Queuing Networks in Healthcare Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Simple, Practical Prioritization Scheme for a Job Shop Processing Multiple Job Types
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2013 A Simple, Practical Prioritization Scheme for a Job Shop Processing Multiple Job Types Shuping Zhang [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Management Sciences and Quantitative Methods Commons Recommended Citation Zhang, Shuping, "A Simple, Practical Prioritization Scheme for a Job Shop Processing Multiple Job Types. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/2503 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Shuping Zhang entitled "A Simple, Practical Prioritization Scheme for a Job Shop Processing Multiple Job Types." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Management Science. Mandyam M. Srinivasan, Melissa Bowers, Major Professor We have read this dissertation and recommend its acceptance: Ken Gilbert, Theodore P. Stank Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) A Simple, Practical Prioritization Scheme for a Job Shop Processing Multiple Job Types A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Shuping Zhang August 2013 Copyright © 2013 by Shuping Zhang All rights reserved. -
Queueing Theory
Queueing theory Agner Krarup Erlang, a Danish engineer who worked for the Copenhagen Telephone Exchange, published the first paper on what would now be called queueing theory in 1909.[8][9][10] He modeled the number of telephone calls arriving at an exchange by a Poisson process and solved the M/D/1 queue in 1917 and M/D/k queueing model in 1920.[11] In Kendall’s notation: • M stands for Markov or memoryless and means ar- rivals occur according to a Poisson process • D stands for deterministic and means jobs arriving at the queue require a fixed amount of service • k describes the number of servers at the queueing node (k = 1, 2,...). If there are more jobs at the node than there are servers then jobs will queue and wait for service Queue networks are systems in which single queues are connected The M/M/1 queue is a simple model where a single server by a routing network. In this image servers are represented by serves jobs that arrive according to a Poisson process and circles, queues by a series of retangles and the routing network have exponentially distributed service requirements. In by arrows. In the study of queue networks one typically tries to an M/G/1 queue the G stands for general and indicates obtain the equilibrium distribution of the network, although in an arbitrary probability distribution. The M/G/1 model many applications the study of the transient state is fundamental. was solved by Felix Pollaczek in 1930,[12] a solution later recast in probabilistic terms by Aleksandr Khinchin and Queueing theory is the mathematical study of waiting now known as the Pollaczek–Khinchine formula.[11] lines, or queues.[1] In queueing theory a model is con- structed so that queue lengths and waiting time can be After World War II queueing theory became an area of [11] predicted.[1] Queueing theory is generally considered a research interest to mathematicians. -
Absorbing State in Markov Decision Process, 330 Absorption, 466
Index Absorbing state Average-cost criterion, 326, 360 in Markov decision process, 330 Back-substitution, 182-183 Absorption, 466 Bailey's bulk queue, 209, 247-248 Accelerating convergence, 273 Balance equations, 412 Acceleration, 268, 270 global, 130, 411-412, 414 Action space, 326 job-class, 423 Adjoint, 215, 230 local, 130, 422 Agarwal, 289, 298 partial, 411-414, 418, 422 Aggregate station, 437 station, 411, 413-414, 418, 422 Aggregation, 57 and blocking, 427 Aggregation matrix, 102 failure of, 425 Aggregation step, 103 restored, 427, 429, 435 Aliased sequence, 277 Barthez, 272 Aliasing, 266 BASTA, 373 See also Error, aliasing Benes, 282, 284, 287 Alternating series, 268 Bernoulli arrivals, 373 Analytic, 206, 208, 210, 216, 235, 238 Bernoulli process, 387 Analyticity condition, 294 Bertozzi, 304 And gate, 462 Binomial average, 270 Approximation, 375, 377-378, 380-381, 388, Binomial distribution, 270 392-393, 396 Block elimination, 175, 179, 183 of transition matrix, 180, 357 and paradigms of Neuts, 187-189 Arbitrary-epoch tail probabilities, 381 Block iterative methods, 93 Arbitrary service time, 381 Block Jacobi, 94 Argument principle, 207, 239 Block SOR, 94 Arnoldi's method, 53, 83, 97 Block-splitting, 93 Arrival-first, 366 Blocking, 158, 425-427 Asmussen, 293, 299, 301 Blocking probability, 410 Assembly line, 415 Erlang,283 Asymptotic behavior, 243 time dependent, 280, 282 Asymptotic formulas, 282 Borovkov, 281 Asymptotic parameter, 294 Boundary probabilities, 206, 210, 218 Asymptotics, 303 Bounding methodology, 428-429 Automata: -
Performance Analysis of Multiclass Queueing Networks Via Brownian Approximation
