Quick viewing(Text Mode)

Jurassic Tectonostratigraphy of the Austroalpine Domain

Jurassic Tectonostratigraphy of the Austroalpine Domain

Jurassic Tectonostratigraphy of the Austroalpine Domain

By

GAWLICK, H.-J., MISSONI, S., SCHLAGINTWEIT, F., SUZUKI, H., FRISCH, W., KRYSTYN, L., BLAU, J. & LEIN, R.

With 75 figures

Key words: Eastern Alps Neotethys Ocean Penninic Ocean Basin evolution Rifting Subduction Lithostratigraphy

Addresses of the authors: HANS-JÜRGEN GAWLICK and SIGRID MISSONI University of Leoben Department for Applied Geosciences and Geophysics, Prospection and Applied Sedimentology Peter-Tunner-Strasse 5 8700 Leoben, e-mail: [email protected], [email protected]

FELIX SCHLAGINTWEIT Lerchenauer Strasse 167 80935 München, e-mail: [email protected]

HISASHI SUZUKI Otani University Koyama-Kamifusa-cho, Kita-ku Kyoto 603-8143, Japan e-mail: [email protected]

WOLFGANG FRISCH Karl von Böhmerle Gasse 3 1140 Wien, Austria e-mail: [email protected]

LEOPOLD KRYSTYN and RICHARD LEIN University of Vienna Centre for Earth Sciences Althanstrasse 14 1090 Wien, Austria e-mail: [email protected], [email protected]

JOACHIM BLAU Feldbergstrasse 5 61191 Rosbach-Rodheim, Germany e-mail: [email protected]

Journal of Alpine Geology 50 S. 1-152 Wien 2009 GAWLICK et al.: Tectonostratigraphy of the Austroalpine Domain

Contents

Abstract...... 3 1. Introduction...... 4 2. Tectonostratigraphic evolution of the Austroalpine domain...... 5 2.1. Austroalpine units facing the Neotethys Ocean...... 9 2.1.1. Tirolic nappe group...... 9 2.1.2. Reworked Juvavic nappe system = Jurassic Hallstatt Mélange...... 10 Meliata facies zone...... 10 Hallstatt facies zone...... 11 Zlambach/Pötschen facies zone...... 11 2.1.3. Southern Karavank Mountains...... 11 Koschuta and Hahnkogel units...... 11 2.2. Austroalpine units between the Neotethys Ocean and the Penninic Ocean...... 11 2.2.1. Bavaric nappe group...... 11 2.2.2. Drau Range...... 12 Northern Karavank Mountains...... 12 2.3. Austroalpine units facing the Penninic Ocean...... 12 2.3.1. Lower Austroalpine to Penninic units, p.p. Central Alpine Mesozoic units...... 12 2.3.2. Drau Range...... 12 Lienz Dolomites...... 12 3. Formations and Lithostratigraphy...... 13 3.1. to Aalenian...... 13 3.1.1. Northern Calcareous Alps and Drau Range...... 14 Schattwald Formation...... 14 Kalksburg Formation...... 14 Adnet Group...... 17 Schnöll Formation...... 17 Adnet Formation...... 18 Hierlatz Limestone Member...... 22 Kendlbach Formation...... 25 Enzesfeld Formation...... 27 Scheibelberg Formation...... 30 Kirchstein Limestone...... 30 Allgäu Formation...... 33 Stadelwiese Member...... 37 Lavant Breccia...... 39 Dürrnberg Formation...... 39 Birkenfeld Formation...... 41 3.1.2. Southern Karavank Mountains = Koschuta and Hahnkogel units...... 45 Hahnkogel Formation...... 45 3.1.3. Lower Austroalpine, Central Alpine Mesozoic units...... 45 Tarntal Breccia in siliciclastically influenced equivalents of the Allgäu Formation...... 45 Türkenkogel Breccia in siliciclastically influenced equivalents of the Allgäu Formation...... 47 Nomenclature of polymictic breccias facing the Penninic Ocean...... 48 3.2. Bajocian to Tithonian...... 49 3.2.1. Northern Calcareous Alps and Drau Range...... 49 Klaus Formation...... 49 Vils Limestone...... 53 Chiemgau Series...... 55 Ruhpolding Radiolarite Group...... 57 Florianikogel Formation...... 57 Sandlingalm Formation...... 59 Strubberg Formation...... 61 Tauglboden Formation...... 67 Eisenspitz Breccia...... 71 Obersee Breccia...... 73 Rofan Breccia...... 76 Ruhpolding Formation...... 78 Sillenkopf Formation...... 80

2 Journal of Alpine Geology, 50: 1-152, Wien 2009

Micrite Ooid Formation...... 85 Agatha Formation...... 85 Plassen Group = Plassen Carbonate Platform...... 89 Plassen Formation...... 89 Tressenstein Limestone...... 91 Lärchberg Formation...... 93 Oberalm Formation + Barmstein Limestone...... 95 Ammergau Formation + Seekarspitz Limestone...... 100 Saccocoma Limestone...... 102 Steinmühl Formation...... 105 Biancone...... 107 3.2.2. Southern Karavank Mountains = Koschuta and Hahnkogel units...... 109 Kahlkogel Formation...... 109 3.2.3. Lower Austroalpine, Central Alpine Mesozoic units...... 109 Tarntal Breccia in siliciclastically influenced equivalents of the Allgäu Formation...... 109 Türkenkogel Breccia in siliciclastically influenced equivalents of the Allgäu Formation...... 109 Crinoidal Limestone...... 110 Radiolarite and Manganese shales...... 110 Schwarzeck Breccia and shales...... 113 Aptychus Limestone...... 113 Geier Series...... 115 4. Radiolarian biostratigraphy and zonation...... 115 4.1. Definition of the radiolarian zones and subzones...... 119 Trexus dodgensis zone (Hettangian to Sinemurian)...... 119 Gorgansium alpinum subzone (Hettangian)...... 119 Bagotum sp. A subzone (Hettangian/Sinemurian boundary)...... 120 Bagotum erraticum subzone (Sinemurian)...... 120 Hsuum exiguum zone (Toarcian-Aalenian)...... 120 Eucyrtidiellum cf. disparile subzone (Early Toacian)...... 122 Hexasaturnalis hexagonus subzone (Late Toarcian-Aalenian)...... 122 Eucyrtidiellum unumaense zone (Bajocian-Bathonian)...... 122 Zhamoidellum ovum zone (Callovian to Oxfordian)...... 122 Protunuma lanosus subzone (Early to Middle Callovian)...... 123 Williriedellum carpathicum subzone (Late Callovian)...... 123 Williriedellum dierschei subzone (Early to Middle Oxfordian)...... 123 Eucyrtidiellum unumaense-Podocapsa amphitreptera interval zone (Late Oxfordian)...... 125 Podocapsa amphitreptera zone (Kimmeridgian)...... 126 Cinguloturris cylindra zone (Early Tithonian)...... 126 Collicyrtidium rubetum zone (Early to Middle Tithonian)...... 126 Mirifusus dianae globosus zone (Late Tithonian)...... 126 Acknowledgements...... 126 References...... 126

Abstract generally changed due to the partial closure of the Neotethys Ocean. The Austroalpine domain attained the lower plate In this paper we present for the Austroalpine domain the position at that time. Due to ophiolite obduction this time Jurassic tectonostratigraphic evolution mirrored by sedi- span was characterized by a propagating thrust belt in front mentary successions and basin evolution. The palaeogeo- of the overriding ophiolite nappe stack. West-directed nappe graphic position together with characteristic litho- and thrusting caused the formation of deep-water trench-like microfacies features cause the lithostratigraphic definition basins in front of the prograding nappes which obliquely of the different formations. For this reason for each formation cut through former facies belts. Tectonic shortening de- the age range as well as their sedimentological and facies creased in times. In contrast to the characteristics are documented in relation to the geodynamic evolution, Jurassic shallow-water carbonates are generally and basin evolution. missing in the Austroalpine domain with exception of the Strike and morphology of the facies zones in the Early to Late Jurassic, when new shallow-water carbonate ramps early Middle Jurassic followed the Triassic features. Only and platforms established and sealed the main tectonic in the westernmost part of the Austroalpine domain ex- shortening structures. They existed until the Early tensional tectonics led to the formation of the newly formed . southeastern passive continental margin of the Penninic The Jurassic history of the Austroalpine domain mirrors Ocean. In late Early resp. Middle Jurassic times the situation the palaeogeographic position between two oceanic do-

3 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain mains: A) to the west (northwest) the newly formed Penninic 1. Introduction Ocean, where continental extension started around the Triassic/Jurassic boundary resp. in the Hettangian and first Jurassic sedimentary sequences in the Austroalpine units oceanic crust was formed in late ; and B) to of the Eastern Alps are best preserved in the non-meta- the east (southeast) the Neotethys Ocean, in which the morphic parts of the Northern Calcareous Alps and partly closure started before the Early/Middle Jurassic boundary in the Drau Range (Fig. 1A), but occur also as metamor- with the onset of inneroceanic thrusting.

Fig. 1: A) Schematic tectonic map of the Eastern Alps (after TOLLMANN 1977, FRISCH & GAWLICK 2003). GPU Graz Paleozoic unit. GU Gurktal unit. GWZ Greywacke Zone. RFZ Rhenodanubian Flysch Zone. B) Austroalpine domains with Jurassic sediments influenced by the Penninic Ocean or the Neotethys Ocean, respectively (compare POBER & FAUPL 1988).

