Software Engineering at Google Lessons Learned from Programming Over Time
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Algebra of Open and Interconnected Systems
The Algebra of Open and Interconnected Systems Brendan Fong Hertford College University of Oxford arXiv:1609.05382v1 [math.CT] 17 Sep 2016 A thesis submitted for the degree of Doctor of Philosophy in Computer Science Trinity 2016 For all those who have prepared food so I could eat and created homes so I could live over the past four years. You too have laboured to produce this; I hope I have done your labours justice. Abstract Herein we develop category-theoretic tools for understanding network- style diagrammatic languages. The archetypal network-style diagram- matic language is that of electric circuits; other examples include signal flow graphs, Markov processes, automata, Petri nets, chemical reaction networks, and so on. The key feature is that the language is comprised of a number of components with multiple (input/output) terminals, each possibly labelled with some type, that may then be connected together along these terminals to form a larger network. The components form hyperedges between labelled vertices, and so a diagram in this language forms a hypergraph. We formalise the compositional structure by intro- ducing the notion of a hypergraph category. Network-style diagrammatic languages and their semantics thus form hypergraph categories, and se- mantic interpretation gives a hypergraph functor. The first part of this thesis develops the theory of hypergraph categories. In particular, we introduce the tools of decorated cospans and corela- tions. Decorated cospans allow straightforward construction of hyper- graph categories from diagrammatic languages: the inputs, outputs, and their composition are modelled by the cospans, while the `decorations' specify the components themselves. -
Open Source Used in Influx1.8 Influx 1.9
Open Source Used In Influx1.8 Influx 1.9 Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. Text Part Number: 78EE117C99-1178791953 Open Source Used In Influx1.8 Influx 1.9 1 This document contains licenses and notices for open source software used in this product. With respect to the free/open source software listed in this document, if you have any questions or wish to receive a copy of any source code to which you may be entitled under the applicable free/open source license(s) (such as the GNU Lesser/General Public License), please contact us at [email protected]. In your requests please include the following reference number 78EE117C99-1178791953 Contents 1.1 golang-protobuf-extensions v1.0.1 1.1.1 Available under license 1.2 prometheus-client v0.2.0 1.2.1 Available under license 1.3 gopkg.in-asn1-ber v1.0.0-20170511165959-379148ca0225 1.3.1 Available under license 1.4 influxdata-raft-boltdb v0.0.0-20210323121340-465fcd3eb4d8 1.4.1 Available under license 1.5 fwd v1.1.1 1.5.1 Available under license 1.6 jaeger-client-go v2.23.0+incompatible 1.6.1 Available under license 1.7 golang-genproto v0.0.0-20210122163508-8081c04a3579 1.7.1 Available under license 1.8 influxdata-roaring v0.4.13-0.20180809181101-fc520f41fab6 1.8.1 Available under license 1.9 influxdata-flux v0.113.0 1.9.1 Available under license 1.10 apache-arrow-go-arrow v0.0.0-20200923215132-ac86123a3f01 1.10.1 Available under -
Buildbot Documentation Release 1.6.0
Buildbot Documentation Release 1.6.0 Brian Warner Nov 17, 2018 Contents 1 Buildbot Tutorial 3 1.1 First Run.................................................3 1.2 First Buildbot run with Docker......................................6 1.3 A Quick Tour...............................................9 1.4 Further Reading............................................. 17 2 Buildbot Manual 23 2.1 Introduction............................................... 23 2.2 Installation................................................ 29 2.3 Concepts................................................. 41 2.4 Secret Management........................................... 50 2.5 Configuration............................................... 53 2.6 Customization.............................................. 251 2.7 Command-line Tool........................................... 278 2.8 Resources................................................. 289 2.9 Optimization............................................... 289 2.10 Plugin Infrastructure in Buildbot..................................... 289 2.11 Deployment............................................... 290 2.12 Upgrading................................................ 292 3 Buildbot Development 305 3.1 Development Quick-start......................................... 305 3.2 General Documents........................................... 307 3.3 APIs................................................... 391 3.4 Python3 compatibility.......................................... 484 3.5 Classes................................................. -
