Design and Implementation of an Encryption Architecture for APCO P25 Using an Open Source SDR Platform in an OSSIE Environment

Total Page:16

File Type:pdf, Size:1020Kb

Design and Implementation of an Encryption Architecture for APCO P25 Using an Open Source SDR Platform in an OSSIE Environment UC San Diego UC San Diego Electronic Theses and Dissertations Title Design and implementation of an encryption framework for APCO P25 using an open source SDR platform in an OSSIE environment Permalink https://escholarship.org/uc/item/52w2h896 Author Nwokafor, Anthony Anelechi Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Design and Implementation of an Encryption Framework for APCO P25 using an open source SDR platform in an OSSIE Environment A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Electrical Engineering (Signal Image Processing) by Anthony Anelechi Nwokafor Jr. Committee in charge: Professor William Hodgkiss, Chair Professor Tara Javidi Professor George C. Papen 2012 Copyright Anthony Anelechi Nwokafor Jr., 2012 All rights reserved. This Thesis of Anthony Anelechi Nwokafor Jr. is ap- proved, and it is acceptable in quality and form for pub- lication on microfilm and electronically: Chair University of California, San Diego 2012 iii DEDICATION To my best friend, Ariel J. Willingham. iv TABLE OF CONTENTS Signature Page.................................. iii Dedication..................................... iv Table of Contents.................................v List of Figures.................................. vii List of Tables................................... viii List of Abbreviations............................... ix Acknowledgements................................ xi Abstract of the Thesis.............................. xii Chapter 1 Introduction............................1 1.1 What is APCO P25?....................2 1.2 Overview...........................3 1.2.1 Background.....................3 1.2.2 Encryption Framework...............3 1.2.3 Summary......................3 Chapter 2 Background............................4 2.1 Encryption..........................4 2.2 Software Defined Radio...................5 2.3 SDR Hardware Environment................7 2.3.1 GPP.........................8 2.3.2 Overo Tide COM and Tobi Expansion board...8 2.3.3 USRP N210 and WBX RF Daughterboard....9 2.4 SDR Software Environment................ 10 2.4.1 OSSIE SCA Implementation............ 10 2.4.2 DVSI AMBE+2TM Vocoder Library........ 11 2.4.3 OpenEmbedded, BitBake and TI DSP/BIOS Link 13 2.4.4 Universal Hardware Driver (UHD) library.... 13 2.5 P25 Implementation.................... 14 2.5.1 Development of components and modifications.. 14 Chapter 3 Encryption Framework...................... 18 3.1 P25 Encryption Specifications............... 18 3.1.1 P25 Encryption Schedule.............. 20 3.2 Architecture and Design.................. 23 v 3.2.1 GPP (Host PC) Encryption Component..... 24 3.2.2 OMAP Encryption Component.......... 26 3.3 Implementation....................... 28 3.3.1 OpenSSL Cryptography Library......... 29 3.3.2 Phase One: Pseudo Code............. 30 3.3.3 Phase Two: As Standalone executable...... 33 3.3.4 Phase Three: On SDR Platform......... 35 3.4 Integration.......................... 43 3.5 Testing............................ 44 3.5.1 Functional Tests.................. 44 3.5.2 Performance Tests.................. 45 3.6 Issues and Fixes....................... 46 Chapter 4 Summary............................. 48 4.1 Future Work......................... 49 4.1.1 Encryption Framework Enhancements....... 50 4.1.2 Alternate SDR Architectures............ 50 4.1.3 Key Management.................. 51 4.1.4 TripleDES and other encryption algorithms.... 51 Appendix A Source code............................ 53 A.1 Standalone Implementation of Encryption Framework. 53 A.2 P25 Implementation with Encryption on an open-source SDR platform in OSSIE environment........... 53 Bibliography................................... 54 vi LIST OF FIGURES Figure 2.1: Generic SDR Architecture.....................6 Figure 2.2: SDR Hardware and Software Environment............7 Figure 2.3: GPP Components.........................8 Figure 2.4: Gumstix Boards..........................9 Figure 2.5: USRP Components.........................9 Figure 2.6: Block Diagram of P25 Implementation without Encryption.. 16 Figure 3.1: Output Feedback (OFB) Mode Encryption............ 19 Figure 3.2: P25 Superframe.......................... 