Cecil Powell: Pions, Peace and Politics

Total Page:16

File Type:pdf, Size:1020Kb

Cecil Powell: Pions, Peace and Politics Cecil Powell's discovery of the pion 50 years ago led to a Nobel prize and opened the doorto modern particle physics. But Powell was more thanjust a physicist - he supported peace, had strong left-wing views and was a keen advocate of the public understanding of science Cecil Powell: pions, peace and politics Owen Lock Ii\ 1947 a relatively unknown physi- covery marked Powell's first step on cist at Bristol University in the UK, a path that led him to international Cecil Powell, discovered a new par- fame, which extended far beyond ticle - the pion - in the cosmic radi- the confines of sub-nuclear physics. ation. At the time, the pion was For Powell was far from being an thought to be the particle that had "ivory tower" physicist. His political been predicted in 1935 by Hideki views were well to the left, and the Yukawa as the carrier of the strong award of the Nobel prize allowed nuclear force that binds the protons him a wider audience for his ideas on and neutrons in the nucleus. Al- the abolition of nuclear weapons though we now know that this is not and the need for international col- the case - the pion is just one of a laboration in science. In 1954 he family of strongly interacting mesons became president of the Association - Powell's discovery earned him the of Scientific Workers - a UK trade Nobel Prize for Physics in 1950. union - and in 1956 he was made Powell discovered the pion using president of the World Federation specially manufactured photogra- of Scientific Workers. He was also phic emulsions as detectors. The first one of the 11 signatories of the major discovery of the post-war Russell-Einstein manifesto of July era, it showed the potential of cos- 1955, which called upon scientists mic-ray studies using the emulsion to "assemble in conference to technique and opened the door to appraise the perils that have arisen as the discovery of many other funda- a result of the development of mental particles. The international weapons of mass destruction". The collaborations that grew up between manifesto led to the foundation of die Pugwash movement, with Powell the various emulsion groups were PoweTl circa !L§i§ holding a montage o'f six photomicrographs, also the forerunner of what was to each showing the decay of pions into muons of constant energy. succeeding Bertrand Russell as happen later around the big high- chairman in 1967. energy particle accelerators, which gradually replaced cosmic- On the European scene, Powell played a major role in the ray experiments in the study of elementary particles. establishment of CERN, the European laboratory' for particle Charles Frank and Donald Perkins, both close colleagues of physics in Geneva, and in developing its research programme. A Powell at Bristol, wrote in their Royal Society biographical mem- leading exponent of the need for pure science - and a great oir of him: "The impact of the discovery of the pion on the sci- believer in the public understanding of science - he became a entific world in general and on physics in particular was highly respected figure in the international science community profound. It stimulated the building of a new generation of before his untimely death in 1969, at the age of 65. accelerators with which to probe the newly discovered domain of sub-nuclear physics and to uncover the richness of completely Early years new and unexpected phenomena. In a very real way Powell can Cecil Powell was a quiedy spoken man of slight build and be said to have been the father of particle physics". medium height. He was born in Tonbridge, Kent, on 5 Decem- As well as being a milestone in physics history, this major dis- ber 1903. His father was a gunsmidi and his mother was the PHYSICS Worno NOVEMBER 1997 35 eventually chose Powell, who arrived in Bristol in the spring of 1928 and stayed there for the rest of his life. Tyndall and Powell carried out extensive measurements on the mobility of positive ions in gases. Tyndall was greatly im- pressed by Powell's experimental ingenuity and skills, which included carpentry, an interest he had acquired as a boy. Powell was appointed lecturer in 1931 and the following year he mar- ried Isobel Artner, the German-born daughter of an Austrian industrialist and a Scottish mother. The first of Powell's two daughters was born in 1933 and an immediate consequence was that Powell found that his university income was inad- equate. He secured a job at twice the salary with the electrical- engineering firm British Thomson-Houston at Rugby, but his wife was sure that he would not be happy in industry. Fortunately, Tyndall arranged an increase in Powell's salary at Bristol, and a crisis was averted. Tyndall, who