Generating Commit Messages from Git Diffs
Generating Commit Messages from Git Diffs Sven van Hal Mathieu Post Kasper Wendel Delft University of Technology Delft University of Technology Delft University of Technology [email protected] [email protected] [email protected] ABSTRACT be exploited by machine learning. The hypothesis is that methods Commit messages aid developers in their understanding of a con- based on machine learning, given enough training data, are able tinuously evolving codebase. However, developers not always doc- to extract more contextual information and latent factors about ument code changes properly. Automatically generating commit the why of a change. Furthermore, Allamanis et al. [1] state that messages would relieve this burden on developers. source code is “a form of human communication [and] has similar Recently, a number of different works have demonstrated the statistical properties to natural language corpora”. Following the feasibility of using methods from neural machine translation to success of (deep) machine learning in the field of natural language generate commit messages. This work aims to reproduce a promi- processing, neural networks seem promising for automated commit nent research paper in this field, as well as attempt to improve upon message generation as well. their results by proposing a novel preprocessing technique. Jiang et al. [12] have demonstrated that generating commit mes- A reproduction of the reference neural machine translation sages with neural networks is feasible. This work aims to reproduce model was able to achieve slightly better results on the same dataset. the results from [12] on the same and a different dataset. Addition- When applying more rigorous preprocessing, however, the per- ally, efforts are made to improve upon these results by applying a formance dropped significantly. -
Electronic Evidence Examiner
2 Table of Contents About Electronic Evidence Examiner How To .......................................................................12 How to Work with Cases .........................................................................................................13 How to Create New Case .......................................................................................................13 How to Enable Automatic Case Naming .................................................................................14 How to Define Case Name During Automatic Case Creation .................................................14 How to Open Existing Case....................................................................................................15 How to Save Case to Archive .................................................................................................16 How to Change Default Case Location ...................................................................................16 How to Add Data to Case ........................................................................................................17 How to Add Evidence .............................................................................................................18 How to Acquire Devices .........................................................................................................20 How to Import Mobile Data .....................................................................................................21 How to Import Cloud Data ......................................................................................................22 -
Diabetes Care Diagnostics Diagnostics Diagnostics (RDC) (RPD) (RMD) (RTD)
Committed to innovation and growth Roland Diggelmann, COO Roche Diagnostics UBS Best of Switzerland, Wolfsberg September 19, 2013 HY 2013 Group Results Diagnostics Overview & Strategy HY 2013 Companion Diagnostics Outlook HY 2013: Roche Group highlights HY 2013 performance • Strong Pharma performance, driven by US; solid growth for Diagnostics • 12% core EPS growth1, driven largely by strong underlying business • Solid operating free cash flow (+4%1) Innovation • Move into phase III: Bcl2 inhibitor and anti-PDL1 • Data read-outs for potential phase III decisions: etrolizumab and anti-factor D • Positive CHMP recommendation for Herceptin SC • Discontinued: aleglitazar and GA201 3 1 CER=Constant Exchange Rates HY 2013: Strong sales momentum continues HY 2013 HY 2012 Change in % CHF bn CHF bn CHF CER Pharmaceuticals Division 18.2 17.4 4 6 Diagnostics Division 5.1 5.0 2 3 Roche Group 23.3 22.4 4 5 4 CER=Constant Exchange Rates HY 2013 Group Results Diagnostics Overview & Strategy HY 2013 Companion Diagnostics Outlook In-Vitro Diagnostics market overview Large and growing market; Roche is market leader Market share Market size USD 50 bn Roche Professional Diagnostics 20% Others 39% Molecular Diagnostics 11% Abbott Tissue Diagnostics 10% 3% Siemens Diabetes Monitoring Biomerieux 8% 8% Danaher J&J 6 Source: Roche Analysis, Company reports for 2012 validated by an independent IVD consultancy Overview of Roche Diagnostics New reporting structure In Vitro Diagnostics & Life Sciences Professional Molecular Tissue Diabetes Care Diagnostics Diagnostics -
