Limosa Haemastica (Linnaeus, 1758): First Record from South Istributio
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Example of Potter Cove (King George Island, South Shetlands)
Journal of Marine Systems, 4 (1993) 289-301 289 Elsevier Science Publishers B.Y., Amsterdam Seasonal variation of algal growth conditions in sheltered Antarctic bays: the example of Potter Cove (King George Island, South Shetlands) Heinz Kloser a, Gustavo Ferreyra b, Irene Schloss b,c, Guillermo Mercuri b, Frank Laturnus d, Antonio Curtosi b a Netherlands Institute of Ecology, Center for Estuarine and Coastal Ecology, Vierstraat 28,4401 EA Yerseke, The Netherlands, (Publication number 596) b Instituto Antartico Argentino, Cerrito 1248, 1010 Buenos Aires, Argentina C Consejo Nacional de Investigaciones Cientfficas y Teenicas, Ri~'adavia 1917, 1013 Buenos Aires, Argentina d Alfred-Wegener-Institute for Polar and Marine Research, Columbusstrasse, 2850 Bremerhaven, Germany (Received October 10, 1992; revised and accepted May 11, 1993) ABSTRACf Wind, air temperature, surface irradiance, light penetration into the water, salinity and water temperature have been recorded from mid November to mid February in Potter Cove, King George Island. Results are compared with published data on requirements for growth of Antarctic macroalgae. The investigated season showed two distinct periods: Early summer lasted until end of December with comparatively cold temperatures, unstable water column and deep penetration of light; late summer started in early January and was characterized by reduced salinity due to meltwater discharge and high turbidity due to suspended sediments. Meltwater influence did not sufficiently change salinity to be responsible for the frequently noted paucity of macroalgal communities in sheltered bays. Shading by suspended sediments was equally considered to be of minor importance, as macroalgae have their optimal growth phase from September to December. During this period, light penetration and depth distribution of macro algae coincide perfectlY. -
Phylogenetic Reanalysis of Strauch's Osteological Data Set for The
TheCondor97:174-196 0 The Cooper Ornithological Society 1995 PHYLOGENETIC REANALYSIS OF STRAUCH’S OSTEOLOGICAL DATA SET FOR THE CHARADRIIFORMES PHILIP c. CHU Department of Biology and Museum of Zoology The University of Michigan, Ann Arbor, MI 48109 Abstract. Strauch’s (1978) compatibility analysisof relationshipsamong the shorebirds (Charadriifonnes) was the first study to examine the full range of charadriifonn taxa in a reproducibleway. SubsequentlyMickevich and Parenti (1980) leveled seriouscharges against Strauch’s characters,method of phylogenetic inference, and results. To account for these charges,Strauch ’s characterswere re-examined and recoded, and parsimony analyseswere performed on the revised matrix. A parsimony analysison 74 taxa from the revised matrix yielded 855 shortesttrees, each length = 286 and consistencyindex = 0.385. In each shortest tree there were two major lineages,a lineageof sandpiper-likebirds and a lineageof plover- like birds; the two formed a monophyletic group, with the auks (Alcidae) being that group’s sister taxon. The shortest trees were then compared with other estimates of shorebird re- lationships, comparison suggestingthat the chargesagainst Strauch’s results may have re- sulted from the Mickevich and Parenti decisions to exclude much of Strauch’s character evidence. Key words: Charadrilformes; phylogeny; compatibility analysis: parsimony analysis; tax- onomic congruence. INTRODUCTION Strauch scored 227 charadriiform taxa for 70 The investigation of evolutionary relationships characters. Sixty-three of the characters were among shorebirds (Aves: Charadriiformes) has a taken from either the skull or postcranial skel- long history (reviewed in Sibley and Ahlquist eton; the remaining seven involved the respec- 1990). Almost all studies used morphology to tive origins of three neck muscles, as published make inferences about shared ancestry; infer- in Burton (1971, 1972, 1974) and Zusi (1962). -