Performance Analysis of Multiclass Queueing Networks via Brownian Approximation by Xinyang Shen B.Sc, Jilin University, China, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Faculty of Commerce and Business Administration; Operations and Logisitics) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA May 23, 2001 © Xinyang Shen, 2001 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Faculty of Commerce and Business Administration The University of. British Columbia Abstract This dissertation focuses on the performance analysis of multiclass open queueing networks using semi-martingale reflecting Brownian motion (SRBM) approximation. It consists of four parts. In the first part, we derive a strong approximation for a multiclass feedforward queueing network, where jobs after service completion can only move to a downstream service station. Job classes are partitioned into groups. Within a group, jobs are served in the order of arrival; that is, a first-in-first-out (FIFO) discipline is in force, and among groups, jobs are served under a pre-assigned preemptive priority discipline. -
Markovian Queueing Networks
Richard J. Boucherie Markovian queueing networks Lecture notes LNMB course MQSN September 5, 2020 Springer Contents Part I Solution concepts for Markovian networks of queues 1 Preliminaries .................................................. 3 1.1 Basic results for Markov chains . .3 1.2 Three solution concepts . 11 1.2.1 Reversibility . 12 1.2.2 Partial balance . 13 1.2.3 Kelly’s lemma . 13 2 Reversibility, Poisson flows and feedforward networks. 15 2.1 The birth-death process. 15 2.2 Detailed balance . 18 2.3 Erlang loss networks . 21 2.4 Reversibility . 23 2.5 Burke’s theorem and feedforward networks of MjMj1 queues . 25 2.6 Literature . 28 3 Partial balance and networks with Markovian routing . 29 3.1 Networks of MjMj1 queues . 29 3.2 Kelly-Whittle networks. 35 3.3 Partial balance . 39 3.4 State-dependent routing and blocking protocols . 44 3.5 Literature . 50 4 Kelly’s lemma and networks with fixed routes ..................... 51 4.1 The time-reversed process and Kelly’s Lemma . 51 4.2 Queue disciplines . 53 4.3 Networks with customer types and fixed routes . 59 4.4 Quasi-reversibility . 62 4.5 Networks of quasi-reversible queues with fixed routes . 68 4.6 Literature . 70 v Part I Solution concepts for Markovian networks of queues Chapter 1 Preliminaries This chapter reviews and discusses the basic assumptions and techniques that will be used in this monograph. Proofs of results given in this chapter are omitted, but can be found in standard textbooks on Markov chains and queueing theory, e.g. [?, ?, ?, ?, ?, ?, ?]. Results from these references are used in this chapter without reference except for cases where a specific result (e.g. -
An Overflow Loss Network Model for Capacity Plan
CORE Metadata, citation and similar papers at core.ac.uk Provided by STORE - Staffordshire Online Repository An Overflow Loss Network Model for Capacity Plan- ning of a Perinatal Network Md Asaduzzaman and Thierry J. Chaussalet University of Westminster, London, UK. Summary. In this paper, a model framework is developed to solve capacity planning problems faced by many perinatal networks in the UK. We propose a loss network model with overflow based on a continuous-time Markov chain for a perinatal network with specific application to a network in London. We derive the steady state expressions for overflow and rejection probabilities for each neonatal unit of the network based on a decomposition approach. Results obtained from the model are very close to observed values. Using the model, decisions on number of cots can be made for specific level of admission acceptance probabilities for each level of care at each neonatal unit of the network and specific levels of overflow to temporary care. Keywords: Queueing network model; Decomposition; Rejection; Continuous-time Markov chain 1. Introduction Every year over 80,000 (approximately 10%) neonates are born premature, very sick, or very small and require some form of specialist support in England (DH, 2003; RCPCH, 2007). Neonatal ser- vices aim to offer high quality care for these vulnerable babies. Over a six month period in 2006-07, neonatal units were shut to new admissions for an average of 24 days. One in ten units exceeded its capacity for intensive care for more than 50 days during a six month period (Bliss, 2007). The Na- tional Audit Office reported that capacity and staffing problems at unit level continue to constrain neonatal service (NAO, 2007). -
Product Form Queueing Networks S.Balsamo Dept