4 Journal of Alpine Geology, 50: 1-152, Wien 2009

phosed “terrains“ in the so-called Central Alpine Mesozoic Alps gives the “Stratigraphic Table of Austria 2004“ (PILLER units (“Zentralalpine Mesozoika“) and in the Lower Austro- et al. 2004), with an explanatory book in preparation resp. in alpine units (Fig. 1) (compare TOLLMANN 1976a, 1977, 1985, press (PILLER et al.; Jurassic: see GAWLICK et al. (Eds.) OBERHAUSER 1980). therein). This explanatory book only describes the formation names used in the table. But several changes based on new In general, we follow results since the year 2004 are not included. This paper will 1) the tectonic subdivision of the Eastern Alps of TOLL- define and formalize several formations for the Jurassic MANN (1977) with some modern modifications (FRISCH & (following the “Guidelines for stratigraphic nomeneclature“, GAWLICK 2003, compare SCHMID et al. 2004) (Fig. 1A), e.g., SALVADOR 1994, STEINIGER & PILLER 1999, REMANE et al. 2) the palaeogeographic reconstructions of KRYSTYN & LEIN 2005) and discuss the tectonostratigraphic evolution of in HAAS et al. (1995) (Fig. 2A, B), and these successions. In addition we discuss the lacks in know- 3) the concept that the Jurassic geodynamic history of the ledge of some Jurassic formations resp. sedimentary Austroalpine domain mirrors its palaeogeographic successions. position between two oceanic domains (Fig. 2C): In respect to the enormous amount of contrasting palaeo- A) to the west (northwest) the newly formed Penninic geographic reconstructions of the Alpine and adjacent Ocean, where continental extension started around regions for to Jurassic times (e.g., FRISCH 1979, the Triassic/Jurassic boundary resp. in the Hettang- HAAS et al. 1995, GAWLICK et al. 1999a, 2008, STAMPFLI & ian and first oceanic crust was formed in the late Early BOREL 2002, SCHMID et al. 2004, 2008, STAMPFLI & KOZUR 2006, Jurassic (Toarcian), and and many others; compare ZACHER & LUPU 1999) our B) to the east (southeast) the Neotethys Ocean, in which reconstruction of the tectonostratigraphic evolution of the closure started before the Early/Middle Jurassic Austroalpine domain is based on the tectonic events forming boundary. In the Late Jurassic the situation became the depositional areas for the different sedimentary suc- more complicated, especially in the Lower Austro- cessions (= formations and lithostratigraphic names), and alpine units due to the opening of the North Penninic place the formations in respect to their event-related (Valais) Ocean; these complications especially con- deposition within a palaeogeographic domain. Therefore, it cerned the Lower Austroalpine units, where the is possible to define the history of the Austroalpine domain Schwarzeck Breccia resp. the upper level of the Tarn- as history of a part of a continent between two oceanic tal Breccia were formed (Fig. 3). domains: the South Penninic (Piemont) Ocean to the west related to the Atlantic Ocean (e.g., FRISCH 1979, LEMOINE & Figure 3 shows the actually used formation and litho- TRÜMPY 1987 - the term “Alpine Tethys“ should not be used stratigraphic names of the Austroalpine domain (compare in order to avoid confusion: e.g., DAL PIAZ 1999, STAMPFLI & “Stratigraphic Table of Austria 2004“ - PILLER et al. 2004; BOREL 2002, SCHMID et al. 2004, 2008, STAMPFLI & KOZUR 2006) and older versions - e.g., KÜHN 1962, ROSENBERG 1966, TOLL- and the Neotethys Ocean to the east (not Meliata Ocean - MANN 1976a, HOLZER 1978, PLÖCHINGER 1980). The description compare KRYSTYN et al. 2008) (Fig. 2C). of the Jurassic formations enclose partly the lowermost Cretaceous (Berriasian), because several formations cross the Jurassic/Cretaceous boundary (a new stratigraphic cycle started in the Late Berriasian - SCHLAGER & SCHÖLLN- BERGER 1974). These formations occur in several tectonic 2. Tectonostratigraphic evolution of the units in different geographic regions and are of different Austroalpine domain palaeogeographic derivation (e.g., Northern Calcareous Alps with subdivision in Bavaric, Tirolic and Hallstatt At the Triassic/Jurassic boundary the carbonate production realms; Drau Range; Central Alpine Mesozoic units; Lower rate was significantly reduced in connection with the Austroalpine units). environmental crisis leading to mass (compare Therefore, we describe all formations and lithostratigraphic SEPKOSKI 1996). This mass extinction coincided with an names independently from the actual tectonic subdivision environmental change: the global cooling and sea-level fall and summarize the overall Jurassic tectonosedimentary evo- (e.g. OGG 2004a, b) around the Triassic/Jurassic-boundary lution as an introduction in the genetic concept. Since (e.g., HUBBARD & BOUTLER 2000, GUEX et al. 2004) was LEISCHNER (1959a) it is well known, that only macroscopically followed by a warming event and long-term sea-level rise in established lithostratigraphic definitions are not useful for the Hettangian (MCELWAIN et al. 1999, GUEX et al. 2004, OGG mapping. A combination of microfacies characteristics, the 2004b). Also a perturbation of the global carbon cycle (e.g., stratigraphic range as well as the depositional characteristics PÁLFY et al. 2001, HESSELBO et al. 2002, WARD et al. 2004) as are precise tools for a clear and modern definition of litho- well as significant sea-level changes can be recognized (e.g., stratigraphic units. HALLAM 1997). Regardless of the causes of this mass Since the first lithostratigraphic definitions for the Austro- extinction (e.g., MARZOLI et al. 2004, LUCAS & TANNER 2007), alpine domain (KÜHN 1962) several modifications and new which are intensively debated (summarized e.g., in PÁLFY definitions were summarized and described by TOLLMANN 2008), these environmental events left a signature also in (1976a, 1977, 1985). In these monographs also a broad the Austroalpine domain (e.g., HILLEBRANDT & KRYSTYN historical overview is included. Therefore it is not necessary 2009). to repeat details and discussions. This biotic crisis at the Triassic/Jurassic boundary stopped A modern overview of the stratigraphy of the whole Eastern the shallow-water carbonate production in the Austroalpine

5 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

6 Journal of Alpine Geology, 50: 1-152, Wien 2009

domain (GAWLICK et al. 1999a; compare, as contrast, South Penninic Ocean (e.g., BERNOULLI & JENKYNS 1974, FABRICIUS 1966, SCHOTT 1984 beside others). The lack of EBERLI 1985, 1988, KRAINER et al. 1994). Whereas these Early sufficient sediment supply led to the demise/drowning of Jurassic sequences of the Lower Austroalpine units show the Hauptdolomit/Dachstein carbonate platform. Global the typical features of a rifted margin (e.g., EBERLI 1988) cooling around the Triassic/Jurassic boundary resulted in (oblique rifting - KELTS 1981), the Bavaric and Tirolic units an end- sea-level drop (compare OGG 2004a, b) of were only slightly influenced by these rifting processes at least 100 metres as evidenced on the Steinplatte platform (e.g., BÖHM 1992). In contrast, late Early Jurassic tectonic margin of the Eiberg Basin (KRYSTYN et al. 2005, HILLEBRANDT movements (which culminated in the Late Pliensbachian to & URLICHS 2008; Fig. 4A). The end-Rhaetian sea-level Early Toarcian - BÖHM et al. 1995) affected mainly the Hall- lowstand was followed by a slow long-term sea-level rise statt Zone and the Tirolic units (BÖHM et al. 1995) and resulted that started in the latest Rhaetian, continued through the in a completely new palaeogeographic setting (Fig. 3, Fig. Hettangian and reached the next highstand not earlier than 23). In contrast the Bavaric to Lower Austroalpine realms in the Sinemurian (OGG 2004b, HILLEBRANDT et al. 2007). show only mild or no influence of these tectonic processes. Contemporaneously and later a horst-and-graben morpho- This change in the late Early Jurassic palaeotopography logy developed due to crustal extension in the Penninic was interpreted by many authors also as a result related to realm as part of the early Atlantic system (DEWEY et al. 1973, the final opening of the Penninic Ocean (e.g., WÄCHTER 1987, BERNOULLI & JENKYNS 1974, FRISCH 1979, EBERLI 1985, 1988, EBERLI 1988, 1991, FROITZHEIM & EBERLI 1990, KRAINER et al. HÄUSLER 1987, 1988, KRAINER et al. 1994, BERNOULLI et al. 1994), probably with creation of pull-apart basins along a 2003, MANATSCHAL 2004). It triggered breccia formation along strike-slip fault zone cross-cutting the Austroalpine domain submarine slopes and escarpments in the Lower Austro- (e.g., CHANNELL et al. 1990, 1992, SCHMIDT et al. 1991, KRAINER alpine units (Fig. 2C) (and their South Alpine and Western et al. 1994, BRANDNER & SPERLING 1995, BÖHM et al. 1995). In Carpathian equivalents - e.g., BERNOULLI et al. 1990, HÄUS- contrast, FRISCH & GAWLICK (2003) and MISSONI & GAWLICK LER et al. 1993, PLASIENKA 1995, NEUWEILER & BERNOULLI (in review) attributed this “event“ to the onset of inner- 2005, PUTIS et al. 2008) and in the Lienz Dolomites mainly in oceanic thrusting (subduction) in the Neotethys Ocean. the time span Hettangian/Sinemurian and partly in the Toarcian/?Aalenian, but in the Northern Calcareous Alps This controversial dispute reflects that the geodynamic (Tirolic and partly Bavaric units) mainly in Pliensbachian to evolution of the Austroalpine domain is either explained Early Toarcian times (e.g., BLAU & SCHMIDT 1988, BÖHM et al. from a Penninic or a Tethys viewpoint. In fact, the Jurassic 1995) (Fig. 4). The Toarcian anoxic (black shale) event with sedimentary record in the Austroalpine domain perfectly a significant sea-level rise was most probably triggered by reflects the influence of both oceanic domains and their the palaeogeographic changes related to the opening of geodynamic history. Whereas the Lower Austroalpine units the Atlantic-Penninic oceanic system (compare e.g., JEN- are defined as that part of the Austroalpine domain formed KYNS 1988, BAILEY et al. 2003, BERNOULLI & JENKYNS 2009). along its northwestern margin towards the Penninic realm In the (later) Tirolic and Bavaric units and equivalents the since Early Jurassic times, the Hallstatt and Tirolic units Hettangian to ?Sinemurian tectonic pulse was minor but represent the other part of the Austroalpine domain, which recognizable. Here, an increasing pelagic influence was was positioned at its southeastern margin towards the Neo- manifested in Early to Middle Jurassic sediments, e.g., well tethys Ocean since early Middle Triassic times (Fig. 2). The investigated and documented in the Northern Calcareous Lower Austroalpine units were affected by both the Jurassic- Alps (GARRISON & FISCHER 1969, BÖHM 1992) and in the Drau Cretaceous opening and Late Cretaceous-Palaeogene Range (BLAU & SCHMIDT 1988). Breccias and basins were closure of the South Penninic (Piemont) and North Penninic not only formed in the Lower Austroalpine units but also in (Valais) oceanic realms. Due to the opening of the South the Northern Calcareous Alps in late Early Jurassic times Penninic oceanic realm, the Lower Austroalpine units (Fig. 3), mostly interpreted as result of the opening of the underwent Early Jurassic extension, as demonstrated by