Antarctic Peninsula
Hucke-Gaete, R, Torres, D. & Vallejos, V. 1997c. Entanglement of Antarctic fur seals, Arctocephalus gazella, by marine debris at Cape Shirreff and San Telmo Islets, Livingston Island, Antarctica: 1998-1997. Serie Científica Instituto Antártico Chileno 47: 123-135. Hucke-Gaete, R., Osman, L.P., Moreno, C.A. & Torres, D. 2004. Examining natural population growth from near extinction: the case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biology 27 (5): 304–311 Huckstadt, L., Costa, D. P., McDonald, B. I., Tremblay, Y., Crocker, D. E., Goebel, M. E. & Fedak, M. E. 2006. Habitat Selection and Foraging Behavior of Southern Elephant Seals in the Western Antarctic Peninsula. American Geophysical Union, Fall Meeting 2006, abstract #OS33A-1684. INACH (Instituto Antártico Chileno) 2010. Chilean Antarctic Program of Scientific Research 2009-2010. Chilean Antarctic Institute Research Projects Department. Santiago, Chile. Kawaguchi, S., Nicol, S., Taki, K. & Naganobu, M. 2006. Fishing ground selection in the Antarctic krill fishery: Trends in patterns across years, seasons and nations. CCAMLR Science, 13: 117–141. Krause, D. J., Goebel, M. E., Marshall, G. J., & Abernathy, K. (2015). Novel foraging strategies observed in a growing leopard seal (Hydrurga leptonyx) population at Livingston Island, Antarctic Peninsula. Animal Biotelemetry, 3:24. Krause, D.J., Goebel, M.E., Marshall. G.J. & Abernathy, K. In Press. Summer diving and haul-out behavior of leopard seals (Hydrurga leptonyx) near mesopredator breeding colonies at Livingston Island, Antarctic Peninsula. Marine Mammal Science.Leppe, M., Fernandoy, F., Palma-Heldt, S. & Moisan, P 2004. Flora mesozoica en los depósitos morrénicos de cabo Shirreff, isla Livingston, Shetland del Sur, Península Antártica, in Actas del 10º Congreso Geológico Chileno. -
Wild Patagonia & Central Chile
WILD PATAGONIA & CENTRAL CHILE: PUMAS, PENGUINS, CONDORS & MORE! NOVEMBER 1–18, 2019 Pumas simply rock! This year we enjoyed 9 different cats! Observing the antics of lovely Amber here and her impressive family of four cubs was certainly the highlight in Torres del Paine National Park — Photo: Andrew Whittaker LEADERS: ANDREW WHITTAKER & FERNANDO DIAZ LIST COMPILED BY: ANDREW WHITTAKER VICTOR EMANUEL NATURE TOURS, INC. 2525 WALLINGWOOD DRIVE, SUITE 1003 AUSTIN, TEXAS 78746 WWW.VENTBIRD.COM Sensational, phenomenal, outstanding Chile—no superlatives can ever adequately describe the amazing wildlife spectacles we enjoyed on this year’s tour to this breathtaking and friendly country! Stupendous world-class scenery abounded with a non-stop array of exciting and easy birding, fantastic endemics, and super mega Patagonian specialties. Also, as I promised from day one, everyone fell in love with Chile’s incredible array of large and colorful tapaculos; we enjoyed stellar views of all of the country’s 8 known species. Always enigmatic and confiding, the cute Chucao Tapaculo is in the Top 5 — Photo: Andrew Whittaker However, the icing on the cake of our tour was not birds but our simply amazing Puma encounters. Yet again we had another series of truly fabulous moments, even beating our previous record of 8 Pumas on the last day when I encountered a further 2 young Pumas on our way out of the park, making it an incredible 9 different Pumas! Our Puma sightings take some beating, as they have stood for the last three years at 6, 7, and 8. For sure none of us will ever forget the magical 45 minutes spent observing Amber meeting up with her four 1- year-old cubs as they joyfully greeted her return. -
Hudsonian Godwit (Limosa Haemastica) at Orielton Lagoon, Tasmania, 09/03/2018