Product Form Queueing Networks S.Balsamo Dept. of Math. And Computer Science University of Udine, Italy Abstract Queueing network models have been extensively applied to represent and analyze resource sharing systems such as communication and computer systems and they have proved to be a powerful and versatile tool for system performance evaluation and prediction. Product form queueing networks have a simple closed form expression of the stationary state distribution that allow to define efficient algorithms to evaluate average performance measures. We introduce product form queueing networks and some interesting properties including the arrival theorem, exact aggregation and insensitivity. Various special models of product form queueing networks allow to represent particular system features such as state-dependent routing, negative customers, batch arrivals and departures and finite capacity queues. 1 Introduction and Short History System performance evaluation is often based on the development and analysis of appropriate models. Queueing network models have been extensively applied to represent and analyze resource sharing systems, such as production, communication and computer systems. They have proved to be a powerful and versatile tool for system performance evaluation and prediction. A queueing network model is a collection of service centers representing the system resources that provide service to a collection of customers that represent the users. The customers' competition for the resource service corresponds to queueing into the service centers. The analysis of the queueing network models consists of evaluating a set of performance measures, such as resource utilization and throughput and customer response time. The popularity of queueing network models for system performance evaluation is due to a good balance between a relative high accuracy in the performance results and the efficiency in model analysis and evaluation. -
Queuing Networks
Intro Refresher Reversibility Open networks Closed networks Multiclass networks Other networks Queuing Networks Florence Perronnin Polytech'Grenoble - UGA March 23, 2017 F. Perronnin (UGA) Queuing Networks March 23, 2017 1 / 46 Intro Refresher Reversibility Open networks Closed networks Multiclass networks Other networks Outline 1 Introduction to Queuing Networks 2 Refresher: M/M/1 queue 3 Reversibility 4 Open Queueing Networks 5 Closed queueing networks 6 Multiclass networks 7 Other product-form networks F. Perronnin (UGA) Queuing Networks March 23, 2017 2 / 46 Intro Refresher Reversibility Open networks Closed networks Multiclass networks Other networks Introduction to Queuing Networks Single queues have simple results They are quite robust to slight model variations We may have multiple contention resources to model: I servers I communication links I databases with various routing structures. Queuing networks are direct results for interaction of classical single queues with probabilistic or static routing. F. Perronnin (UGA) Queuing Networks March 23, 2017 3 / 46 Intro Refresher Reversibility Open networks Closed networks Multiclass networks Other networks Outline 1 Introduction to Queuing Networks 2 Refresher: M/M/1 queue 3 Reversibility 4 Open Queueing Networks 5 Closed queueing networks 6 Multiclass networks 7 Other product-form networks F. Perronnin (UGA) Queuing Networks March 23, 2017 4 / 46 Intro Refresher Reversibility Open networks Closed networks Multiclass networks Other networks Refresher: M/M/1 Infinite capacity λµ Poisson(λ) arrivals Exp(µ) service times M/M/1 queue FIFO discipline Definition λ ρ = µ is the traffic intensity of the queueing system. λ λ λ λ λλ i−1 i+1 . .. 0 1 .. -
Lecture Notes on Stochastic Networks
Lecture Notes on Stochastic Networks Frank Kelly and Elena Yudovina Contents Preface page ix Overview 1 Queueing and loss networks 2 Decentralized optimization 4 Random access networks 5 Broadband networks 6 Internet modelling 8 Part I 11 1 Markov chains 13 1.1 Definitions and notation 13 1.2 Time reversal 16 1.3 Erlang’s formula 18 1.4 Further reading 21 2 Queueing networks 22 2.1 An M/M/1 queue 22 2.2 A series of M/M/1 queues 24 2.3 Closed migration processes 26 2.4 Open migration processes 30 2.5 Little’s law 36 2.6 Linear migration processes 39 2.7 Generalizations 44 2.8 Further reading 48 3 Loss networks 49 3.1 Network model 49 3.2 Approximation procedure 51 3.3 Truncating reversible processes 52 v vi Contents 3.4 Maximum probability 57 3.5 A central limit theorem 61 3.6 Erlang fixed point 67 3.7 Diverse routing 71 3.8 Further reading 81 Part II 83 4 Decentralized optimization 85 4.1 An electrical network 86 4.2 Road traffic models 92 4.3 Optimization of queueing and loss networks 101 4.4 Further reading 107 5 Random access networks 108 5.1 The ALOHA protocol 109 5.2 Estimating backlog 115 5.3 Acknowledgement-based schemes 119 5.4 Distributed random access 125 5.5 Further reading 132 6 Effective bandwidth 133 6.1 Chernoff bound and Cramer’s´ theorem 134 6.2 Effective bandwidth 138 6.3 Large deviations for a queue with many sources 143 6.4 Further reading 148 Part III 149 7 Internet congestion control 151 7.1 Control of elastic network flows 151 7.2 Notions of fairness 158 7.3 A primal algorithm 162 7.4 Modelling TCP 166 7.5 What is being -
Lecture Notes on Stochastic Networks