Fig. 2: A) Palaeogeographic position and facies zones of the Austroalpine domain in the northwestern Neotethys passive margin for Late Triassic times, modified after KRYSTYN & LEIN in HAAS et al. (1995) and GAWLICK et al. (1999a, 2008). Page 6. B) Schematic cross section (for position, see line a-b in A) showing the typical passive continental margin facies distribution across the Austroalpine domain in Late Triassic time (after GAWLICK & FRISCH 2003). C) Schematic cross section reconstructed for Middle to Late Jurassic time. It shows the passive continental margin of the Lower Austroalpine domain facing the Penninic Ocean to the northwest (e.g., TOLLMANN 1985, FAUPL & WAGREICH 2000) and the lower plate position and imbrication of the Austroalpine domain in relation to the obducted Neotethys oceanic crust (after GAWLICK et al. 2008). Compare FRISCH (1979, 1980a, b). IAZ = Iberia-Adria Zone transform fault, AAT = future Austroalpine-Adria transform fault, TTT = future Tisza-Tatra transform fault, TMT = future Tisza-Moesia transform fault, AA = Austroalpine, BI = Bihor, BR = Briançonnais, BU = Bükk, C = Csovar, Co = Corsica, DI = Dinarids, DO = Dolomites, DR = Drau Range, HA = Hallstatt Zone, JU = Juvavicum, JL = Julian Alps, ME = Meliaticum, MK = Mecsek, MO = Moma unit, MP = Moesian platform, P = Pilis-Buda, R = Rudabanyaicum, SI = Silicicum, SL = Slovenian trough, SM = Serbo-Macedonian unit, TA = Tatricum, TO = Tornaicum, TR = Transdanubian Range, VA = Vascau unit, WC = central West Carpathians. For other reconstructions of the western Tethyan realm see, e.g., SENGÖR (1985a, b), CHANNELL et al. (1990, 1992), DERCOURT et al. (1986, 1993), MARCOUX & BAUD (1996), CHANNELL & KOZUR (1997), STAMPFLI & BOREL (2002), STAMPFLI & KOZUR (2006).

7

Journal of Alpine Geology, 50: 1-152, Wien 2009 the formation of tilted blocks, half-graben basins along result of ongoing tectonic shortening and uplift of the extensional detachment faults, as well as the deposition of accretionary prism after the closure of the western parts of breccias along normal faults (e.g., HÄUSLER 1987, 1988, EBERLI the Neotethys Ocean. This led to erosion of siliciclastic 1985, 1987, 1988, MANATSCHAL & NIVERGELT 1997, material, which reached the inner parts of the Northern MANATSCHAL 2004, MANATSCHAL et al. 2006). The effect of Calcareous Alps at this time (Fig. 3). this extension decreased rapidly towards the interior of the In contrast, in the Lower Austroalpine units breccia for- Austroalpine domain. The extensional effect is minor in the mation in Late Jurassic times and around the Jurassic/ Bavaric and Tirolic units, only visible in Hettangian to ? boundary is probably related to the opening Sinemurian times. Contemporaneous with the final breakup process of the North Penninic (Valais) Ocean (e.g., FRISCH of the South Penninic (Piemont) Ocean in late Early Jurassic 1979, HSÜ & BRIEGEL 1991, FLORINETH & FROITZHEIM 1994, (RATSCHBACHER et al. 2004) and overall spreading in Middle FROITZHEIM & MANATSCHAL 1996, CLAUDEL & DUMONT 1999, Jurassic times (e.g., BILL et al. 1997, 2001, CHIARI et al. 1997, FROITZHEIM et al. 2008). Anyhow, in the sedimentary record MANATSCHAL et al. 2003), inneroceanic thrusting in the Neo- of the South Penninic Ocean (Bündner Schiefer) as well as tethys Ocean started (age dating summarized in KARAMATA in the Briançonnais (Middle Penninic) realm no strong 2006). These onset of inneroceanic thrusting affected also tectonic movements are documented at that time. the distal Austroalpine continental margin facing the Neotethys Ocean (Hallstatt Zone). The Austroalpine domain came in a lower plate position (GAWLICK et al. 2008). In Late Pliensbachian to Toarcian times probably a fore-bulge with 2.1. Austroalpine units facing the Neotethys Ocean a horst-and-graben morphology was formed in the later Hallstatt and Tirolic units (MISSONI & GAWLICK in review). 2.1.1. Tirolic nappe group Middle Jurassic ongoing convergence in the Neotethys realm led to ophiolite obduction (GAWLICK et al. 2008, SCHMID In early Early Jurassic times the sedimentation was generally et al. 2008) and imbrication of the continental margin since controlled by the topography of the Late Triassic Haupt- the ?Bajocian, progressively affecting the Juvavic and dolomit/Dachstein carbonate platform (e.g., BÖHM 2003, Tirolic nappes. The sedimentation pattern in the Tirolic units GAWLICK & FRISCH 2003; Fig. 3). On top of the Rhaetian dramatically changed in the Middle Jurassic (GAWLICK & shallow-water carbonates red condensed of the FRISCH 2003), and not in the Oxfordian as formerly assumed Adnet Group (?Late Hettangian/Sinemurian to Toarcian: (TOLLMANN 1985). Significant sedimentation resumed with BÖHM 1992, 2003; Fig. 7) were deposited, mostly separated the deposition of cherty deep-water sediments of the Ruh- by a gap of sedimentation (mainly Early Hettangian, partly polding Radiolarite Group, which documented the change also Late Hettangian; Fig. 3). On top of the Rhaetian Kössen from condensed carbonates to almost purely siliceous Formation (e.g., Eiberg Basin, Restental Basin - Fig. 3) cherty sediments (Fig. 3). In the Middle Jurassic the sedimentary and marly bedded limestones (Eiberg Basin: Kendlbach For- evolution in the southern part of the Tirolic unit (Upper mation - Hettangian; Scheibelberg Formation - latest Hettan- Tirolic nappe stack with Bajocian to Oxfordian Hallstatt gian to Toarcian: BÖHM 1992, 2003, KRAINER & MOSTLER 1997, Mélange) clearly differed from those in the northern part EBLI 1997) were deposited, in marginal areas of the Eiberg/ (Lower Tirolic nappe with Oxfordian Tauglboden Mélange). Scheibelberg Basin the crinoidal or sponge-spicule rich The main difference of Hallstatt and Tauglboden Mélanges limestones of the Enzesfeld Formation (late Hettangian to was the time of the onset and the different composition of early Sinemurian, BÖHM 1992) (Fig. 3, Fig. 4). In the Late huge mass flows in the trench-like basins (for definition see Pliensbachian to Early Toarcian a horst-and-graben morpho- GAWLICK & FRISCH 2003, GAWLICK et al. 2007b, MISSONI & logy developed (BERNOULLI & JENKYNS 1974, KRAINER et al. GAWLICK in review). These mélanges are interpreted as 1994) and triggered breccia formation along submarine carbonate-clastic radiolaritic trench-like basin fills formed slopes and escarpments (BÖHM et al. 1995). The Toarcian in sequence in front of prograding nappes on the imbricated and most of the Middle Jurassic is characterized by starving continental margin. sedimentation, ferro-manganese crusts, or a hiatus on the horsts, whereas the grabens were filled with deep-water The Plassen Carbonate Platform (Late Oxfordian to Early carbonates and breccias, which latter formed near fault Berriasian) developed on top of the trench-like basin fills in scarps. Neptunian dykes are found on the horsts. In the a shallowing-upward cycle in a continuously convergent newly formed basinal areas grey bedded limestones of the regime (GAWLICK & SCHLAGINTWEIT 2006). In the Late younger Allgäu Formation, and on top of the topographic Kimmeridgian to Early Berriasian huge masses of shallow- highs condensed red limestones of the Klaus Formation water carbonates were formed. The platform carbonates are were deposited (e.g., KRYSTYN 1971, 1972) (Fig. 3, Fig. 4). covered by calpionellid-radiolaria wacke- to packstones of This sedimentation pattern changed dramatically in the late Late Berriasian age. A drowning sequence influenced by Middle Jurassic (GAWLICK & FRISCH 2003). Sedimentation very fine-grained siliciclastics (Schrambach Formation) resumed with the deposition of radiolarian cherts and sealed partly the highly differentiated Plassen Carbonate radiolaria-rich marls, shales and limestones of the Ruhpol- Platform. Onset, evolution and drowning of the Plassen ding Radiolarite Group (DIERSCHE 1980, GAWLICK & FRISCH Carbonate Platform took place in a tectonically active 2003) (Fig. 3). regime. The tectonic evolution of the Northern Calcareous In the Bajocian the sedimentary evolution in the southern Alps during Kimmeridgian to Berriasian times and the final (palaeogeographically southeastern - Fig. 2) part of the drowning of the Plassen platform can be interpreted as a Tirolic realm as well as in the Hallstatt realm (Fig. 3) differed