Hudsonian Godwit (Limosa haemastica) at Orielton Lagoon, Tasmania, 09/03/2018 Peter Vaughan and Andrea Magnusson E: T: Introduction: This submission pertains to the observation and identification of a single Hudsonian Godwit (Limosa haemastica) at Orielton Lagoon, Tasmania, on the afternoon of the 9th of March 2018. The bird was observed in the company of 50 Bar-tailed Godwits (Limosa lapponica) and a single Black-tailed Godwit (Limosa limosa), and both comparative and diagnostic features were used to differentiate it from these species. Owing to the recognised difficulties in differentiating similar species of wading birds, this submission makes a detailed analysis of the features used to identify the godwit in question. If accepted, this sighting would represent the eighth confirmed record of this species in Australia, and the second record of this species in Tasmania. Sighting and Circumstances: The godwit in question was observed on the western side of Orielton Lagoon in Tasmania, at approximately 543440 E 5262330 N, GDA 94, 55G. This location is comprised of open tidal mudflats abutted by Sarcicornia sp. saltmarsh, and is a well- documented roosting and feeding site for Bar-tailed Godwits and several other species of wading bird. This has included, for the past three migration seasons, a single Black-tailed Godwit (extralimital at this location) associating with the Bar-tailed Godwit flock. The Hudsonian Godwit was observed for approximately 37 minutes, between approximately 16:12 and 16:49, although the mixed flock of Bar-tailed Godwits and Black-tailed Godwits was observed for 55 minutes prior to this time. The weather during observation was clear skies (1/8 cloud cover), with a light north- easterly breeze and relatively warm temperatures (wind speed nor exact temperature recorded). -
N° English Name Scientific Name Status Day 1
1 FUNDACIÓN JOCOTOCO CHECK-LIST OF THE BIRDS OF YANACOCHA N° English Name Scientific Name Status Day 1 Day 2 Day 3 1 Tawny-breasted Tinamou Nothocercus julius R 2 Curve-billed Tinamou Nothoprocta curvirostris U 3 Torrent Duck Merganetta armata 4 Andean Teal Anas andium 5 Andean Guan Penelope montagnii U 6 Sickle-winged Guan Chamaepetes goudotii 7 Cattle Egret Bubulcus ibis 8 Black Vulture Coragyps atratus 9 Turkey Vulture Cathartes aura 10 Andean Condor Vultur gryphus R Sharp-shinned Hawk (Plain- 11 breasted Hawk) Accipiter striatus U 12 Swallow-tailed Kite Elanoides forficatus 13 Black-and-chestnut Eagle Spizaetus isidori 14 Cinereous Harrier Circus cinereus 15 Roadside Hawk Rupornis magnirostris 16 White-rumped Hawk Parabuteo leucorrhous 17 Black-chested Buzzard-Eagle Geranoaetus melanoleucus U 18 White-throated Hawk Buteo albigula R 19 Variable Hawk Geranoaetus polyosoma U 20 Andean Lapwing Vanellus resplendens VR 21 Rufous-bellied Seedsnipe Attagis gayi 22 Upland Sandpiper Bartramia longicauda R 23 Baird's Sandpiper Calidris bairdii VR 24 Andean Snipe Gallinago jamesoni FC 25 Imperial Snipe Gallinago imperialis U 26 Noble Snipe Gallinago nobilis 27 Jameson's Snipe Gallinago jamesoni 28 Spotted Sandpiper Actitis macularius 29 Band-tailed Pigeon Patagoienas fasciata FC 30 Plumbeous Pigeon Patagioenas plumbea 31 Common Ground-Dove Columbina passerina 32 White-tipped Dove Leptotila verreauxi R 33 White-throated Quail-Dove Zentrygon frenata U 34 Eared Dove Zenaida auriculata U 35 Barn Owl Tyto alba 36 White-throated Screech-Owl Megascops -
Biogeographical Profiles of Shorebird Migration in Midcontinental North America
U.S. Geological Survey Biological Resources Division Technical Report Series Information and Biological Science Reports ISSN 1081-292X Technology Reports ISSN 1081-2911 Papers published in this series record the significant find These reports are intended for the publication of book ings resulting from USGS/BRD-sponsored and cospon length-monographs; synthesis documents; compilations sored research programs. They may include extensive data of conference and workshop papers; important planning or theoretical analyses. These papers are the in-house coun and reference materials such as strategic plans, standard terpart to peer-reviewed journal articles, but with less strin operating procedures, protocols, handbooks, and manu gent restrictions on length, tables, or raw data, for example. als; and data compilations such as tables and bibliogra We encourage authors to publish their fmdings in the most phies. Papers in this series are held to