Sistemas De Control De Versiones De Última Generación (DCA)
Tema 10 - Sistemas de Control de Versiones de última generación (DCA) Antonio-M. Corbí Bellot Tema 10 - Sistemas de Control de Versiones de última generación (DCA) II HISTORIAL DE REVISIONES NÚMERO FECHA MODIFICACIONES NOMBRE Tema 10 - Sistemas de Control de Versiones de última generación (DCA) III Índice 1. ¿Qué es un Sistema de Control de Versiones (SCV)?1 2. ¿En qué consiste el control de versiones?1 3. Conceptos generales de los SCV (I) 1 4. Conceptos generales de los SCV (II) 2 5. Tipos de SCV. 2 6. Centralizados vs. Distribuidos en 90sg 2 7. ¿Qué opciones tenemos disponibles? 2 8. ¿Qué podemos hacer con un SCV? 3 9. Tipos de ramas 3 10. Formas de integrar una rama en otra (I)3 11. Formas de integrar una rama en otra (II)4 12. SCV’s con los que trabajaremos 4 13. Git (I) 5 14. Git (II) 5 15. Git (III) 5 16. Git (IV) 6 17. Git (V) 6 18. Git (VI) 7 19. Git (VII) 7 20. Git (VIII) 7 21. Git (IX) 8 22. Git (X) 8 23. Git (XI) 9 Tema 10 - Sistemas de Control de Versiones de última generación (DCA) IV 24. Git (XII) 9 25. Git (XIII) 9 26. Git (XIV) 10 27. Git (XV) 10 28. Git (XVI) 11 29. Git (XVII) 11 30. Git (XVIII) 12 31. Git (XIX) 12 32. Git. Vídeos relacionados 12 33. Mercurial (I) 12 34. Mercurial (II) 12 35. Mercurial (III) 13 36. Mercurial (IV) 13 37. Mercurial (V) 13 38. Mercurial (VI) 14 39. -
Skalierbare Echtzeitverarbeitung Mit Spark Streaming: Realisierung Und Konzeption Eines Car Information Systems
Bachelorarbeit Philipp Grulich Skalierbare Echtzeitverarbeitung mit Spark Streaming: Realisierung und Konzeption eines Car Information Systems Fakultät Technik und Informatik Faculty of Engineering and Computer Science Department Informatik Department of Computer Science Philipp Grulich Skalierbare Echtzeitverarbeitung mit Spark Streaming: Realisierung und Konzeption eines Car Information Systems Bachelorarbeit eingereicht im Rahmen Bachelorprüfung im Studiengang Angewandte Informatik am Department Informatik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg Betreuender Prüfer: Prof. Dr.-Ing. Olaf Zukunft Zweitgutachter: Prof. Dr. Stefan Sarstedt Abgegeben am 1.3.2016 Philipp Grulich Thema der Arbeit Skalierbare Echtzeitverarbeitung mit Spark Streaming: Realisierung und Konzeption eines Car Information Systems Stichworte Echtzeitverarbeitung, Spark, Spark Streaming, Car Information System, Event Processing, Skalierbarkeit, Fehlertoleranz Kurzzusammenfassung Stream Verarbeitung ist mittlerweile eines der relevantesten Bereiche im Rahmen der Big Data Analyse, da es die Verarbeitung einer Vielzahl an Events innerhalb einer kurzen Latenz erlaubt. Eines der momentan am häufigsten genutzten Stream Verarbeitungssysteme ist Spark Streaming. Dieses wird im Rahmen dieser Arbeit anhand der Konzeption und Realisie- rung eines Car Information Systems demonstriert und diskutiert, wobei viel Wert auf das Er- zeugen einer möglichst generischen Anwendungsarchitektur gelegt wird. Abschließend wird sowohl das CIS als -
Unravel Data Systems Version 4.5
UNRAVEL DATA SYSTEMS VERSION 4.5 Component name Component version name License names jQuery 1.8.2 MIT License Apache Tomcat 5.5.23 Apache License 2.0 Tachyon Project POM 0.8.2 Apache License 2.0 Apache Directory LDAP API Model 1.0.0-M20 Apache License 2.0 apache/incubator-heron 0.16.5.1 Apache License 2.0 Maven Plugin API 3.0.4 Apache License 2.0 ApacheDS Authentication Interceptor 2.0.0-M15 Apache License 2.0 Apache Directory LDAP API Extras ACI 1.0.0-M20 Apache License 2.0 Apache HttpComponents Core 4.3.3 Apache License 2.0 Spark Project Tags 2.0.0-preview Apache License 2.0 Curator Testing 3.3.0 Apache License 2.0 Apache HttpComponents Core 4.4.5 Apache License 2.0 Apache Commons Daemon 1.0.15 Apache License 2.0 classworlds 2.4 Apache License 2.0 abego TreeLayout Core 1.0.1 BSD 3-clause "New" or "Revised" License jackson-core 2.8.6 Apache License 2.0 Lucene Join 6.6.1 Apache License 2.0 Apache Commons CLI 1.3-cloudera-pre-r1439998 Apache License 2.0 hive-apache 0.5 Apache License 2.0 scala-parser-combinators 1.0.4 BSD 3-clause "New" or "Revised" License com.springsource.javax.xml.bind 2.1.7 Common Development and Distribution License 1.0 SnakeYAML 1.15 Apache License 2.0 JUnit 4.12 Common Public License 1.0 ApacheDS Protocol Kerberos 2.0.0-M12 Apache License 2.0 Apache Groovy 2.4.6 Apache License 2.0 JGraphT - Core 1.2.0 (GNU Lesser General Public License v2.1 or later AND Eclipse Public License 1.0) chill-java 0.5.0 Apache License 2.0 Apache Commons Logging 1.2 Apache License 2.0 OpenCensus 0.12.3 Apache License 2.0 ApacheDS Protocol -