9 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

from that in the northern (palaeogeographically north- different independent platforms (e.g., Lärchberg carbonate western - Fig. 2) part. Deep-water trench-like basins formed platform, Plassen carbonate platform s. str., Wolfgangsee in front of advancing nappes. The first basin group in the carbonate platform - GAWLICK & SCHLAGINTWEIT 2006, southern parts of the Northern Calcareous Alps received GAWLICK et al. 2007a) prograded towards the adjacent mass-flow deposits and large slides up to nappe size which radiolarite basins (GAWLICK & FRISCH 2003, GAWLICK et al. derived from the Hallstatt Zone (= Hallstatt Mélange; 2005). This resulted in a complex basin-and-rise topography GAWLICK & FRISCH 2003). The thickness of the basin fills with different types of sediments in shallow-water and deep- may reach 2000 metres (GAWLICK 1996, 1997, GAWLICK et al. water areas (GAWLICK & SCHLAGINTWEIT 2006). In the 2007b). The nappe stack carrying the Hallstatt Mélange is Kimmeridgian a huge carbonate platform was formed in the defined as Upper Tirolic nappe (group) (FRISCH & GAWLICK Upper Tirolic unit, whereas in the Lower Tirolic unit shallow- 2003). The second basin group, the Tauglboden and the water carbonates were restricted to its northern part Rofan trench-like basins in the north were subjected to high (GAWLICK et al. 2007a). The whole Plassen Carbonate subsidence and sedimentation rates in the Oxfordian to Platform cycle lasted from the Kimmeridgian until the late earliest Kimmeridgian (SCHLAGER & SCHLAGER 1973, GAWLICK Early Berriasian platform drowning (GAWLICK & & FRISCH 2003). For example, in the central Northern SCHLAGINTWEIT 2006). From the Late Tithonian onwards, due Calcareous Alps the Trattberg Rise was eroded and supplied to the breakdown of the rises, huge amounts of carbonate the Tauglboden Basin to its north with mass-flow deposits debris and mud were shed into the basins and further to the and slides. The nappe stack carrying the Tauglboden Mé- Bavaric and Lower Austroalpine units forming there the lange is defined as Lower Tirolic nappe (FRISCH & GAWLICK Oberalm Formation (Aptychus Limestone) (Fig. 3). These 2003). These two basin groups are different: the Hallstatt Barmstein Limestones that are made up of proximal reef Mélange trench-like basins formed earlier and exhibited a debris with allochthonous components (PLÖCHINGER 1976, different composition of its huge mass flows, the material STEIGER 1981, GAWLICK et al. 2005), represent mass flows and of which derived from the outer shelf facing the Neotethys turbiditic layers in this basinal succession (Oberalm Forma- Ocean (Hallstatt Zone - Fig. 2A, B). In contrast, the Taugl- tion) with components mostly deriving from the adjacent boden Mélange trench-like basin formed later and their Plassen Carbonate Platform. Additionally the Barmstein material derived from the lagoonal part of the Hauptdolomit/ Limestones contain older, reworked material from the Dachstein carbonate platform (Fig. 2). However, both basins Kimmeridgian to Early Tithonian Plassen carbonate platform formed syntectonically and suggest a substantial relief s. str. (SCHLAGINTWEIT & GAWLICK 2007). between the basin axis and the source area. A third type of radiolarite basin, the Sillenkopf Basin (MISSONI et al. 2001a), remained in the southern part of the Northern Calcareous 2.1.2. Reworked Juvavic nappe system Alps as a starved basin in the Kimmeridgian (Fig. 3). This = Jurassic Hallstatt Mélange basin contains the earliest ophiolitic detritus from the accreted and obducted Neotethys Ocean floor (MISSONI In the area of the Northern Calcareous Alps, the eroded 2003). Juvavic nappe system, in its actual definition (i. e., without Dachstein and nappes, which both belong GAWLICK et al. (1999a) interpreted this sedimentation pattern to the Upper Tirolic nappe - FRISCH & GAWLICK 2003, MISSONI as a reflection of nappe movements in the Northern Calca- & GAWLICK in review) represents the Jurassic accretionary reous Alps in late Middle to early Late Jurassic times and prism of the former Hallstatt facies belt (FRISCH & GAWLICK related it to the Kimmeric orogeny according to earlier 2003). Remnants of this nappe complex are only present as authors (see “Jurassic gravitational tectonics“: PLÖCHINGER slide blocks and debris deposited in the Middle to Late 1974, 1976, TOLLMANN 1981, 1985, 1987, MANDL 1982). This Jurassic radiolaritic trench-like basins, in which all orogenic event (e.g., LEIN 1985, 1987a, b) was related to the sedimentary rock types of the Hallstatt facies belt from the closure of the western half of the Neotethys Ocean. Ac- transitional area of the Triassic platform to the Meliata facies cording to other authors (e.g., WÄCHTER 1987, CHANNELL et zone resp. the Neotethys Ocean occur. al. 1992, FRANK & SCHLAGER 2006) the Late Jurassic coarse- clastic sediments should be related to strike-slip faulting. The Hallstatt Mélange as erosional product of the Juvavic Meliata facies zone nappes, which are completely eroded today, was formed in the late Early to early Late Jurassic interval as a result of The Meliata facies zone represents the most distal part of successive shortening of the Triassic to early Jurassic dis- the shelf area, the continental slope as well as the transition tal shelf area (Hallstatt Zone). In front of advancing and to the Neotethys Ocean (Fig. 2). Rare remnants of this facies rising nappes different trench-like basins were formed and belt are described from the eastern (MANDL & ONDREJIKOVA filled up. Subsequently the trench-like basins became 1991, 1993, KOZUR & MOSTLER 1992) and central part of the overthrusted and incorporated into the accretionary prism Northern Calcareous Alps (GAWLICK 1993). These remnants (e.g., MISSONI & GAWLICK in review). occur partly as metamorphosed isolated mass flow components and slide blocks (Florianikogel area) or as In the Tirolic units of the Northern Calcareous Alps the breccia components in the Hallstatt Mélange (GAWLICK establishment of the shallow-water Plassen Carbonate 1993). The Meliata facies zone should have been the first Platform started at the frontal parts of the rising and together with ophiolitic material, which was incorporated in advancing nappes (GAWLICK et al. 2002, 2005). From there, the Neotethys accretionary prism.

10 Journal of Alpine Geology, 50: 1-152, Wien 2009

Hallstatt Limestone facies zone lack of dateable organisms. A some tens of metres thick sequence of cherty limestones overlying the latest radio- The Zlambach Formation (Rhaetian marls) progresses larian findings may reach the Tithonian similar to the gradually into the Early Jurassic Dürrnberg Formation (for sequence in the Slovenian Trough (BUSER 1979). small variations and transitional successions in this typical sedimentary sequence see KRYSTYN 1970, 1987, LEIN 1987b, TOLLMANN 1985, GAWLICK 1998, GAWLICK et al. 2001). The sediments of the Dürrnberg Formation pass gradually from 2.2. Austroalpine units between the Neotethys Ocean and marly sediments (Hettangian) to cherty limestones the Penninic Ocean (Sinemurian) and later to cherty marls and marly radiolarites (Pliensbachian) (O´DOGHERTY & GAWLICK 2008). Toarcian to 2.2.1. Bavaric nappe group Aalenian sediments are dark-grey marly limestones to grey marls (MISSONI & GAWLICK in review). In Middle Jurassic The early Early Jurassic sedimentation was mainly controlled times the Hallstatt Limestone facies zone became eroded by the Late Triassic topography (BÖHM 2003, GAWLICK & and incorporated as slides and debris into the Neotethys FRISCH 2003; Fig. 3). Block tilting was mild in this area. The Ocean accretionary prism as slides and debris (Fig. 3). Rhaetian shallow-water carbonates were overlain by red and Resedimented remnants of this early trench-like basin occur grey crinoidal limestones in the Late Hettangian and in the Florianikogel Formation (PILLER et al. 2004) and the Sinemurian (Fig. 3), partly with a gap (EBLI 1997, BÖHM 2003). Sandlingalm Formation (GAWLICK et al. 2007b). On top of the Rhaetian Kössen and Schattwald Formations cherty and marly bedded limestones were deposited (e.g., Kalksburg Formation, p.p. Allgäu Formation). These Zlambach/Pötschen facies zone sediments progressed gradually into the hemipelagic All- gäu Formation (?Kirchstein Limestone) (p.p. ?Hettangian, The Rhaetian marly Zlambach Formation progresses Sinemurian to ?Bathonian - Vils Limestone). In the gradually into the Early Jurassic Dürrnberg Formation depositional areas of the Adnet Formation condensed (GAWLICK et al. 2001), made up of marly sediments in its sedimentation prevailed partly until the Late Jurassic (Adnet basal part (Hettangian), which gradually progresses into Formation: Sinemurian to Toarcian, Klaus Formation: cherty limestones (Sinemurian), cherty marls and marly Bajocian to Callovian, Micrite Ooid and Steinmühl Formati- radiolarites (Pliensbachian) (O´DOGHERTY & GAWLICK 2008). ons: Oxfordian to Tithonian) (FLÜGEL 1967, KRYSTYN 1971, The Toarcian/Aalenian is represented by dark-grey marly 1972). In the (later formed) Upper Bavaric nappe, i.e. in the limestones and grey marls of the Birkenfeld Formation basinal transitional areas to the Lower Tirolic unit, only the (MISSONI & GAWLICK in review). In Middle Jurassic times deposition of the Sachrang Member, rich in organic materi- the Zlambach/Pötschen facies zone was also incorporated al, may indicate a slight tectonic influence in the Early into the Neotethys accretionary prism (Fig. 3). Toarcian, which is in contrast to the stronger tectonic influence in the Tirolic units. In the Callovian to Oxfordian these depositional areas deepened resulting in the deposition 2.1.3. Southern Karavank Mountains of cherty limestones, cherty marls, and radiolarites (Fig. 3). In basinal areas on top of the Allgäu Formation dark-grey Koschuta and Hahnkogel units cherty marls and cherty limestones were deposited (p.p. Chiemgau Series), formerly interpreted as Middle Jurassic Pelagic deposits of Jurassic age are very rare in this unit, Allgäu Formation (EBLI 1997, PILLER et al. 2004), but in fact but can be found in the western part of the Southern they are mostly time equivalents of the Ruhpolding Karavank Mountains (Koschuta and Hahnkogel units Radiolarite Group in sense of GAWLICK & FRISCH (2003). On according to KRYSTYN et al. 1994). To some extent they also top of the Early to Middle Jurassic topographic highs red occur in the eastern Sava Folds. Sedimentation took place condensed limestones or condensed radiolarites were under hemipelagic deep-water conditions. The Jurassic deposited (Oxfordian to Kimmeridgian). In basinal areas in evolution resembles that of the Slovenian Trough. Kimmeridgian to Early Berriasian the siliceous sedimentation Hettangian to Sinemurian (?Pliensbachian), probably gradually passed into marly and then more carbonatic including parts of the Toarcian, is represented by max. 300 sedimentation (Ammergau Formation, Aptychus Limestone, metres thick platy limestones with chert nodules, Biancone). Typical Aptychus Limestone with remarkable intercalated by thin layers of muddy marlstone (Hahnkogel thickness was deposited only in the Late Tithonian. These Formation according to KRYSTYN et al. 1994). The expected sediments may reflect the youngest tectonic movements in overlying Toarcian black shales of the Slovenian Trough the Tirolic units and probably an enormous amount of fine- (Perbla Formation) are missing in this area. Instead, the grained carbonate export from the Plassen Carbonate Hahnkogel Formation may progress upwards into siliceous Platform to the north (in present coordinates) in direction to limestones of the Kahlkogel Formation, whose Bathonian/ the Penninic realm. This time synchronism suggests coeval Callovian to Middle Oxfordian age is proven by radiolarians tectonic subsidence and shedding of huge amounts of very (GAWLICK et al. 2006a, SUZUKI et al. 2008). The relations fine-grained carbonate material from the Plassen Carbonate between the relatively thick Callovian to Oxfordian micritic Platform and equivalents that are mostly eroded today, to and partly siliceous sequence and the ammonite finding of the north. This process may have been responsible for the KRYSTYN et al. (1994) are not clarified in detail due to the enormous thickness of the Oberalm Formation/Aptychus