was always looking to the future, began to" wonder if any laboratory could become internationally prominent unless it did some sort of experimental nuclear physics. Powell had The first (left) and second (right) observed decays of a pion into a muon and a become excited by key breakthroughs that had been made at the neutral particle, later shown to be a neutrino. For this discovery of the pion, Cavendish, including the discovery of the neutron by James Powell was awarded the 1950 Nobel Prize for Physics. Chadwick and of electron-positron pair production by Patrick Blackett and Giuseppe Occhialini. Tyndall later recalled that in daughter of a schoolteacher. A lawsuit arising from a shooting 1933 Powell had been "dead keen on starting on a Blackett accident led to his father being declared bankrupt when Powell cosmic-ray experiment". However, it was eventually decided that was only three years old. Cecil's mother, who was forced to take Powell should be given the responsibility of building a 700 keV in lodgers to make ends meet, was anxious that he and his Cockcroft-Walton generator to accelerate protons and younger sister should escape from similar drudgery. Her elder deuterons. The deuterons would be used to bombard light- brother had succeeded in getting in to Trinity College, Cam- element targets to produce neutrons, and Powell would then bridge, to become an electrical engineer, and she was deter- study neutron-proton scattering using a Wilson chamber filled mined that her son should secure a similar emancipation. with hydrogen. With the aid of a brilliant young physicist, When he was 12, Powell won a scholarship tojudd School in Geoffrey Fertel, the accelerator became operational in May 1938. Tonbridge. Although he was initially interested in chemistry, he came under the influence of an able physics teacher and in 1921 Photographic emulsions obtained a state scholarship and an open scholarship to read In 1938 the theorist Walter Heitler, who was then at Bristol, drew natural sciences at Sidney Sussex College, Cambridge. Powell Powell's attention to the work of two Viennese physicists - graduated in 1925 with first-class honours in both parts of the Marietta Blau and Herta Wambacher - who had exposed pho- tripos, coming second in his year for physics. tographic emulsions to cosmic rays in the Austrian Alps. They Unsure what to do next, he obtained a post at a well known had observed the tracks of low-energy protons as well as "stars" public school, but wondered whether teaching would suit him. - nuclear disintegrations that had presumably been produced by He therefore asked Ernest Rutherford - who had succeededJJ cosmic rays. Powell was impressed by the relative simplicity of Thomson as Cavendish professor of physics at Cambridge in the method, and in the summer of 1938 Heitler took some "half- 1919 - if he could be accepted as a research student. Rutherford tone" emulsions made by Ilford to the Jungfraujoch in the Swiss duly arranged for him to work with the inventor of the cloud Alps, where they were exposed for 230 days. Subsequent exam- chamber, Charles Wilson. Powell built an all-glass cloud cham- ination in Bristol confirmed the Austrian observations. Since the ber to study how the condensation of water droplets in dust-free Wilson chamber was not ready when the Bristol accelerator was air was affected by the degree of expansion of the chamber. completed, Powell bought a box of normal half-tone photo- From this work he concluded that there was nothing to be gained graphic plates — which were normally used for making lantern in operating such chambers at temperatures other than room slides - and exposed one tangentially to his proton beam. temperature, although the results did help him to show how Impressed by the results, he considered the possibility of using steam flows through nozzles, which contributed to the design of the plates to detect and measure the energy of neutrons. steam turbines. Powell realized that if a neutron collides head-on with a proton in the gelatin of the emulsion and scatters the proton by less than The move to Bristol 5°, the proton takes up more than 99% of the neutron's energy University College Bristol, founded in 1876, became a university The neutron's energy could then be determined simply by in 1909, helped by generous benefactions from various members measuring the range distribution of the recoiling protons. To of the Wills tobacco family. In the early 1920s Henry Herbert test this method, Powell decided to study a reaction that had Wills gave £200 000 for the construction of a physics laboratory already been investigated using a Wilson chamber, namely and in October 1927 the H H Wills Physics Laboratory was for- B" + H?-> Cg + nj,. He therefore placed some half-tone emul- mally opened by Rutherford.