20 Figure 3.3: P25 LDU1 and LDU2 frame details................ 21 Figure 3.4: Block Diagram of P25 Implementation with Encryption.... 24 Figure 3.5: Encryption Device Block Diagram................ 26 Figure 3.6: Omap Encryption Component Block Diagram......... 27 Figure 3.7: State machine in ARM and DSP Encryption components.... 38 Figure 3.8: OFB Mode XOR operation workaround............. 41 Figure 3.9: Data path of Encrypted Voice Transmission........... 42 vii LIST OF TABLES Table 3.1: P25 Superframe Encrypted Information............. 22 Table 3.2: P25 Encryption Framework Timing Performance Measurements 46 viii LIST OF ABBREVIATIONS AES Advanced Encryption Standard ALGID Algorithm ID AMBE Advanced Multiband Excitation APCO Association of Public-Safety Communications Officials-International CF Core Framework COM Computer On Module DDC Digital Down-Converter DES Data Encryption Standard DUC Digital Up-Converter DVSI Digital Voice Systems, Inc. ES Encryption Sync FDMA Frequency Division Multiple Access GPP General Purpose Processor HDU Header Data Unit IMBE Improved Multi-Band Excitation JPEO Joint Program Executive Office JTRS Joint Tactical Radio System KID Key ID LC Link Control LDU Logical Link Data Unit LSD Low Speed Data MI Message Indicator OE OpenEmbedded OFB Output Feed Back P25 Project 25 PTT Push-To-Talk SCA Software Communication Architecture SDR Software Defined Radio TDEA Triple Data Encryption Algorithm TDES Triple DES ix TDMA Time Division Multiple Access TDU Terminator Data Unit TIA Telecommunications Industry Association UHD Universal Hardware Driver USRP Universal Software Radio Peripheral VC Voice Codeword x ACKNOWLEDGEMENTS First, I would like to thank my Lord and Savior Jesus Christ for all the wonderful blessings he's surrounded me with. I would like to acknowledge my adviser, Dr. William S. Hodgkiss for the time and effort he put into advising me on this work. Thank you. It is very much appreciated. I would also like to acknowledge the input from the WISE Group at California Institute for Telecommunications and Information Technology (CALIT2), specifically Per Johansson, Zhongren Cao, Wenhua Zhao, Jeff Cuenco and Justyn Bell. Their input and help was instrumental in figuring out various aspects of integration and debugging the encryption framework. A big thanks to Miss. Ariel Willingham (Pookie) for her understanding, support and companionship throughout my years in school. I could not have asked for a better "best friend". I would love to acknowledge and thank my family; Dad, Mom, Chioma, Kelechi and Ugochi, for their love, concern, prayers, help and support, everyday. I would like to acknowledge all my friends and well wishers who through their concern, advice, prayers and moral support have made my journey through Graduate school memorable. Thank you all so much! Last, but not least, I would like to acknowledge that this work was sup- ported by the Joint Program Executive Office (JPEO) of the Joint Tactical Ra- dio System (JTRS) through SPAWAR Systems Center Pacific under contract no. N66001-08-D-0155/T.O.0001 xi ABSTRACT OF THE THESIS Design and Implementation of an Encryption Framework for APCO P25 using an open source SDR platform in an OSSIE Environment by Anthony Anelechi Nwokafor Jr. Master of Science in Electrical Engineering (Signal Image Processing) University of California, San Diego, 2012 Professor William Hodgkiss, Chair Secure and reliable communication is one of the most important issues in the public safety domain. For public safety and emergency response organiza- tions such as the Police and Fire departments, reliability and security of their communications is fundamental and requires both authentication of users as well as encryption of voice and data communication. Project 25 (P25) public safety waveform is the waveform of choice for most public safety and emergency response organizations in Northern America and includes features to enhance reliability and security of communications. This thesis describes the design and implementation of an encryption framework for a P25 waveform in a Software Communication Ar- chitecture (SCA) environment on an open-source Software Defined Radio (SDR) xii platform. The design and implementation of the framework which starts with a high level modeling of its state machine using pseudocode, goes through a bit- true intermediate implementation and ends with the final cycle-true and bit-true platform-specific implementation is discussed. This thesis proposes an encryption framework that