Selenium Python Bindings Release 2
Selenium Python Bindings Release 2 Baiju Muthukadan Sep 03, 2021 Contents 1 Installation 3 1.1 Introduction...............................................3 1.2 Installing Python bindings for Selenium.................................3 1.3 Instructions for Windows users.....................................3 1.4 Installing from Git sources........................................4 1.5 Drivers..................................................4 1.6 Downloading Selenium server......................................4 2 Getting Started 7 2.1 Simple Usage...............................................7 2.2 Example Explained............................................7 2.3 Using Selenium to write tests......................................8 2.4 Walkthrough of the example.......................................9 2.5 Using Selenium with remote WebDriver................................. 10 3 Navigating 13 3.1 Interacting with the page......................................... 13 3.2 Filling in forms.............................................. 14 3.3 Drag and drop.............................................. 15 3.4 Moving between windows and frames.................................. 15 3.5 Popup dialogs.............................................. 16 3.6 Navigation: history and location..................................... 16 3.7 Cookies.................................................. 16 4 Locating Elements 17 4.1 Locating by Id.............................................. 18 4.2 Locating by Name............................................ 18 4.3 -
N $NUM GPUS Python Train.Py
Neural Network concurrency Tal Ben-Nun and Torsten Hoefler, Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, 2018, Data Parallelism vs Model Parallelism Hardware and Libraries ● It is not only a matter of computational power: ○ CPU (MKL-DNN) ○ GPU (cuDNN) ○ FGPA ○ TPU ● Input/Output matter ○ SSD ○ Parallel file system (if you run parallel algorithm) ● Communication and interconnection too, if you are running in distributed mode ○ MPI ○ gRPC +verbs (RDMA) ○ NCCL Install TensorFlow from Source [~]$ wget https://github.com/.../bazel-0.15.2-installer-linux-x86_64.sh [~]$ ./bazel-0.15.2-installer-linux-x86_64.sh --prefix=... [~]$ wget https://github.com/tensorflow/tensorflow/archive/v1.10.0.tar.gz ... [~]$ python3 -m venv $TF_INSTALL_DIR [~]$ source $TF_INSTALL_DIR/bin/activate [~]$ pip3 install numpy wheel [~]$ ./configure ... [~]$ bazel build --config=mkl/cuda \ //tensorflow/tools/pip_package:build_pip_package [~]$ bazel-bin/tensorflow/tools/pip_package/build_pip_package $WHEELREPO [~]$ pip3 install $WHEELREPO/$WHL --ignore-installed [~]$ pip3 install keras horovod ... Input pipeline If using accelerators like GPU, pipeline tha data load exploiting the CPU with the computation on GPU The tf.data API helps to build flexible and efficient input pipelines Optimizing for CPU ● Built from source with all of the instructions supported by the target CPU and the MKL-DNN option for Intel® CPU. ● Adjust thread pools ○ intra_op_parallelism_threads: Nodes that can use multiple threads to parallelize their execution -
Macbook Were Made for Each Other
Congratulations, you and your MacBook were made for each other. Say hello to your MacBook. www.apple.com/macbook Built-in iSight camera and iChat Video chat with friends and family anywhere in the world. Mac Help isight Finder Browse your files like you browse your music with Cover Flow. Mac Help finder MacBook Mail iCal and Address Book Manage all your email Keep your schedule and accounts in one place. your contacts in sync. Mac Help Mac Help mail isync Mac OS X Leopard www.apple.com/macosx Time Machine Quick Look Spotlight Safari Automatically Instantly preview Find anything Experience the web back up and your files. on your Mac. with the fastest restore your files. Mac Help Mac Help browser in the world. Mac Help quick look spotlight Mac Help time machine safari iLife ’09 www.apple.com/ilife iPhoto iMovie GarageBand iWeb Organize and Make a great- Learn to play. Create custom search your looking movie in Start a jam session. websites and publish photos by faces, minutes or edit Record and mix them anywhere with places, or events. your masterpiece. your own song. a click. iPhoto Help iMovie Help GarageBand Help iWeb Help photos movie record website Contents Chapter 1: Ready, Set Up, Go 9 What’s in the Box 9 Setting Up Your MacBook 16 Putting Your MacBook to Sleep or Shutting It Down Chapter 2: Life with Your MacBook 20 Basic Features of Your MacBook 22 Keyboard Features of Your MacBook 24 Ports on Your MacBook 26 Using the Trackpad and Keyboard 27 Using the MacBook Battery 29 Getting Answers Chapter 3: Boost Your Memory 35 Installing Additional