Recommended publications
  • Stage 2 Physics Sample Examination Questions
    Stage 2 Physics Sample Examination Questions © SACE Board of South Australia 2020 Stage 2 Physics Sample Examination Questions Objective reference: A1013258 1. The photograph below shows a mobile phone connected to a charger. The charger contains a step-down transformer. charger mobile phone The transformer decreases the voltage from 220 V to 5.0 V. The primary coil of the transformer has 3520 turns. Determine the number of turns in the secondary coil of the transformer. ____________________________________________________________________________________________________________ ____________________________________________________________________________________________________________ ____________________________________________________________________________________________________________ ____________________________________________________________________________________________________________ ____________________________________________________________________________________________________________ ____________________________________________________________________________________________________________ ____________________________________________________________________________________________________________ _________________________________________________________________________________________________ (2 marks) © SACE Board of South Australia 2020 Stage 2 Physics Sample Examination Questions Objective reference: A1013258 2. Two experiments were conducted to determine the wavelength of light from a monochromatic light source.
    [Show full text]
  • Marietta Blau in the History of Cosmic Rays Per Carlson
    Physics Today Marietta Blau in the history of cosmic rays Per Carlson Citation: Physics Today 65(10), 8 (2012); doi: 10.1063/PT.3.1729 View online: http://dx.doi.org/10.1063/PT.3.1729 View Table of Contents: http://scitation.aip.org/content/aip/magazine/physicstoday/65/10?ver=pdfcov Published by the AIP Publishing Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP: 149.28.91.2 On: Thu, 30 Jun 2016 17:53:16 readers’ forum Marietta Blau in the history of cosmic rays er Carlson, in his article “A century have been formed by cosmic particles ex- contributions deserve a prominent and Pof cosmic rays” (PHYSICS TODAY, plosively disintegrating heavy nuclei in permanent place in any history of February 2012, page 30), states that the emulsion. That discovery, in 1937, cosmic-ray and particle physics. And I the investigation of cosmic rays opened created a sensation among nuclear and believe it is also important, given the up the field of particle physics. How- cosmic-ray physicists worldwide, and by much-discussed problem of the under- ever, he neglects the importance of nu- demonstrating that nuclear emulsions representation of women in physics, clear emulsions in the progress of par- had come of age for recording rare high- that PHYSICS TODAY take care not to ticle physics, and he fails to mention a energy nuclear events, it paved the way overlook women who, like Blau, made key figure, Austrian physicist Marietta for further research in particle physics.
    [Show full text]
  • The Growth of Scientific Communities in Japan^
    The Growth of Scientific Communities in Japan^ Mitsutomo Yuasa** 1. Introdution The first university in Japan on the European system was Tokyo Imperial University, established in 1877. Twenty years later, Kyoto Imperial University was founded in 1897. Among the graduates from the latter university can be found two post World War II Nobel Prize winners in physics, namely, Hideki Yukawa (in 1949), and Shinichiro Tomonaga (in 1965). We may say that Japan attained her scientific maturity nearly a century after the arrival of Commodore Perry in 1853 for the purpose of opening her ports. Incidentally, two scientists in the U.S.A. were awarded the Nobel Prize before 1920, namely, A. A. Michelson (physics in 1907), and T. W. Richard (chemistry in 1914). On this point, Japan lagged about fifty years behind the U.S.A. Japanese scientists began to achieve international recognition in the 1890's. This period conincides with the dates of the establishment of the Cabinet System, the promulgation of the Constitution of the Japanese Empire and the opening of the Imperial Diet, 1885, 1889, and 1890 respectively. Shibasaburo Kitazato (1852-1931), discovered the serum treatment for tetanus in 1890, Jiro ICitao (1853- 1907), made public his theories on the movement of atomospheric currents and typhoons in 1887, and Hantaro Nagaoka (1865-1950), published his research on the distortion of magnetism in 1889, and his idea on the structure of the atom in 1903. These three representative scientists were all closely related to Tokyo Imperial University, as graduates and latter, as professors. But we cannot forget to men tion that the main studies of Kitazato and Kitao were made, not in Japan, but in Germany, under the guidance of great scientists of that country, R.