is feasible for implementing the P25 encryption specifications and can be rapidly prototyped in an SCA environment on a cheap off-the-shelf SDR platform involving multiple processors. xiii Chapter 1 Introduction Public safety and emergency response operations often require coordination across multiple government and civilian agencies. These operations are often ge- ographically distributed, as different teams or agencies could be spread out over the region of operation carrying out specialized tasks while the command center may be situated in a remote location. Since different participating agencies may use different communication systems, a communication bottle neck may develop that can negatively impact
Recommended publications
  • On the Impact of Exception Handling Compatibility on Binary Instrumentation†
    On the Impact of Exception Handling Compatibility on Binary Instrumentation† Soumyakant Priyadarshan Huan Nguyen R. Sekar Stony Brook University Stony Brook University Stony Brook University Stony Brook, NY, USA Stony Brook, NY, USA Stony Brook, NY, USA [email protected] [email protected] [email protected] Abstract overheads, but has been held back by challenges in accurate dis- assembly and code pointer identification. With the emergence of To support C++ exception handling, compilers generate metadata position-independent (or relocatable) binaries as the dominant for- that is a rich source of information about the code layout. On mat in recent years, researchers have been able to address these Linux, this metadata is also used to support stack tracing, thread challenges, e.g., in Egalito [41], RetroWrite [11] and SBR[28, 29] cleanup and other functions. For this reason, Linux binaries contain systems. code-layout-revealing metadata for C-code as well. Even hand- written assembly in low-level system libraries is covered by such Despite recent advances, deployability of binary instrumentation metadata. We investigate the implications of this metadata in this continues to face significant challenges. One of the major concerns paper, and show that it can be used to (a) improve accuracy of is compatibility. In particular, existing static binary instrumentation disassembly, (b) achieve significantly better accuracy at function tools tend to break stack tracing (for C and C++) as well as C++ boundary identification as compared to previous research, and(c) exception handling. While compatibility with these features may as a rich source of information for defeating fine-grained code not be important for proof-of-concept instrumentations, it is hardly randomization.
    [Show full text]
  • MASTERCLASS GNUPG MASTERCLASS You Wouldn’T Want Other People Opening Your Letters and BEN EVERARD Your Data Is No Different
    MASTERCLASS GNUPG MASTERCLASS You wouldn’t want other people opening your letters and BEN EVERARD your data is no different. Encrypt it today! SECURE EMAIL WITH GNUPG AND ENIGMAIL Send encrypted emails from your favourite email client. our typical email is about as secure as a The first thing that you need to do is create a key to JOHN LANE postcard, which is good news if you’re a represent your identity in the OpenPGP world. You’d Ygovernment agency. But you wouldn’t use a typically create one key per identity that you have. postcard for most things sent in the post; you’d use a Most people would have one identity, being sealed envelope. Email is no different; you just need themselves as a person. However, some may find an envelope – and it’s called “Encryption”. having separate personal and professional identities Since the early 1990s, the main way to encrypt useful. It’s a personal choice, but starting with a single email has been PGP, which stands for “Pretty Good key will help while you’re learning. Privacy”. It’s a protocol for the secure encryption of Launch Seahorse and click on the large plus-sign email that has since evolved into an open standard icon that’s just below the menu. Select ‘PGP Key’ and called OpenPGP. work your way through the screens that follow to supply your name and email address and then My lovely horse generate the key. The GNU Privacy Guard (GnuPG), is a free, GPL-licensed You can, optionally, use the Advanced Key Options implementation of the OpenPGP standard (there are to add a comment that can help others identify your other implementations, both free and commercial – key and to select the cipher, its strength and set when the PGP name now refers to a commercial product the key should expire.