the same peer-review appropriate journal possible. However, the Biological Sci and high quality standards as their journal counterparts. ence Reports represent an outlet in which BRD authors may publish papers that are difficult to publish elsewhere due to the formatting and length restrictions of journals. At the same time, papers in this series are held to the same peer-review and high quality standards as their journal counterparts. To purchase this report, contact the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161 (call toll free 1-800-553-684 7), or the Defense Technical Infonnation Center, 8725 Kingman Rd., Suite 0944, Fort Belvoir, VA 22060-6218. Biogeographical files o Shorebird Migration · Midcontinental Biological Science USGS/BRD/BSR--2000-0003 December 1 By Susan K. -
Variability in Krill Biomass Links Harvesting and Climate Warming to Penguin Population Changes in Antarctica
Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica Wayne Z. Trivelpiecea,1, Jefferson T. Hinkea,b, Aileen K. Millera, Christian S. Reissa, Susan G. Trivelpiecea, and George M. Wattersa aAntarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, 92037; and bScripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093 Edited by John W. Terborgh, Duke University, Durham, NC, and approved March 11, 2011 (received for review November 5, 2010) The West Antarctic Peninsula (WAP) and adjacent Scotia Sea terns of population change observed before and after 1986 are support abundant wildlife populations, many of which were nearly explained by recruitment trends. During the first decade of our extirpated by humans. This region is also among the fastest- studies, 40–60% of the penguins banded as fledglings recruited warming areas on the planet, with 5–6 °C increases in mean winter back to natal colonies, and first-time breeders constituted 20– air temperatures and associated decreases in winter sea-ice cover. 25% of the breeding population annually (Fig. 1 C and D). These biological and physical perturbations have affected the eco- Subsequently, survival to first breeding dropped precipitously in system profoundly. One hypothesis guiding ecological interpreta- the 1980s, and the recruitment rates of both species have de- tions of changes in top predator populations in this region, the clined (7). Less than 10% of Adélie penguins banded as chicks “sea-ice hypothesis,” proposes that reductions in winter sea ice survive to breed (Fig. -
Barrientos Island (Aitcho Islands) ANTARCTIC TREATY King George Is
Barrientos Island (Aitcho Islands) ANTARCTIC TREATY King George Is. Barrientos Island visitor site guide Ferraz Station Turret Point (Aitcho Islands) Admiralty Bay Elephant Is. Maxwell Bay Penguin Island 62˚24’S, 59˚47’W - North entrance to English Strait Marsh/frei Stations Great Wall Station between Robert and Greenwich Islands. Bellingshausen Station Arctowski Station Artigas Station Jubany Station King Sejong Station Potter Cove Key features AITCHO Nelson Is. ISLANDRobert Is. - Gentoo and Chinstrap Penguins S Mitchell Cove - Southern Elephant Seals Greenwich Is. Robert Point - Geological features Fort Point Half Moon Is. Yankee Harbour - Southern Giant Petrels Livingston Is. - Vegetation Hannah Point Bransfield Strait Snow Is. Telefon Bay Pendulum Cove Gourdin Is. Deception Is. Baily Head Description Vapour Col Cape Whaler's Bay Dubouzet B. O'higgins Station TOPOGRAPHY This 1.5km island’s north coast is dominated by steep cliffs, reaching a height of approximatelyAstr 70olabe Cape Hope metres, with a gentle slope down to the south coast. The eastern and western ends of the island Island are Legoupil Bay black sand and cobbled beaches. Columnar basalt outcrops are a notable feature of the western end. a insul FAUNA Confirmed breeders: Gentoo penguin (Pygoscelis papua), chinstrap penguin (Pygoscelis antarctica), Pen inity southern giant petrel (Macronectes giganteus), kelp gull (LarusNorthwest dominicanus (Nw)), and skuas (Catharacta spp.). Tr Suspected breeders: Blue-eyed shag (Phalacrocorax atricepsSubar) andea Wilson’s storm-petrel (OceanitesBone Bay Tower Is. oceanicus). Regularly haul out: Weddell seals (Leptonychotes weddellii), southern elephant seals (Mirounga leonina), and from late December, Antarctic fur seals (Arctocephalus Trgazellainity Is. ). Charcot Bay FLORA The entire centre of the island is covered by a very extensive moss carpet. -