    [Show full text]
  • Marietta Blau's Work After World War II Arnold Perlmutter Department Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Marietta Blau's Work After World War II Arnold Perlmutter Department of Physics University of Miami Coral Gables, Florida 33124 completed, October 27, 2000 This paper has been translated into German and will be included, in a somewhat altered form, in a book Sterne der Zertrummerung, Marietta Blau, Wegbereiterin der Moderne Teilchenphysik, Brigitte Strohmaier and Robert Rosner, eds., Boehlau Verlag, Wien. 1 A. Introduction While it is clear that the seminal work of Dr. Marietta Blau was done in the 1920’s and especially in the 1930’s, it is also evident that her separation from the great research centers from 1938 to 1944 had a devastating effect on her productivity. It was during this period that Cecil F. Powell, at Bristol University, made use of Blau’s earlier tutelage on the preparation and analysis of photographic emulsions. According to Blau’s conversations with me (much later), she consulted with Ilford in the 1930’s to improve emulsion sensitivity and uniformity, and presumably had also imparted crucial lore of the technique to Powell. C.F. Powell, who had been a student of C.T.R. Wilson, had employed cloud chambers in a wide variety of studies in vulcanology, mechanical engineering, and nuclear physics. In 1938 and 1939 Powell’s experimental efforts turned to the use of photographic emulsions to investigate neutron interactions, and then to nuclear reactions1. With the coming of the war and then the British nuclear atomic bomb project, Powell established a formidable laboratory and collaboration for the analysis of emulsions and for their improvement by Ilford and Kodak.
    [Show full text]
  • JANNEY CYLINDER COMPANY Subsidiary of Pittsburgh Forgings Co
    People and things Michael Crowley-Milling of CERN, winner J. Pniewski of this year's Glazebrook Prize from the UK Institute of Physics. (Photo K Kilian) On People Eric Burhop, well-known high energy physicist from University College London, died on 22 January. He was particularly associated with the nuclear emulsion technique both in its heyday of cosmic ray research and early accelerator experiments and in its revived role in hybrid sys­ tems for the observation of charmed particle tracks, where he played a pioneering role. The Swedish physicist Erik Rudberg died on 2 January. He was Presi­ dent of the European Physical So­ ciety from 1970 to 1972 and in that office wrote for CERN COU­ RIER (February issue 1971 ) a mes­ sage of welcome on the decision to build the SPS. Gale Pewitt has been named Deputy Director for Operations at the Ar­ tation in music and recently com­ the National Medal of Science, one gonne Laboratory. In the 1960s he posed a song to celebrate CERN's of the highest US awards, to 20 em­ led the design and construction of 25th Anniversary (see November, inent researchers. Among those the 12 foot hydrogen bubble cham­ 1979 issue, page 369). who received the award this year <^ ber with its pioneering use of a were Richard Feynman and Victor large superconducting magnet. He Weisskopf. subsequently became Director of Among the award winners of the the High Energy Facilities Division. UK Institute of Physics for 1980 were Michael Crowley-Milling of PETRA and DORIS CERN (Glazebrook Medal and Prize) The Polish physicist J.