    [Show full text]
  • Open Source Used in 250 350 550 Switches 2.5.7.X
    Open Source Used In 250 350 550 switches 2.5.7.x Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. Text Part Number: 78EE117C99-1099179018 Open Source Used In 250 350 550 switches 2.5.7.x 1 This document contains licenses and notices for open source software used in this product. With respect to the free/open source software listed in this document, if you have any questions or wish to receive a copy of any source code to which you may be entitled under the applicable free/open source license(s) (such as the GNU Lesser/General Public License), please contact us at [email protected]. In your requests please include the following reference number 78EE117C99-1099179018 Contents 1.1 jq 1.6-1 1.1.1 Available under license 1.2 avahi 0.6.32-3 1.2.1 Available under license 1.3 dnsmasq 2.78-1 1.3.1 Available under license 1.4 ejdb 1.2.12 1.4.1 Available under license 1.5 procd 2015/10/29 1.5.1 Available under license 1.6 jsonfilter 2014/6/19 1.6.1 Available under license 1.7 libnetconf 0.10.0-2 1.7.1 Available under license 1.8 libcgroup 0.41 1.8.1 Available under license 1.9 d-bus 1.10.4 1.9.1 Available under license 1.10 net-snmp 5.9 1.10.1 Available under license 1.11 nmap 6.47-2 1.11.1 Available under license 1.12 u-boot 2013.01 1.12.1 Available under license 1.13 bzip2 1.0.6 1.13.1 Available under license Open Source Used In 250 350 550 switches 2.5.7.x 2 1.14 openssl 1.1.1c 1.14.1 Available
    [Show full text]
  • T U M a Digital Wallet Implementation for Anonymous Cash
    Technische Universität München Department of Informatics Bachelor’s Thesis in Information Systems A Digital Wallet Implementation for Anonymous Cash Oliver R. Broome Technische Universität München Department of Informatics Bachelor’s Thesis in Information Systems A Digital Wallet Implementation for Anonymous Cash Implementierung eines digitalen Wallets for anonyme Währungen Author Oliver R. Broome Supervisor Prof. Dr.-Ing. Georg Carle Advisor Sree Harsha Totakura, M. Sc. Date October 15, 2015 Informatik VIII Chair for Network Architectures and Services I conrm that this thesis is my own work and I have documented all sources and material used. Garching b. München, October 15, 2015 Signature Abstract GNU Taler is a novel approach to digital payments with which payments are performed with cryptographically generated representations of actual currencies. The main goal of GNU Taler is to allow taxable anonymous payments to non-anonymous merchants. This thesis documents the implementation of the Android version of the GNU Taler wallet, which allows users to create new Taler-based funds and perform payments with them. Zusammenfassung GNU Taler ist ein neuartiger Ansatz für digitales Bezahlen, bei dem Zahlungen mit kryptographischen Repräsentationen von echten Währungen getätigt werden. Das Hauptziel von GNU Taler ist es, versteuerbare, anonyme Zahlungen an nicht-anonyme Händler zu ermöglichen. Diese Arbeit dokumentiert die Implementation der Android-Version des Taler-Portemonnaies, der es Benutzern erlaubt, neues Taler-Guthaben zu erzeugen und mit ihnen Zahlungen zu tätigen. I Contents 1 Introduction 1 1.1 GNU Taler . .2 1.2 Goals of the thesis . .2 1.3 Outline . .3 2 Implementation prerequisites 5 2.1 Native libraries . .5 2.1.1 Libgcrypt .
    [Show full text]
  • Demarinis Kent Williams-King Di Jin Rodrigo Fonseca Vasileios P
    sysfilter: Automated System Call Filtering for Commodity Software Nicholas DeMarinis Kent Williams-King Di Jin Rodrigo Fonseca Vasileios P. Kemerlis Department of Computer Science Brown University Abstract This constant stream of additional functionality integrated Modern OSes provide a rich set of services to applications, into modern applications, i.e., feature creep, not only has primarily accessible via the system call API, to support the dire effects in terms of security and protection [1, 71], but ever growing functionality of contemporary software. How- also necessitates a rich set of OS services: applications need ever, despite the fact that applications require access to part of to interact with the OS kernel—and, primarily, they do so the system call API (to function properly), OS kernels allow via the system call (syscall) API [52]—in order to perform full and unrestricted use of the entire system call set. This not useful tasks, such as acquiring or releasing memory, spawning only violates the principle of least privilege, but also enables and terminating additional processes and execution threads, attackers to utilize extra OS services, after seizing control communicating with other programs on the same or remote of vulnerable applications, or escalate privileges further via hosts, interacting with the filesystem, and performing I/O and exploiting vulnerabilities in less-stressed kernel interfaces. process introspection. To tackle this problem, we present sysfilter: a binary Indicatively, at the time of writing, the Linux
    [Show full text]
  • Software Package Licenses