Lecture Notes on Stochastic Networks Frank Kelly and Elena Yudovina Contents Preface page viii Overview 1 Queueing and loss networks 2 Decentralized optimization 4 Random access networks 5 Broadband networks 6 Internet modelling 8 Part I 11 1 Markov chains 13 1.1 Definitions and notation 13 1.2 Time reversal 16 1.3 Erlang’s formula 18 1.4 Further reading 21 2 Queueing networks 22 2.1 An M/M/1 queue 22 2.2 A series of M/M/1 queues 24 2.3 Closed migration processes 26 2.4 Open migration processes 30 2.5 Little’s law 36 2.6 Linear migration processes 39 2.7 Generalizations 44 2.8 Further reading 48 3 Loss networks 49 3.1 Network model 49 3.2 Approximation procedure 51 v vi Contents 3.3 Truncating reversible processes 52 3.4 Maximum probability 57 3.5 A central limit theorem 61 3.6 Erlang fixed point 67 3.7 Diverse routing 71 3.8 Further reading 81 Part II 83 4 Decentralized optimization 85 4.1 An electrical network 86 4.2 Road traffic models 92 4.3 Optimization of queueing and loss networks 101 4.4 Further reading 107 5 Random access networks 108 5.1 The ALOHA protocol 109 5.2 Estimating backlog 115 5.3 Acknowledgement-based schemes 119 5.4 Distributed random access 125 5.5 Further reading 132 6 Effective bandwidth 133 6.1 Chernoff bound and Cramer’s´ theorem 134 6.2 Effective bandwidth 138 6.3 Large deviations for a queue with many sources 143 6.4 Further reading 148 Part III 149 7 Internet congestion control 151 7.1 Control of elastic network flows 151 7.2 Notions of fairness 158 7.3 A primal algorithm 162 7.4 Modelling TCP 166 7.5 What is being -
Efficient Analysis of IT Sizing Models by Michail A. Makaronidis
Imperial College London Department of Computing Efficient Analysis of IT Sizing Models by Michail A. Makaronidis Submitted in partial fulfilment of the requirements for the MSc Degree in Advanced Computing of Imperial College London September 2010 1. Abstract Capacity evaluation and planning usually relies on producing a closed queueing network model and predicting its performance indices. Until recently, analytical modelling of such networks was per- formed by using algorithms such as Convolution, RECAL or the Mean Value Analysis (MVA), prohibiting evaluation of systems offering multiple service classes to hundreds or thousands of users, a case com- monly encountered in modern applications. Acknowledging this demand for performance evaluation, the Method of Moments (MoM) algorithm was introduced and addressed this problem. It was the first exact algorithm able to solve closed queueing networks with large population sizes. The MoM al- gorithm relies on the exact solution of large linear systems with integer coefficients of thousands of di- gits. The primary focus of this project is the production of an optimised implementation of the MoM algorithm as well as the algorithmic design, analysis and implementation of an exact parallel solver for linear systems it defines. Parallelisation is introduced in both algorithmic and implementation level by performing the operations over residue number systems and recombining the results by application of the Chinese Remainder Theorem. Various techniques have been introduced at all stages of this parallel solver to achieve improved time complexity and practical performance. Moreover, the procedure fea- tures several methods to achieve high robustness during error propagation when encountering a series of ill-conditioned linear systems which may be defined by the MoM implementation. -
Analysis of a Queuing System in an Organization (A Case Study of First Bank PLC, Nigeria)
American Journal of Engineering Research (AJER) 2014 American Journal of Engineering Research (AJER) e-ISSN : 2320-0847 p-ISSN : 2320-0936 Volume-03, Issue-02, pp-63-72 www.ajer.org Research Paper Open Access Analysis of a queuing system in an organization (a case study of First Bank PLC, Nigeria) 1Dr. Engr. Chuka Emmanuel Chinwuko, 2Ezeliora Chukwuemeka Daniel , 3Okoye Patrick Ugochukwu, 4Obiafudo Obiora J. 1Department of Industrial and Production Engineering, Nnamdi Azikiwe University Awka, Anambra State, Nigeria Mobile: 2348037815808, 2Department of Industrial and Production Engineering, Nnamdi Azikiwe University Awka, Anambra State, Nigeria Mobile: 2348060480087 3Department of ChemicalEngineering, Nnamdi Azikiwe University Awka, Anambra State, Nigeria Mobile: 2348032902484, 4Department of Industrial and Production Engineering, Nnamdi Azikiwe University Awka, Anambra State, Nigeria Mobile: 2347030444797, Abstract: - The analysis of the queuing system shows that the number of their servers was not adequate for the customer’s service. It observed that they need 5 servers instead of the 3 at present. It suggests a need to increase the number of servers in order to serve the customer better. Key word: - Queuing System, waiting time, Arrival rate, Service rate, Probability, System Utilization, System Capacity, Server I. INTRODUCTION Queuing theory is the mathematical study of waiting lines, or queues [1]. In queuing theory a model is constructed so that queue lengths and waiting times can be predicted [1]. Queuing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide service. Queuing theory started with research by Agner Krarup Erlang when he created models to describe the Copenhagen telephone exchange [1].