    [Show full text]
  • The Twenty-First Century Paradigm and the Role of Information Technology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Chapter 2 The Twenty-First Century Paradigm and the Role of Information Technology In Chap. 1 , we considered demand by roughly classifying it into two types: “diffusive demand” and “creative demand.” The “paradigm of the twentieth century and before” was characterized by diffu- sive demand. The paradigm was constituted by a material desire to satisfy needs for food, clothing, and shelter, as well as transportation, and social mobility. Many of the industries that came into being in the nineteenth and twentieth centuries were intended to satisfy such desires. I describe those material desires as diffusive demand leading to a “saturation of man-made objects .” It follows that new demand in the twenty-fi rst century will be generated by a new paradigm. Thus, in this chapter fi rst describes what the paradigms of the twenty-fi rst century are and then refl ects on the role played by the knowledge explosion, one of those paradigms, and the role played by information technology, which looks as if it came into being to solve problems created by the knowledge explosion. Exploding Knowledge, Limited Earth, and Aging Society What are the paradigms of the twenty-fi rst century? I believe there are three, which I classify as “exploding knowledge ,” “limited earth,” and “aging society” (Fig. 2.1 ). These three paradigms do not represent anything that is either good or bad for humanity. Each constitutes a basic framework containing both light and shadow. For instance, there has been an explosive increase in knowledge .
    [Show full text]
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]
  • Chapter 6 the Aftermath of the Cambridge-Vienna Controversy: Radioactivity and Politics in Vienna in the 1930S
    Trafficking Materials and Maria Rentetzi Gendered Experimental Practices Chapter 6 The Aftermath of the Cambridge-Vienna Controversy: Radioactivity and Politics in Vienna in the 1930s Consequences of the Cambridge-Vienna episode ranged from the entrance of other 1 research centers into the field as the study of the atomic nucleus became a promising area of scientific investigation to the development of new experimental methods. As Jeff Hughes describes, three key groups turned to the study of atomic nucleus. Gerhard Hoffman and his student Heinz Pose studied artificial disintegration at the Physics Institute of the University of Halle using a polonium source sent by Meyer.1 In Paris, Maurice de Broglie turned his well-equipped laboratory for x-ray research into a center for radioactivity studies and Madame Curie started to accumulate polonium for research on artificial disintegration. The need to replace the scintillation counters with a more reliable technique also 2 led to the extensive use of the cloud chamber in Cambridge.2 Simultaneously, the development of electric counting methods for measuring alpha particles in Rutherford's laboratory secured quantitative investigations and prompted Stetter and Schmidt from the Vienna Institute to focus on the valve amplifier technique.3 Essential for the work in both the Cambridge and the Vienna laboratories was the use of polonium as a strong source of alpha particles for those methods as an alternative to the scintillation technique. Besides serving as a place for scientific production, the laboratory was definitely 3 also a space for work where tasks were labeled as skilled and unskilled and positions were divided to those paid monthly and those supported by grant money or by research fellowships.
    [Show full text]
  • Appeal from the Nuclear Age Peace Foundation to End the Nuclear Weapons Threat to Humanity (2003)………………………………………..……...26
    Relevant Appeals against War and for Nuclear Disarmament from Scientific Networks 1945- 2010 Reiner Braun/ Manuel Müller/ Magdalena Polakowski Russell-Einstein-Manifesto (1955)……………..…..1 The first Pugwash Conferenec (1957)………..……4 The Letter from Bertrand Russell to Joseph Rotblat (1956)………………………………..……...6 „Göttinger 18“ (1957)…………………………..…..8 Hiroshima Appeal (1959)………………………..…9 Linus Pauling (1961)…………………………..…..10 The Call to Halt the Nuclear Arms Race (1980)………………..…..11 The Göttingen Draft Treaty to Ban Space Weapons (1984)…………………………………………….....15 Appeal by American Scientists to Ban Space Weapons (1985)………………………………..…..16 The Hamburg Disarmament Proposals (1986)…………………………………………..…...17 Hans A. Bethe to Mr. President (1997)………..…18 Appeal from Scientists in Japan (1998)……….....20 U.S.Nobel laureates object to preventive attack on Iraq (2003)……………………………………...….25 Appeal from the Nuclear Age Peace Foundation to end the nuclear weapons threat to humanity (2003)………………………………………..……...26 Appeal to support an International Einstein Year (2004)……………………………………………….28 Scientists for a Nuclear Weapons Free World, INES (2009)…………………………..……………31 Milan Document on Nuclear Disarmament (2010)……………………..34 Russell-Einstein-Manifesto (1955) 1 Russell-Einstein-Manifesto (1955) In the tragic situation which confronts humanity, we feel that scientists should assemble in conference to appraise the perils that have arisen as a result of the development of weapons of mass destruction, and to discuss a resolution in the spirit of the appended draft. We are speaking on this occasion, not as members of this or that nation, continent, or creed, but as human beings, members of the species Man, whose continued existence is in doubt. The world is full of conflicts; and, overshadowing all minor conflicts, the titanic struggle between Communism and anti-Communism.