11 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Limestone (GAWLICK & SCHLAGINTWEIT 2006) rather than Breccia). Contemporaneously, on top of the Middle Penninic enhanced nannoplankton productivity in the whole Tethys Briançonnais continental block further to the north, the realm (e.g., COLACICCHI & BIGOZZI 1995). Moreover, this ma- newly formed Sulzfluh carbonate platform (OTT 1969, BERTLE terial is likely to have substantially contributed to the 1973) indicates new extensional movements, probably calcareous sedimentation in the Penninic realm like the related to the opening of the North Penninic (Valais) Ocean Klammkalk Formation (marginal position towards the Lower (HSÜ & BRIEGEL 1991, FROITZHEIM et al. 2008). For an alterna- Austroalpine domain) and the calc-rich Bündner Schiefer tive model see KELTS (1981). (Schistes lustrés). In the South Penninic (Piemont) Ocean the Jurassic period is dominated by the sedimentation of the Bündner Schiefer (mostly metamorphosed in greenschist facies), which 2.2.2. Drau Range derived from a mainly clastic sediment with various portions of clayey, sandy, or calcareous detritus (FRISCH 1975, 1980, Northern Karavank Mountains FRISCH et al. 1987). Most researchers agree that the calcareous sedimentation became important in the Late The Jurassic sedimentation (TELLER 1888, TOLLMANN 1977, Jurassic and earliest Cretaceous forming the widespread SCHRÖDER 1988, CSÁSZÁR et al. 2001) started with deposition calcareous Bündner Schiefer. The calcareous detritus is of red limestones of the Adnet Group which partly progress likely to have largely derived from the Austroalpine domain into red condensed limestones of the Klaus Formation. The (compare chapter 2.2.1. in this paper). radiolaria-rich red cherty limestones may correlate with cherty sediments of the Ruhpolding Radiolarite Group (p.p. Ruhpolding Formation), the red nodular -rich 2.3.2. Drau Range limestone in turn may correlate with the Late Jurassic Steinmühl Formation. The following calpionellid-rich, Lienz Dolomites reddish-greyish limestones (Biancone) pass into the Early Cretaceous and can be correlated with the Oberalm Forma- The Lienz Dolomites represent a transitional area between tion or Aptychus Limestone (SUETTE 1978, BAUER et al. 1983, the Bavaric and the Lower Austroalpine domains, where SCHRÖDER 1988). parts of the Tarntal Breccia started to form in the early Early Jurassic (TOLLMANN 1977, HÄUSLER 1987, 1988). In contrast to the Bavaric and also to the Tirolic realms of the Northern Calcareous Alps block tilting in the Lienz Dolomites formed 2.3. Austroalpine units facing the Penninic Ocean partly a steep relief. Rifting in the South Penninic realm disintegrated the Late Triassic shallow-water carbonate 2.3.1. Lower Austroalpine to Penninic units, p.p. Central platform (Oberrhät Limestone) and created submarine highs Alpine Mesozoic units and basins most probably in the time-span Late Hettangian to Early Pliensbachian. On the submarine highs in situ The Lower Austroalpine domain is characterized by breccia brecciation of partly very shallow-marine sediments took formation along fault scarps due to normal faulting (e.g., place (Lavant Breccia; Hettangian to Sinemurian, ?Early DIETRICH 1976) related to the opening of the South Penninic Pliensbachian - BLAU & SCHMIDT 1988, BLAU & GRÜN 1995). (Piemont) Ocean (breakup in late Early Jurassic time - RATSCH- The newly formed ?asymmetric basins were characterized BACHER et al. 2004). Metamorphism and deformation prevent by the deposition of the hemipelagic marly/cherty Allgäu exact dating of the successions (details in TOLLMANN 1977). Formation with intercalated megabreccias (mass flows) In the Early Jurassic quartzites, arkoses and phyllites (SCHLAGER 1963, BLAU & SCHMIDT 1988, 1990, BLAU & GRÜN dominate. The Tarntal Breccia (Tarntal Mountains) and 1995), which are eroded along fault scarps. The deposited Türkenkogel Breccia (Radstädter Tauern) testify for the chaotic, approximately 400 metre thick succession is named tectonic inquiescence. Breccia formation due to extension Stadelwiese Member of the Allgäu Formation (Fig. 3). The started in the Late Hettangian (CONTI et al. 1994) or slightly Stadelwiese Member succession is overlain by the Pliens- earlier. In Middle Jurassic times the fine-grained Bündner bachian to Toarcian Adnet Formation (TOLLMANN 1977, BLAU Schiefer are dominating beside sandstones (e.g., & SCHMIDT 1988, BLAU 1994), well preserved in the Amlacher Idalpsandstone). Rare radiolarites in the sedimentary syncline (BLAU & GRÜN 1995). Although BLAU & GRÜN (1995) succession or in between pillow lavas (e.g., in the Idalp described detailed profiles with biostratigraphic data, the region) may be contemporaneous with the radiolarites in correlation with other Middle to Late Jurassic sequences in the Swiss or French Alps (Bathonian to Oxfordian - BILL et the Austroalpine is poorly constrained (PILLER et al. 2004). al. 2001, O´DOGHERTY et al. 2006). In this case they belong Although some modern investigations exist (CSÁSZÁR et al. to the South Penninic (Piemont) Ocean. If these radiolarites 2001), several features remain problematic. The radiolaria- are younger (Tithonian to Early Cretaceous), than they rich red cherty limestones to radiolarites may correlate with belong to the North Penninic (Valais) Ocean (compare cherty sediments of the Ruhpolding Radiolarite Group, SCHMID et al. 2004). In Late Jurassic time, after the deposition especially with the Ruhpolding Formation, and the red of radiolarites (e.g. Brenner Mesozoic series - KÜBLER & nodular crinoid-rich limestones may correlate with the Late MÜLLER 1962), calcareous sedimentation (equivalent to Jurassic Saccocoma Limestone resp. Steinmühl Formation. Aptychus Limestone) becomes important, but again The following calpionellid-rich reddish-greyish limestones breccias occur, e.g, in the Radstädter Tauern (Schwarzeck (Biancone) progress into the Early Cretaceous and can be

12 Journal of Alpine Geology, 50: 1-152, Wien 2009 correlated with the Oberalm Formation or Aptychus Lime- In several lithologies only siliceous organisms (e.g., sponge stone. spicules, radiolarians) occur and were used since the 1980ies to date cherty limestones, cherty marls, and radiolarites.

3. Formations and Lithostratigraphy

Due to more than 200 years of intensive investigation in the 3.1. Hettangian to Aalenian Jurassic series of the Austroalpine domain all literature can (Fig. 3, Fig. 4, Fig. 23) not be cited in this paper, but is available in the according reference lists. For older lithological descriptions, flora and The Hettangian to Aalenian period was controlled by the fauna contents, additional references as well as the regio- following factors: nal distribution of the formations TOLLMANN (1976a) should A) the end-Triassic morphology and biotic crisis, also be consulted. B) crustal extension in the Penninic realm and in the adjacent Most Jurassic formations and lithostratigraphic units in the Austrolpine domains resulted in the breakup of the South Austroalpine domain consist of hemipelagic to pelagic sedi- Penninic Ocean in the Toarcian, and ments with exception of some Late Jurassic shallow-water C) the onset of inneroceanic thrusting around the Pliens- carbonates. Their stratigraphic ranges are fairly well dated bachian/Toarcian boundary in the Neotethys Ocean. except the metamorphosed ones. Several calcareous orga- In the earliest Jurassic four west-east (palaeogeographically nism groups (e.g., foraminifera, calpionellids, brachiopods), southsouthwest to northnortheast) trending basins existed but mainly ammonites, were used to determine the biostra- in the Austroalpine realm: tigraphic ages (see details in description of the formations). 1) due to crustal extension the newly formed Bündner Schie-

Fig. 4: Two profiles showing the palaeotopographic situation in the Austroalpine domain. A) Sedimentation in the earliest Jurassic was controlled by the end-Triassic morphology of the exposed or drowned Hauptdolomit/Dachstein Carbonate Platform s. l. with the Eiberg Basin in a central position (e.g., GOLEBIOWSKI 1991, KUERSCHNER et al. 2007, BONIS et al. 2009) and the Restental Basin (= later Allgäu Basin; GOLEBIOWSKI 1990b) in a more continent-ward position. B) Later in the Early Jurassic (Late Hettangian) crustal extension in the Penninic realm controlled the basin formation, geometry and sedimentation. The Early Rhaetian Kössen beds below the Rhaetian Dachstein Limestone (south of the Eiberg Basin) and Oberrhät Limestone (north of the Eiberg Basin) could have formed the detachment horizon (line in upper profile), on which Penninic crustal extension affected also the Tirolic realm of the Northern Calcareous Alps in the Late Hettangian/Early Sinemurian. Breccia formation on the Penninic passive continental margin lasted from Late Hettangian to Early Pliensbachian times.