Thirty Years of Marine Debris in the Southern Ocean Annual
Environment International 136 (2020) 105460 Contents lists available at ScienceDirect Environment International journal homepage: www.elsevier.com/locate/envint Thirty years of marine debris in the Southern Ocean: Annual surveys of two island shores in the Scotia Sea T ⁎ Claire M. Waludaa, , Iain J. Stanilanda, Michael J. Dunna, Sally E. Thorpea, Emily Grillyb, Mari Whitelawa, Kevin A. Hughesa a British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK b Commission for the Conservation of Antarctic Marine Living Resources, 181 Macquarie Street, Hobart 7000, Tasmania, Australia ARTICLE INFO ABSTRACT Handling Editor: Adrian Covaci We report on three decades of repeat surveys of beached marine debris at two locations in the Scotia Sea, in the Keywords: Southwest Atlantic sector of the Southern Ocean. Between October 1989 and March 2019 10,112 items of Marine debris beached debris were recovered from Main Bay, Bird Island, South Georgia in the northern Scotia Sea. The total Plastic mass of items (data from 1996 onwards) was 101 kg. Plastic was the most commonly recovered item (97.5% by Scotia Sea number; 89% by mass) with the remainder made up of fabric, glass, metal, paper and rubber. Mean mass per − − Antarctic item was 0.01 kg and the rate of accumulation was 100 items km 1 month 1. Analyses showed an increase in South Georgia the number of debris items recovered (5.7 per year) but a decline in mean mass per item, suggesting a trend South Orkney towards more, smaller items of debris at Bird Island. At Signy Island, South Orkney Islands, located in the southern Scotia Sea and within the Antarctic Treaty area, debris items were collected from three beaches, during the austral summer only, between 1991 and 2019. -
Avian Nesting and Roosting on Glaciers at High Elevation, Cordillera Vilcanota, Peru
The Wilson Journal of Ornithology 130(4):940–957, 2018 Avian nesting and roosting on glaciers at high elevation, Cordillera Vilcanota, Peru Spencer P. Hardy,1,4* Douglas R. Hardy,2 and Koky Castaneda˜ Gil3 ABSTRACT—Other than penguins, only one bird species—the White-winged Diuca Finch (Idiopsar speculifera)—is known to nest directly on ice. Here we provide new details on this unique behavior, as well as the first description of a White- fronted Ground-Tyrant (Muscisaxicola albifrons) nest, from the Quelccaya Ice Cap, in the Cordillera Vilcanota of Peru. Since 2005, .50 old White-winged Diuca Finch nests have been found. The first 2 active nests were found in April 2014; 9 were found in April 2016, 1 of which was filmed for 10 d during the 2016 nestling period. Video of the nest revealed infrequent feedings (.1 h between visits), slow nestling development (estimated 20–30 d), and feeding via regurgitation. The first and only active White-fronted Ground-Tyrant nest was found in October 2014, beneath the glacier in the same area. Three other unoccupied White-fronted Ground-Tyrant nests and an eggshell have been found since, all on glacier ice. At Quelccaya, we also observed multiple species roosting in crevasses or voids (caves) beneath the glacier, at elevations between 5,200 m and 5,500 m, including both White-winged Diuca Finch and White-fronted Ground-Tyrant, as well as Plumbeous Sierra Finch (Phrygilus unicolor), Rufous-bellied Seedsnipe (Attagis gayi), and Gray-breasted Seedsnipe (Thinocorus orbignyianus). These nesting and roosting behaviors are all likely adaptations to the harsh environment, as the glacier provides a microclimate protected from precipitation, wind, daily mean temperatures below freezing, and strong solar irradiance (including UV-B and UV-A). -
La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles.