occurs at a time when most of the individual cells. Thus it is those molecules 3. Oleynikov, Y. & Singer, R. Trends Cell Biol. 8, 381–383 dynein-motor subunits are concentrated with adaptor functions, such as those pro- (1998). 13 4. Wilhelm, J. & Vale, R. J. Cell Biol. 123, 269–274 (1993). at the posterior of the oocyte . This raises posed here for Swallow, that must 5. Schnorrer, F., Bohmann, K. & Nusslein-Volhard, C. Nature Cell the possibility that at least two distinct account for the functional specificity of Biol.
    [Show full text]
  • The CAP-Gly and Basic Microtubule Binding Domains of Dynactin Are
    Knockdown of dynactin’s p150Glued subunit abrogates microtubule organization by Jared Todd Roeckner A Thesis Submitted to the Faculty of The Wilkes Honors College In Partial Fulfillment of the Requirements for the Degree of Bachelor of Arts in Liberal Arts and Sciences with a Concentration in Biology Wilkes Honors College of Florida Atlantic University Jupiter, Florida May 2009 Knockdown of dynactin’s p150Glued subunit abrogates microtubule organization by Jared T. Roeckner This thesis was prepared under the direction of the candidate’s thesis advisor, Dr. Nicholas Quintyne, and has been approved by the members of the supervisory committee. It was submitted to the faculty of The Honors College and was accepted in partial fulfillment of the Requirements for the Degree of Bachelor of Arts in Liberal Arts and Sciences. SUPERVISORY COMMITTEE: ________________________ Dr. Nicholas Quintyne ________________________ Dr. Paul Kirchman ________________________ Dean, Wilkes Honors College _________ Date ii ACKNOWLEDGEMENTS First, I would like to thank Dr. Nicholas Quintyne for allowing me to work in his lab for the last three years and overseeing and guiding my thesis research and writing. I would like to acknowledge Dr. Stephen King and Dr. Margret Kincaid at UMKC for providing us with the p150Glued knockdown plasmids. Dr. Paul Kirchman, April Mistrik, and everyone in the Quintyne lab helped me out greatly. Ed Fulton and I worked on many steps of this project together and I thank him for his help. Finally, I would like to thank my family and friends for supporting of my thesis research and my undergraduate studies as a whole. iii ABSTRACT Author: Jared Todd Roeckner Title: Knockdown of dynactin’s p150Glued subunit abrogates microtubule organization Institutions: Harriet L.
    [Show full text]
  • HOOK3 Is a Scaffold for the Opposite-Polarity Microtubule-Based
    bioRxiv preprint doi: https://doi.org/10.1101/508887; this version posted December 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. HOOK3 is a scaffold for the opposite-polarity microtubule-based motors cytoplasmic dynein and KIF1C Agnieszka A. Kendrick1, William B. Redwine1,2†, Phuoc Tien Tran1‡, Laura Pontano Vaites2, Monika Dzieciatkowska4, J. Wade Harper2, and Samara L. Reck-Peterson1,3,5 1Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093. 2 Department of Cell Biology, Harvard Medical School, Boston, MA 02115. 3Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093. 4Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045. 5Howard Hughes Medical Institute †Present address: Stowers Institute for Medical Research, Kansas City, MO 64110 ‡Present address: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138. *Correspondence to: Samara Reck-Peterson 9500 Gilman Drive, Leichtag 482 La Jolla CA, 92093 [email protected]; https://orcid.org/0000-0002-1553-465X 1 bioRxiv preprint doi: https://doi.org/10.1101/508887; this version posted December 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Product Datasheet KIF1C Antibody NB100-57510
    Product Datasheet KIF1C Antibody NB100-57510 Unit Size: 0.1 ml Store at 4C. Do not freeze. Reviews: 1 Publications: 1 Protocols, Publications, Related Products, Reviews, Research Tools and Images at: www.novusbio.com/NB100-57510 Updated 3/16/2021 v.20.1 Earn rewards for product reviews and publications. Submit a publication at www.novusbio.com/publications Submit a review at www.novusbio.com/reviews/destination/NB100-57510 Page 1 of 3 v.20.1 Updated 3/16/2021 NB100-57510 KIF1C Antibody Product Information Unit Size 0.1 ml Concentration 0.2 mg/ml Storage Store at 4C. Do not freeze. Clonality Polyclonal Preservative 0.09% Sodium Azide Isotype IgG Purity Immunogen affinity purified Buffer TBS and 0.1% BSA Product Description Host Rabbit Gene ID 10749 Gene