    DAVIX 1.0.0 Licenses Package Version Platform License Type Package Origin Operating System SLAX 6.0.4 Linux GPLv2 SLAX component DAVIX 0.x.x Linux GPLv2 - DAVIX Manual 0.x.x PDF GNU FDLv1.2 - Standard Packages Font Adobe 100 dpi 1.0.0 X Adobe license: redistribution possible. Slackware Font Misc Misc 1.0.0 X Public domain Slackware Firefox 2.0.0.16 C Mozilla Public License (MPL), chapter 3.6 and Slackware 3.7 Apache httpd 2.2.8 C Apache License 2.0 Slackware apr 1.2.8 C Apache License 2.0 Slackware apr-util 1.2.8 C Apache License 2.0 Slackware MySQL Client & Server 5.0.37 C GPLv2 Slackware Wireshark 1.0.2 C GPLv2, pidl util GPLv3 Built from source KRB5 N/A C Several licenses: redistribution permitted dropline GNOME: Copied single libraries libgcrypt 1.2.4 C GPLv2 or LGPLv2.1 Slackware: Copied single libraries gnutls 1.6.2 C GPLv2 or LGPLv2.1 Slackware: Copied single libraries libgpg-error 1.5 C GPLv2 or LGPLv2.1 Slackware: Copied single libraries Perl 5.8.8 C, Perl GPL or Artistic License SLAX component Python 2.5.1 C, PythonPython License (GPL compatible) Slackware Ruby 1.8.6 C, Ruby GPL or Ruby License Slackware tcpdump 3.9.7 C BSD License SLAX component libpcap 0.9.7 C BSD License SLAX component telnet 0.17 C BSD License Slackware socat 1.6.0.0 C GPLv2 Built from source netcat 1.10 C Free giveaway with no restrictions Slackware GNU Awk 3.1.5 C GPLv2 SLAX component GNU grep / egrep 2.5 C GPLv2 SLAX component geoip 1.4.4 C LGPL 2.1 Built from source Geo::IPfree 0.2 Perl This program is free software; you can Built from source redistribute it and/or modify it under the same terms as Perl itself.
    [Show full text]
  • Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
    pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae
    [Show full text]
  • Implementing Privacy Preserving Auction Protocols (Master Thesis Final Talk)
    Chair of Network Architectures and Services Department of Informatics Technical University of Munich Implementing Privacy Preserving Auction Protocols (Master Thesis Final Talk) Markus Teich, B. Sc. [email protected] March 23, 2017 Chair of Network Architectures and Services Department of Informatics Technical University of Munich Chair of Network Architectures and Services Department of Informatics Technical University of Munich Motivation In many existing auction systems sellers can: • Abuse loosing bid information • Collude with bidder(s) and change the outcome Our goals are: • Reduce requirement of trust in auction platform operators • Create usably fast system M. Teich — Auctions 2 Chair of Network Architectures and Services Department of Informatics Technical University of Munich Related Work Cryptographic auction protocols provide: • Correctness of the outcome • Non-Repudiation • Various degrees of privacy We choose the work of Felix Brandt because: • No trusted third party required • Beneficial privacy properties • Reviewed M. Teich — Auctions 3 first price first price private outcome public outcome M + 1st price M + 1st price private outcome public outcome Chair of Network Architectures and Services Department of Informatics Technical University of Munich Auction Formats Sealed bid vs. Incrementing M. Teich — Auctions 4 Chair of Network Architectures and Services Department of Informatics Technical University of Munich Auction Formats Sealed bid vs. Incrementing first price first price private outcome public outcome M + 1st price M + 1st price private outcome public outcome M. Teich — Auctions 4 Chair of Network Architectures and Services Department of Informatics Technical University of Munich libbrandt Overview • git://gnunet.org/libbrandt • Auction Outcome determination (all four formats) • Algorithms by Felix Brandt translated to Ed25519 • Around 4000 lines of C • Depends on libgcrypt v1.7+ and libgnunetutil v13.0+ • GPLv3+ M.
    [Show full text]
  • 18.04 Libgcrypt Cryptographic Module Module Versions 1.0 and 1.1 FIPS 140-2 Non-Proprietary Security Policy
    18.04 Libgcrypt Cryptographic Module Module Versions 1.0 and 1.1 FIPS 140-2 Non-Proprietary Security Policy Document Version 2.2 Last update: September 15, 2021 © 2021 Canonical Ltd. / atsec information security This document can be reproduced and distributed only whole and intact, including this copyright notice. 18.04 Libgcrypt Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy Prepared by: atsec information security corporation 9130 Jollyville Road, Suite 260 Austin, TX 78759 www.atsec.com © 2021 Canonical Ltd. / atsec information security This document can be reproduced and distributed only whole and intact, including this copyright notice. 2 of 39 18.04 Libgcrypt Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy Table of Contents 1. Cryptographic Module Specification ..................................................................................................... 6 1.1. Module Overview ................................................................................................................................... 6 1.2. Modes of Operation ................................................................................................................................ 9 2. Cryptographic Module Ports and Interfaces ........................................................................................ 10 3. Roles, Services and Authentication ..................................................................................................... 11 3.1. Roles .....................................................................................................................................................
    [Show full text]
  • Intel® Advanced Encryption Standard New Instructions (AES-NI) Ecosystem March 2013 Update
    Intel® Advanced Encryption Standard New Instructions (AES-NI) Ecosystem March 2013 Update This document doesn’t include all software products that support Intel® AES-NI. Please contact the software vendor directly for support information. The listed software versions indicate the initial Intel AES-NI support. The subsequent versions of the same software should support AES-NI as well. Intel® AES-NI Application with Intel® AES-NI Status Usage Model Microsoft* Windows Server* 2008 R2 Available now OpenSSL* 1.0.1 Available now GnuTLS* Available now CyaSSL* 1.5.4 Available now Red Hat Enterprise Linux* 6 Available now Secure Transactions SUSE Linux Enterprise Linux* 11 SP1 Available now (TLS/SSL) Solaris* 10 Available now Fedora* Linux 13 Available now Ubuntu* 11.10 Available now Intel® Expressway Service Gateway R3.4 Available now Intel® Expressway TokeniZation Broker R3.4 Available now Checkpoint* Endpoint Security R73 FDE 7.4 HFA1 Available now McAfee Endpoint Encryption* 6.0 with ePolicy Orchestrator* 4.5 Available now Microsoft BitLocker* WS2008R2 Available now Symantec* PGP Universal 10.1 Available now Full Disk Encryption WinMagic* SecureDoc* 5.2 Available now Software Dell* Data Protection for windows system Available now FileVault* Version 2 (Mac OS X Lion) Available now TrueCrypt* 7.0 Available now Sophos* SafeGuard Easy 6.0/SafeGuard Device Encryption 6.0 Available now Oracle* Berkeley* DB 11.2.5.0.26 Available now Oracle* Database* 11.2.0.2 Available now IBM* InfoSphere* Guardium Data Encryption for DB2* Available now Enterprise
    [Show full text]
  • Technical Notes All Changes in Fedora 13
    Fedora 13 Technical Notes All changes in Fedora 13 Edited by The Fedora Docs Team Copyright © 2010 Red Hat, Inc. and others. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat, designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. For guidelines on the permitted uses of the Fedora trademarks, refer to https:// fedoraproject.org/wiki/Legal:Trademark_guidelines. Linux® is the registered trademark of Linus Torvalds in the United States and other countries. Java® is a registered trademark of Oracle and/or its affiliates. XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. All other trademarks are the property of their respective owners. Abstract This document lists all changed packages between Fedora 12 and Fedora 13.
    [Show full text]
  • Reproducible Builds in Freebsd
    Reproducible Builds in FreeBSD Ed Maste [email protected] BSDCan 2016 (Ottawa, Canada) 2016-06-11 About Me I FreeBSD user since early 2000s I FreeBSD committer since 2005 I FreeBSD Foundation since 2011 I Reproducible builds since 2015 I BSD src contributor or committer? I BSD ports maintainer or committer? I Contributed to Free / Open Source Software? I Have heard about reproducible builds? I Have worked on making software reproducible? About You I BSD ports maintainer or committer? I Contributed to Free / Open Source Software? I Have heard about reproducible builds? I Have worked on making software reproducible? About You I BSD src contributor or committer? I Contributed to Free / Open Source Software? I Have heard about reproducible builds? I Have worked on making software reproducible? About You I BSD src contributor or committer? I BSD ports maintainer or committer? I Have heard about reproducible builds? I Have worked on making software reproducible? About You I BSD src contributor or committer? I BSD ports maintainer or committer? I Contributed to Free / Open Source Software? I Have worked on making software reproducible? About You I BSD src contributor or committer? I BSD ports maintainer or committer? I Contributed to Free / Open Source Software? I Have heard about reproducible builds? About You I BSD src contributor or committer? I BSD ports maintainer or committer? I Contributed to Free / Open Source Software? I Have heard about reproducible builds? I Have worked on making software reproducible? and get the same result Reproducible
    [Show full text]