    [Show full text]
  • From the Discovery of Radioactivity to the First Accelerator Experiments
    Chapter 2 From the Discovery of Radioactivity to the First Accelerator Experiments Michael Walter 2.1 Introduction The article reviews the historical phases of cosmic ray research from the very be- ginning around 1900 until the 1940s, when the first particle accelerators replaced cosmic particles as a source for elementary particle interactions. Contrary to the discovery of X-rays or the ionising α-, β- and γ -rays, it was an arduous path to the definite acceptance of the new radiation. The development in the years before the discovery is described in Sect. 2.2. The following section deals with the work of Victor F. Hess, especially with the detection of extraterrestrial radiation in 1912 and the years until the final acceptance by the scientific community. In Sect. 2.4 the study of the properties of cosmic rays is discussed. Innovative detectors and meth- ods like the cloud chamber, the Geiger–Müller counter and the coincidence circuit brought new stimuli. The origin of cosmic rays was and is still an unsolved ques- tion. The different hypotheses of the early time are summarised in Sect. 2.5.Inthe 1930s a scientific success story started which nobody of the first protagonists might have imagined. The discovery of the positron by C.D. Anderson was the birth of elementary particle physics. The 15 years until a new era started in 1947 with first accelerator experiments at the Berkeley synchro-cyclotron are described in Sect. 2.6. It is obvious that this article can only cover the main steps of the historical de- velopment. An excellent description of the research on the “Höhenstrahlung” in the years between 1900 and 1936 was given by Miehlnickel (1938).
    [Show full text]
  • Geometric Approaches to Quantum Field Theory
    GEOMETRIC APPROACHES TO QUANTUM FIELD THEORY A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2020 Kieran T. O. Finn School of Physics and Astronomy Supervised by Professor Apostolos Pilaftsis BLANK PAGE 2 Contents Abstract 7 Declaration 9 Copyright 11 Acknowledgements 13 Publications by the Author 15 1 Introduction 19 1.1 Unit Independence . 20 1.2 Reparametrisation Invariance in Quantum Field Theories . 24 1.3 Example: Complex Scalar Field . 25 1.4 Outline . 31 1.5 Conventions . 34 2 Field Space Covariance 35 2.1 Riemannian Geometry . 35 2.1.1 Manifolds . 35 2.1.2 Tensors . 36 2.1.3 Connections and the Covariant Derivative . 37 2.1.4 Distances on the Manifold . 38 2.1.5 Curvature of a Manifold . 39 2.1.6 Local Normal Coordinates and the Vielbein Formalism 41 2.1.7 Submanifolds and Induced Metrics . 42 2.1.8 The Geodesic Equation . 42 2.1.9 Isometries . 43 2.2 The Field Space . 44 2.2.1 Interpretation of the Field Space . 48 3 2.3 The Configuration Space . 50 2.4 Parametrisation Dependence of Standard Approaches to Quan- tum Field Theory . 52 2.4.1 Feynman Diagrams . 53 2.4.2 The Effective Action . 56 2.5 Covariant Approaches to Quantum Field Theory . 59 2.5.1 Covariant Feynman Diagrams . 59 2.5.2 The Vilkovisky–DeWitt Effective Action . 62 2.6 Example: Complex Scalar Field . 66 3 Frame Covariance in Quantum Gravity 69 3.1 The Cosmological Frame Problem .
    [Show full text]
  • Nobel Lectures™ 2001-2005
    World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of
    [Show full text]