Symbol KIF1C Species Human, Mouse Immunogen The immunogen recognized by this antibody maps to a region between residue 1053 and the C-terminus (residue 1103) of human kinesin family member 1C (lethal toxin sensitivity 1) using the numbering given in entry NP_006603.2 (GeneID 10749). Product Application Details Applications Western Blot, Immunoprecipitation Recommended Dilutions Western Blot 1:2000-1:10000, Immunoprecipitation 2 - 5 ug/mg lysate Page 2 of 3 v.20.1 Updated 3/16/2021 Images Western Blot: KIF1C Antibody [NB100-57510] - KIF1C is a novel HOOK3 -interacting protein.sfGFP-3xFLAG and full length (FL) HOOK3, HOOK3 (1-552), and HOOK3 (553-718) all tagged with sfGFP and 3xFLAG were immunoprecipitated with alpha-FLAG antibodies from transiently transfected HEK-293T cells. Western blots with alpha-HC, alpha- FAM160A2, alpha-KIF1C, and alpha-FLAG antibodies were used to determine which proteins co-immunoprecipitated with each HOOK3 construct.DOI:http://dx.doi.org/10.7554/eLife.28257.015 Image collected and cropped by CiteAb from the following publication (https://elifesciences.org/articles/28257), licensed under a CC-BY licence.
    [Show full text]
  • Leveraging Mouse Chromatin Data for Heritability Enrichment Informs Common Disease Architecture and Reveals Cortical Layer Contributions to Schizophrenia
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Research Leveraging mouse chromatin data for heritability enrichment informs common disease architecture and reveals cortical layer contributions to schizophrenia Paul W. Hook1 and Andrew S. McCallion1,2,3 1McKusick-Nathans Department of Genetic Medicine, 2Department of Comparative and Molecular Pathobiology, 3Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA Genome-wide association studies have implicated thousands of noncoding variants across common human phenotypes. However, they cannot directly inform the cellular context in which disease-associated variants act. Here, we use open chro- matin profiles from discrete mouse cell populations to address this challenge. We applied stratified linkage disequilibrium score regression and evaluated heritability enrichment in 64 genome-wide association studies, emphasizing schizophrenia. We provide evidence that mouse-derived human open chromatin profiles can serve as powerful proxies for difficult to ob- tain human cell populations, facilitating the illumination of common disease heritability enrichment across an array of hu- man phenotypes. We demonstrate that signatures from discrete subpopulations of cortical excitatory and inhibitory neurons are significantly enriched for schizophrenia heritability with maximal enrichment in cortical layer V excitatory neu- rons. We also show that differences between schizophrenia and bipolar disorder are concentrated in excitatory neurons in cortical layers II-III, IV, and V, as well as the dentate gyrus. Finally, we leverage these data to fine-map variants in 177 schiz- ophrenia loci nominating variants in 104/177. We integrate these data with transcription factor binding site, chromatin in- teraction, and validated enhancer data, placing variants in the cellular context where they may modulate risk.
    [Show full text]
  • 047605V1.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/047605; this version posted April 8, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Assembly and Activation of Dynein-Dynactin by the Cargo Adaptor Protein Hook3 Courtney M. Schroeder1,2 and Ronald D. Vale1,2 1The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA 2Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA. Corresponding Author: Ronald D. Vale Dept. of Cellular and Molecular Pharmacology University of California, San Francisco Genentech Hall, MC 2200, Room N312A 600-16th Street San Francisco, CA 94158-2517 E-mail: [email protected] Phone: 415-476-6380 Fax: 415-514-4412 bioRxiv preprint doi: https://doi.org/10.1101/047605; this version posted April 8, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 2 Abstract Metazoan cytoplasmic dynein moves processively along microtubules with the aid of dynactin and an adaptor protein that joins dynein and dynactin into a stable ternary complex. Here, we have examined how Hook3, a cargo adaptor involved in Golgi and endosome transport, forms a motile dynein-dynactin complex. We show that the conserved Hook domain interacts directly with the dynein light intermediate chain 1 (LIC1).
    [Show full text]
  • Supplementary Table S1. Upregulated Genes Differentially
    Supplementary Table S1. Upregulated genes differentially expressed in athletes (p < 0.05 and 1.3-fold change) Gene Symbol p Value Fold Change 221051_s_at NMRK2 0.01 2.38 236518_at CCDC183 0.00 2.05 218804_at ANO1 0.00 2.05 234675_x_at 0.01 2.02 207076_s_at ASS1 0.00 1.85 209135_at ASPH 0.02 1.81 228434_at BTNL9 0.03 1.81 229985_at BTNL9 0.01 1.79 215795_at MYH7B 0.01 1.78 217979_at TSPAN13 0.01 1.77 230992_at BTNL9 0.01 1.75 226884_at LRRN1 0.03 1.74 220039_s_at CDKAL1 0.01 1.73 236520_at 0.02 1.72 219895_at TMEM255A 0.04 1.72 201030_x_at LDHB 0.00 1.69 233824_at 0.00 1.69 232257_s_at 0.05 1.67 236359_at SCN4B 0.04 1.64 242868_at 0.00 1.63 1557286_at 0.01 1.63 202780_at OXCT1 0.01 1.63 1556542_a_at 0.04 1.63 209992_at PFKFB2 0.04 1.63 205247_at NOTCH4 0.01 1.62 1554182_at TRIM73///TRIM74 0.00 1.61 232892_at MIR1-1HG 0.02 1.61 204726_at CDH13 0.01 1.6 1561167_at 0.01 1.6 1565821_at 0.01 1.6 210169_at SEC14L5 0.01 1.6 236963_at 0.02 1.6 1552880_at SEC16B 0.02 1.6 235228_at CCDC85A 0.02 1.6 1568623_a_at SLC35E4 0.00 1.59 204844_at ENPEP 0.00 1.59 1552256_a_at SCARB1 0.02 1.59 1557283_a_at ZNF519 0.02 1.59 1557293_at LINC00969 0.03 1.59 231644_at 0.01 1.58 228115_at GAREM1 0.01 1.58 223687_s_at LY6K 0.02 1.58 231779_at IRAK2 0.03 1.58 243332_at LOC105379610 0.04 1.58 232118_at 0.01 1.57 203423_at RBP1 0.02 1.57 AMY1A///AMY1B///AMY1C///AMY2A///AMY2B// 208498_s_at 0.03 1.57 /AMYP1 237154_at LOC101930114 0.00 1.56 1559691_at 0.01 1.56 243481_at RHOJ 0.03 1.56 238834_at MYLK3 0.01 1.55 213438_at NFASC 0.02 1.55 242290_at TACC1 0.04 1.55 ANKRD20A1///ANKRD20A12P///ANKRD20A2///
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Tracking Melanosomes Inside a Cell to Study Molecular Motors and Their Interaction
    Tracking melanosomes inside a cell to study molecular motors and their interaction Comert Kural*, Anna S. Serpinskaya†, Ying-Hao Chou†, Robert D. Goldman†, Vladimir I. Gelfand†‡, and Paul R. Selvin*§¶ *Center for Biophysics and Computational Biology and §Department of Physics, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and †Department of Cell and Molecular Biology, Northwestern University School of Medicine, Chicago, IL 60611 Communicated by Gordon A. Baym, University of Illinois at Urbana–Champaign, Urbana, IL, January 9, 2007 (received for review June 4, 2006) Cells known as melanophores contain melanosomes, which are membrane organelles filled with melanin, a dark, nonfluorescent pigment. Melanophores aggregate or disperse their melanosomes when the host needs to change its color in response to the environment (e.g., camouflage or social interactions). Melanosome transport in cultured Xenopus melanophores is mediated by my- osin V, heterotrimeric kinesin-2, and cytoplasmic dynein. Here, we describe a technique for tracking individual motors of each type, both individually and in their interaction, with high spatial (Ϸ2 nm) and temporal (Ϸ1 msec) localization accuracy. This method enabled us to observe (i) stepwise movement of kinesin-2 with an average step size of 8 nm; (ii) smoother melanosome transport (with fewer pauses), in the absence of intermediate filaments (IFs); and (iii) motors of actin filaments and microtubules working on the same cargo nearly simultaneously, indicating that a diffusive step is not needed between the two systems of transport. In concert with our previous report, our results also show that dynein-driven retro- grade movement occurs in 8-nm steps. Furthermore, previous studies have shown that melanosomes carried by myosin V move 35 nm in a stepwise fashion in which the step rise-times can be as long as 80 msec.
    [Show full text]