13 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

fer Basin in the area of the evolving Penninic Ocean, equivalents to the Kendlbach Formation, especially the 2) the Allgäu (Restental) Basin (group) as northernmost Kirchstein Limestone (e.g., GOLEBIOWSKI 1990b, HILLEBRANDT basin in the Northern Calcareous Alps, & ULRICHS 2008), but also Schnöll Formation and Allgäu 3) the Eiberg (Scheibelberg) Basin along the central axis of Formation - “Bunte Lias-Cephalopenkalke und Grauer Lias- the Northern Calcareous Alps, and basiskalk“ according to FABRICIUS (1966), for details see 4) the Hallstatt Zone (distal passive margin, “Hallstatt TOLLMANN (1976a). In the type area the so called “Lorüns- Basin“ according to older references) facing the Neo- Oolith“, the shallow-water carbonates of (Late) Hettangian tethys Ocean (Fig. 2, Fig. 4). age (Kalksburg Formation), are overlain by Hierlatz Lime- Only in the basinal areas sediments were deposited in the stone and Adnet Formation (FURRER 1993). In the western earliest Jurassic, whereas the Late Triassic highs (with and eastern Northern Calcareous Alps (northern Bavaric Rhaetian shallow-water sedimentation) may have emerged units) the Kalksburg Formation overlies the Schattwald and did not receive any sediments. This is the reason, why Beds. See also FURRER (1993). a hiatus/gap exits between the Triassic and Jurassic sedi- Geographic distribution: northern part of the eastern ments on top of most Rhaetian shallow-water carbonates Northern Calcareous Alps and widespread in the western of the Northern Calcareous Alps and the Drau Range. Northern Calcareous Alps (northern Bavaric units). Lateral units: unknown. Remarks: according to TOLLMANN (1976a, 1985) the Schatt- 3.1.1. Northern Calcareous Alps and Drau Range wald Formation is only of Latest Triassic age (compare FURRER 1993). This is confirmed by GOLEBIOWSKI (1990b) Schattwald Formation and HILLEBRANDT & URLICHS (2008). The “Upper Schattwald (Fig. 5) Formation“ of MCROBERTS et al. (1997) belong to the Jurassic. Therefore the “Lorüns-Oolith“ represent a shallower equi- Validity: valid (Schattwalder Schichten), first description valent of the Tiefengraben Member. According to HILLE- and age dating by REISER (1920), in detail investigated by BRANDT & URLICHS (2008) the Triassic/Jurassic boundary FABRICIUS (1966), FURRER (1993) and MCROBERTS et al. (1997). has now been fixed a few metres above the Schattwald Beds Type area: ÖK 84 Reutte, western Northern Calcareous Alps. after the recent international agreement to define this boun- Type section: ÖK 84 Reutte, in the Tannheim valley dary by the first appearance of spelae spelae southwest of the municipal Schattwald. GUEX et al., 1998 and Psiloceras spelae tirolicum HILLE- Reference section(s): not designated, probably Lorüns BRANDT & KRYSTYN, 2009, declared as the earliest Jurassic quarry (details in MCROBERTS et al. 1997). psiloceratids. Derivation of name: after municipal Schattwald near Reutte in Tyrol. Synonyms: none. Kalksburg Formation Lithology: mostly silt-rich marls and mostly reddish (Fig. 4, Fig. 6) limestones, partly laminated, below the Triassic/Jurassic boundary with dessication cracks (compare MCROBERTS et Validity: valid (Kalksburger Schichten), first description and al. 1997), partly greyish sandy layers (GOLEBIOWSKI 1990b). detailed definition by SOLOMONICA (1934: 24-31) following For details see FURRER (1993). TRAUTH (1909); detailed investigations and probably tectonic Fossils: mostly bivalves (details in TOLLMANN 1976a, FURRER complications in ROSENBERG (1937, 1961, 1965); needs some 1993, MCROBERTS et al. 1997). revision (compare WESSELY 2006 - Kalksburg Formation, Origin, facies: siliciclastically influenced succession in the but without revised definition). Detailed history of investi- framework of a regressive/transgressive cycle around the gations until the year 1934 in SOLOMONICA (1934), until the Triassic/Jurassic boundary. year 1976 in TOLLMANN (1976a). Formalized in this paper. Chronostratigraphic age: Latest Triassic (Rhaetian) pro- Type area: ÖK 58 Kalksburg, northeasternmost Northern bably to basal Hettangian (e.g., ZACHER 1966, FABRICIUS 1966, Calcareous Alps, Bavaric units (TRAUTH 1908, 1909, 1954, FURRER 1993, MCROBERTS et al. 1997). According to SOLOMONICA 1934, NEUBAUER 1949). HILLEBRANDT & KRYSTYN (2009) latest Triassic. The Upper Type section: ÖK 58 Kalksburg, old quarry in the eastern- Schattwald shales could partly be an equivalent to the most part of the Schubert park in Kalksburg (SOLOMONICA Tiefengraben Member of the Kendlbach Formation (e.g., 1934). GOLEBIOWSKI 1990a). For discussion of the Triassic/Jurassic Reference section(s): not designated. boundary in the Northern Calcareous Alps and history see, Derivation of name: after the small town Kalksburg in e.g., GOLEBIOWSKI & BRAUNSTEIN (1988), MORANTE & HALLAM southwestern Vienna, near the border to Lower Austria (1996), HILLEBRANDT & ULRICHS (2008). (SOLOMONICA 1934). Biostratigraphy: Late Rhaetian to probably earliest Jurassic Synonyms: none. (tilmanni to planorbis zone). Lithology: brownish-grey marls, sandstones, siltstones and Thickness: 1-3 metres, locally up to 7 metres. limestones (detailed description in SOLOMONICA 1934, Lithostratigraphically higher rank: none. compare GALL 1970 and PLÖCHINGER & PREY 1993). Subdivision: no subdivision. Fossils: ammonites, bivalves (details in SOLOMONICA 1934, Underlying units (foot wall boundary): Oberrhät Limestone, ROSENBERG 1961) and others (e.g., NEUBAUER 1949, GALL Kössen Formation. See also FURRER (1993). 1970, SCHWINGENSCHLÖGL 1981). Overlying units (hanging wall boundary): normally Origin, facies: shallow-water sediments, partly coastal-near

14 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 5: Characteristic microfacies of the Schattwald Formation and the overlying “Lorüns-Oolith“ of the type locality, Lorüns quarry in Vorarlberg (Bavaric units, western Northern Calcareous Alps). According to FURRER (1993) the age of the “Lorüns-Oolith“ is Early Hettangian based on the finding of a Discamphiceras sp. 1. Fine-grained layered siltstone with high carbonate content, well sorted, slightly bioturbated. Also the clay content is relatively high. Sample A 4956-2. Width of photo: 1.4 cm. 2. Sometimes brachiopod shells occur in the siltstone matrix, with an intercalated clay layer. Sample A 4956-2. Width of photo: 0.5 cm. 3. Oncoid facies (several sizes of oncoids) with encrusted gastropods, micrite clasts and shell fragments. Sample A 4958. Width of photo: 1.4 cm. 4. Magnification of 3. Beside several oncoids rare spicula and very fine-grained shell fragments (?bivalves) occur. Width of photo: 0.5 cm. 5. Also some trochospiral serpulids occur as nucleus of the oncoids. Sample A 4958. Width of photo: 0.5 cm. 6. Typical oncoid facies (oncoidal grapestones). The micritic matrix is partly washed out and substituted by calcite cement. Sample A 4958. Width of photo: 0.5 cm. For more details on microfacies see FURRER (1993).

15 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Fig. 6: Characteristic microfacies of the Kalksburg Formation. 1. Well sorted grainstone with micrite clasts, some fragments and brachiopod shells from the Lorüns quarry in Vorarlberg (Bavaric units, western Northern Calcareous Alps). These sediments were originally designated to the upper Schattwald Beds. Sample A 4957-2. Width of photo: 1.4 cm. 2. Magnification of 1. Beside micrite clasts some brachiopod shells are partly well preserved. Echinoderm fragments and other broken organisms occur rarely. Width of photo: 0.5 cm. 3. Sample A 4957-2, other view. In some cases soft micrite clasts, rich in clay content, were incorporated into the grainstone. Width of photo: 0.5 cm. 4. Fine-grained, slightly bioturbated carbonatic siltstone. Most grains are quartz, remnants of calcareous organisms are very rare. Sample P 10 (coll. HOLNSTEINER), Höhenberg northwest, Weyerer Bögen (Bavaric units, eastern Northern Calcareous Alps). Width of photo: 1.4 cm. 5. Magnification of 4. Beside the fine-grained quartz grains some recrystallized organisms (?echinoderm fragments) and pyrite (dark grains) occur. Width of photo: 0.5 cm. 6. Magnification of 4, other view. Very fine-grained mudstone to wackestone without organisms, the secondary pores are filled by diagenetic pyrite. Width of photo: 0.25 cm.

16 Journal of Alpine Geology, 50: 1-152, Wien 2009

with siliciclastic, continental influence in a general deepening formalized and defined by BÖHM (2003) (Fig. 7). In addition upward trend. to the original definition of BÖHM (2003) we include the Chronostratigraphic age: Hettangian to Sinemurian. Late reddish Hierlatz Limestone as independent member. The Sinemurian is not proven (ROSENBERG 1961). Compare Hierlatz Limestone Member is stratigraphically, genetically SCHWINGENSCHLÖGL (1981). and partly lithostratigraphically connected to the upper Biostratigraphy: planorbis zone to Sinemurian (zone is not Schnöll and lower Adnet Formation. exactly determined) with transition to basinal sediments of For exact definition of the Adnet Group and the members the Allgäu Formation resp. Kirchstein Limestone (ROSEN- (except the Hierlatz Limestone Member) of the Schnöll and BERG 1961). Adnet Formations see BÖHM (2003). Thickness: some tens of metres, normally 30-40 metres. Partly reduced to less than ten metres (GALL 1970). Lithostratigraphically higher rank: none. Schnöll Formation Subdivision: no subdivision. (Fig. 7, Fig. 8) Underlying units (foot wall boundary): Oberrhät Limestone, Schattwald Formation, Kössen Formation (Restental Mem- Validity: valid (Schnöll-Formation), first description by ber). WÄHNER (1903). Completely revised by BÖHM (1992) and Overlying units (hanging wall boundary): Allgäu Formati- BÖHM et al. (1999). BÖHM et al. (1999) defined the term Schnöll on, Kirchstein Limestone (?late Sinemurian or Pliensbach- Formation, more details in BÖHM (2003). ian), cherty grey Early Jurassic basinal sediments, partly in Type area: ÖK 94 , Adnet quarries and surrounding transition to the Adnet Formation. “Fleckenmergel“ of SOLO- areas in the Osterhorn Mountains. MONICA (1934) - meaning, that the transition to the cherty Type section: ÖK 94 Hallein, Adnet quarry XVII, Langmoos limestones is gradual. quarry (for details see GALLET et al. 1993, BÖHM 2003). Geographic distribution: northern part of the eastern Reference section(s): a small outcrop in a cliff immediately Northern Calcareous Alps (SOLOMONICA 1934, ROSENBERG to the southeast of quarry XVI (for location and numbers of 1954, 1965, GAITANAKIS 1977, SCHWINGENSCHLÖGL 1981, TOLL- the quarries see KIESLINGER 1964, BÖHM 2003), close to the MANN 1966a, 1976a). Partly in the northern part of the western Langmoos quarry is proposed as reference section as well Northern Calcareous Alps (GALL 1970, TOLLMANN 1976a) as the southern part of quarry XXXI, the Schnöll quarry (compare section Schattwald Formation). (for details see BÖHM 2003). Lateral units: to the north unknown, but relatively far away Derivation of name: “Schnöll“ is the quarrymen´s traditional to the north must have existed a transition to the Gresten name for the massive varicoloured limestones facies of this facies; to the south unknown, but probably equivalents of formation (KIESLINGER 1964, WENDT 1971, GALLET et al. 1993). the Allgäu Formation or the Schnöll Formation resp. in the This name derives from the Schnöll quarry (XXXI), which, upper part to the basal Adnet Formation. This is manifested like most Adnet quarries, was originally named after its by the succession Luftstrasse near the settlement Kirch- owner. berg/Pielach (SCHWINGENSCHLÖGL 1981, BÖHM 1992). Synonyms: detailed synonymy in BÖHM (2003). Remarks: should be sometimes lithologically similar to the Lithology: thick to thin bedded grey, yellow, violet and red Gresten Formation of the Ultrahelvetic units (compare NEU- biomicritic limestones. BAUER 1949 = Pseudogresten facies; GALL 1970 = Gresten Fossils: , siliceous sponges (DELECAT & REIT- Beds). Obviously TOLLMANN (1976a, 1985) and WESSELY NER 2005), foraminifera, ostracods, ammonites, brachiopods, (2006) distinguish the Kalksburg Formation definitively from bivalves, gastropods (e.g., WENDT 1971, BÖHM 1992, 2003, the Gresten facies, some transitions in Early Jurassic times GALLET et al. 1993, MEISTER & BÖHM 1993, DOMMERGUES et al. could exist to the Gresten facies (e.g., PLÖCHINGER & PREY 1995, BLAU & GRÜN 1994, 1996, 1997, BÖHM et al. 1999). 1974, 1993). In fact the Kalksburg Formation represent at Origin, facies: condensed hemipelagic limestones, restricted that time the more southernward deposited siliciclastic/marly to the lower slope of the drowned Rhaetian reef. sediments in the area of the later Northern Calcareous Alps. Chronostratigraphic age: Hettangian (BÖHM et al. 1999). They were deposited before the tectonic separation of the Biostratigraphy: upper planorbis zone (GALLET et al. 1993) Gresten shelf to the north and the Austroalpine shelf to the to marmorea zone (MEISTER & BÖHM 1993). south by the South Penninic Ocean; several pieces are miss- Thickness: variable; maximum exposed thickness 12 metres, ing in between today. In the type locality and adjacent estimated maximum thickness 14 metres according to BÖHM quarries the series are inaccessible (compare SOLOMONICA (2003). 1934), therefore a revision is not possible in moment. Equiva- Lithostratigraphically higher rank: Adnet Group. lence of parts of the Kalksburg Formation to the Tiefen- Subdivision: Langmoos Member and Guggen Member graben Member of the Kendlbach Formation cannot be (BÖHM et al. 1999, BÖHM 2003). For exact definitions of the excluded (compare SOLOMONICA 1934), but may also in parts members see BÖHM (2003). an expectable solution. Underlying units (foot wall boundary): Rhaetian reef limestones and Kendlbach Formation (details in BÖHM 2003). Overlying units (hanging wall boundary): Adnet Formation Adnet Group (details in BÖHM 2003). (Fig. 4, Figs. 7-11, Fig. 23) Geographic distribution: several Adnet quarries (details in BÖHM 2003). May occur on each lower slope of drowned The Adnet Group was introduced by BÖHM et al. (1999), Rhaetian reefs.

17 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Fig. 7: Formations of the Adnet Group (according to BÖHM et al. 1999, BÖHM 2003, modified) and transition to the Kendlbach, Enzesfeld and Scheibelberg Formations as well as to the Hierlatz Limestone Member. Arrows indicate gravitational transport induced by tectonic activity. For details see text. A) Distal Scheck Member, clasts occur in a red marly matrix. Sample Ber 24/21, Wimbach gorge (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. B) Scheck Member of the type locality in Adnet (Tirolic units, Calcareous Alps). Between different clasts occur a sparry calcite cement. Sample C 187. Width of photo: 0.5 cm. C) Distal Enzesfeld Formation: Spicula- and echinoderm-rich packstone with some bivalves. Sample H 27, Hatschek quarry in Ebensee (Tirolic units, area). Width of photo: 0.5 cm. D) Intermediate Enzesfeld Formation from the type locality: wackestone to packstone with small scaled bivalves, and foraminifera (e.g., Involutina liassica (JONES, 1853 in BRODIE 1853)), slightly bioturbated. Width of photo: 1.4 cm. E) Upper Schnöll Formation of the type locality in Adnet. Echinoderm- and foraminifera-rich wackestone to packstone with marls, slightly bioturbated. Width of photo: 1.4 cm.

Lateral units: to the basinal area the Kendlbach Formation Adnet Formation (lower Langmoos Member) and to the Enzesfeld Formation (Fig. 4, Fig. 7, Figs. 9-10) (upper Guggen Member); to the upper slope of the drowned reef extremely condensed limestones or a hiatus, probably Validity: valid (Adnet-Formation), first description by HAU- the youngest part transitional to the Hierlatz Limestone ER (1853). Completely revised by WENDT (1971) and later by Member. Several similarities of the upper part of the Schnöll BÖHM (1992), BÖHM et al. (1995) and BÖHM et al. (1999). BÖHM Formation (Guggen Member) exist with the Enzesfeld For- et al. (1995, 1999) formalized the term Adnet Formation, in mation, which represent a transgression on the slope of the detail defined by BÖHM (2003). drowned Rhaetian reef, but normally occurs more basinward Type area: ÖK 94 Hallein, Adnet quarries, and Schmiedwirt (see discussion in BÖHM 1992, 2003, BÖHM et al. 1999). quarry at Wiestal, Saubach northeast of the lake Hintersee. Remarks: detailed discussion and history in BÖHM (2003). Osterhorn Mountains southeast of Salzburg (for details see See also discussion in chapter Enzesfeld Formation. Furt- BÖHM 2003). her remarks in BÖHM (2003). Type section: ÖK 94 Hallein, according to BÖHM (2003) there is due to small-scale differentiations no single section

18 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 8: Characteristic microfacies of the Schnöll Formation. All photos from the type area in Adnet (Tirolic units, Salzburg Calcareous Alps). In parts the microfacies of the Schnöll Formation (Guggen Member) is very similar to that of the Enzesfeld Formation, but the colour is different. The Enzesfeld Formation (compare KRISTAN-TOLLMANN & COLWELL 1992) is light-red to yellowish to grey in contrast to the dark-red Schnöll Formation. 1. Echinoderm-foram-biomicrite with a high content of calcareous foraminifera, echinoderms, ostracods and other bioclasts. Sample C 183, Schnöll quarry, Guggen Member. Width of photo: 1.4 cm. 2. Echinoderm-foram-biomicrite with and the dominant foraminifer Involutina liassica (JONES, 1853 in BRODIE 1853) characteristically with dark-filled chamber-lumina. Sample C 183, Schnöll quarry, Guggen Member. Width of photo: 0.5 cm. 3. Echinoderm-foram-biomicrite with echinoderms, foraminifera (e.g., Involutina liassica (JONES, 1853 in BRODIE 1853)), beside a lot of ostracods, which can be also very common in the Schnöll Formation. Sample C 183, Schnöll quarry, Guggen Member. Width of photo: 0.5 cm. 4. “Marmorea Crust“ on top of the Schnöll Formation indicating a period of very low or non-sedimentation around the Hettangian/Sinemurian boundary. Sample C 186, Schnöll quarry. Width of photo: 0.5 cm. For more details on the variability of microfacies and faunal content see, e.g., BÖHM (1992), EBLI (1997), BÖHM et al. (1999). comprising all members of the Adnet Formation. Therefore in the Tauglbach valley can be used as reference sections. several quarries are discussed in the original definition of Derivation of name: named after the municipal Adnet. the Adnet Formation by BÖHM (2003), who designated quarry Synonyms: detailed synonymy in BÖHM (2003). See remarks XXII as type section for the base of the Adnet Formation. in chapter Hierlatz Limestone Member. The upper boundary of the Adnet Formation was at the Lithology: thin to medium bedded red (highly oxidized) time of the definition not well exposed (Adnet quarry XXX). micritic limestones and marls, mostly mudstones and Therefore, the outcrop at the western side of the Hoch- wackestones, rarely packstones. Condensed deposits are leitengraben at 900 metres is proposed as reference section formed by stagnant sedimentation and reworking caused for the upper boundary (BÖHM 2003). that faunal elements of various ages occur together. The Reference section(s): not defined, several quarries in the distribution of this type of deposit is often characterized by vicinity of the municipal Adnet can be used as reference Fe/Mn-concentrations (with less Mn - WENDT 1970). Nodu- sections for the different members of the Adnet Formation lar fabric is typical and has been explained by diagenetic, (details in BÖHM et al. 1995, BÖHM 2003). For the top of the sedimentary and tectonic processes (e.g., BÖHM 1992; furt- Adnet Formation the Davidgraben/Urbangraben sections her FLÜGEL 2004). Includes centimetres to metres thick

19 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

breccia layers, mostly made up of intraformational clasts 1971, TOLLMANN 1976a, EBLI 1997). with marly, micritic and sparitic matrix. The latter variety is Lithostratigraphically higher rank: Adnet Group. known as “Scheckbrekzie, Scheckbreccia“ (= Scheck Subdivision: subdivision in several members. Schmiedwirt Member) (e.g., SCHLAGER 1961, 1966, 1970, HALLAM 1967, Member, Lienbach Member and Motzen Member are HUDSON & JENKYNS 1969, JENKYNS 1974, WENDT 1971). laterally more or less time equivalent facies units in the Nodular fabric is common (for genesis and features compare lower part of the Adnet Formation. They are overlain by the FLÜGEL 2004). Scheck and Saubach Members. For details of the definition, Fossils: e.g., ammonites, crinoids, foraminifera, brachiopods detailed lithostratigraphy, and facies see BÖHM et al. (1995, and many others (e.g., HIRSCHBERG & JACOBSHAGEN 1965, 1999) and BÖHM (2003). KRAINER & MOSTLER (1997) sug- FISCHER 1969, WENDT 1971, BÖHM 1992, 2003, GALLET et al. gested the name Saubach Formation. For exact definitions 1993, JAKSCH 1993, MEISTER & BÖHM 1993, DOMMERGUES et al. of the Members see BÖHM (2003). 1995, BLAU & GRÜN 1994, 1996, 1997, BÖHM et al. 1999, RAKÚS Underlying units (foot wall boundary): Rhaetian Dachstein 1999a, SIBLIK 1999, VÖRÖS et al. 2003). Detailed description of Limestone, Schnöll Formation, Enzesfeld Formation. the fossil content summarized in TOLLMANN (1976a), BÖHM Overlying units (hanging wall boundary): a hiatus or (1992), EBLI (1997), BÖHM et al. (1999). erosional surface with ferromanganese crusts, or Klaus Origin, facies: hemipelagic, condensed limestones (facies Formation, or several different formations of the Ruhpol- model and details summarized in BÖHM 1992, EBLI 1997). Se- ding Radiolarite Group after a gap. dimentation normally slow, sometimes continuos, but more Geographic distribution: all over the Austroalpine domain, often interrupted by frequent periods of erosion, sub- similar formations are widespread known in the western solution and non-deposition causing stratigraphic conden- Neotethys realm. sation, submarine erosion subsurfaces and hardgrounds Lateral units: lateral equivalents are the basinal facies of (SCHLAGER 1974). the Scheibelberg and Allgäu Formations (GARRISON 1964, Chronostratigraphic age: Sinemurian to Aalenian. JACOBSHAGEN 1965, 1966, KRAINER & MOSTLER 1997, EBLI Biostratigraphy: semicostatum zone (the oldest is the 1997). paucicostatum level of DOMMERGUES et al. 1995, compare Remarks: at several places; especially in the Salzkammergut KRYSTYN 1971) to opalinum or murchisonae zone (FISCHER region a thick breccia horizon of late Early Jurassic age, and 1969, 1970, WENDT 1971, KRYSTYN 1971). For detailed therefore a time and facies equivalent to the Scheck Member discussion see BÖHM (2003). of the Adnet Formation, was formerly defined as a part of Thickness: the thickness in the type area varies, according the “Grünanger Breccia“ (SCHÄFFER 1982, SCHÄFFER & STEI- to BÖHM (2003), between <1 and 20 metres for the Sinemurian- GER 1986, VÖRÖS 1991). A revision of all localities of the “Grün- Carixian part, and between <1 and 30 metres for the Domer- anger Breccia“ in the Salzkammergut region came to the ian to Toarcian part in the type area, and up to few metres conclusion, that these breccias belong to different for the Aalenian. However, there is, according to BÖHM (1992), formations of the Adnet Group or the Ruhpolding Radiolarite no section, where both time intervals are represented with Group (see explanation there). Several megabreccias of their maximum thicknesses. Therefore, the maximum total enormous thickness of an estimated late Early Jurassic age thickness of the Adnet Formation is only about 30 metres in are further described in several areas in the Salzburg and the type area (BÖHM 2003). Similar thickness is known from Berchtesgaden Calcareous Alps (e.g., VORTISCH 1970, all other sections in the Austroalpine domain (e.g., WENDT BERNOULLI & JENKYNS 1970, 1974, TOLLMANN 1976a, 1985,

Fig. 9: Characteristic microfacies of the Adnet Formation and its characteristic members. Nodular fabric is typical. Page 21. 1. Wackestone with some echinoderm fragments, ostrocods, foramifera and radiolarians. Sample C 186, Schnöll quarry in Adnet (Tirolic units, Salzburg Calcareous Alps), Schmiedwirt Member. Width of photo: 1.4 cm. 2. Wackestone with some echinoderms, gastropods, spicula, ostracods and radiolaria. Sample C 186, Schnöll quarry, Schmiedwirt Member in Adnet. Width of photo: 0.5 cm. 3. Typical feature of the condensed Lienbach Member with some encrusted clasts, rich in echinoderm fragments and small bivalves. Sample C 190, Lienbach quarry in Adnet, Lienbach Member. Width of photo: 1.4 cm. 4. Clast with Fe/Mn-crust in a wackestone matrix, rich in small bivalve and echinoderm fragments. A nodular fabric is formed by redeposited hardground intraclasts. Sample C 190, Lienbach quarry in Adnet, Lienbach Member. Width of photo: 0.5 cm. 5. Condensed type of the Lienbach Member, stylobreccia sensu LOGAN & SEMENIUK (1976). Wacke- to packstone. The nodular fabric becomes more pronounced by pressure solution. Bivalves and echinoderms are dominating beside foraminifera. Sample C 191, Lienbach quarry in Adnet, Lienbach Member. Width of photo: 1.4 cm. 6. Wackestone to packstone with gastropods, ostracods, bivalves and echinoderm fragments. Sample C 191, Lienbach quarry in Adnet, Lienbach Member. Width of photo: 0.5 cm. 7. Crinoid- and filament-rich wackestone to packstone of the Saubach Member with some clasts of reworked Adnet Limestone. Sample Ber 64/10, Wimbach gorge (Tirolic units, Berchtesgaden Calcareous Alps), Saubach Member. Width of photo: 1.4 cm. 8. Fine-grained filament- and crinoid-rich packstone of the Saubach Member, marl-rich type (compare CSÁSZÁR et al. 2001). Sample K 992, Wildenstein waterfall (Drau Range, Northern Karavank Mountains). Width of photo: 1.4 cm. For more details on microfacies see, e.g., BÖHM (1992), EBLI (1997), BÖHM et al. (1999), FLÜGEL (2004).

20 Journal of Alpine Geology, 50: 1-152, Wien 2009

21 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

KRAINER et al. 1994, BRAUN 1998, compare BÖHM et al. 1995). as “Hierlatzer Schichten“, but compare SIMONY (1850); first KRAINER & MOSTLER (1997) suggested the name Saubach description by LIPOLD (1852) and GEYER (1886). A detailed Formation for greenish-grey late Early Jurassic marls in the description of the Hierlatz Limestone including the history syncline with an identical microfacies as in the Sau- of investigations in TOLLMANN (1976a). Further references bach Member defined by BÖHM (2003). These grey-green in VÖRÖS (1991), BÖHM (1992), EBLI (1997) and RAKÚS (1999c). coloured intercalated bituminous marls show a transitional In several cases the Hierlatz Limestone may represent a position between the red marls of the Saubach Member and crinoidal-rich variety of the Adnet Formation, especially in the black shales of the Sachrang Member (EBLI 1997). For the middle and late Early Jurassic. A revision is not necessary further remarks see BÖHM (2003). (compare VÖRÖS 1991). To include the Hierlatz Limestone as Partly exists in the Early Toarcian a fossil-enriched independent member into the Adnet Formation is useful, hardground (KMENT 1998), more or less time equivalent with because the microfacies characteristics are partly identical the deposition of the Sachrang Member in the basinal areas. with the upper Schnöll Formation (Guggen Member) or the Also the White Limestone Layer in the Toarcian (introduced Lienbach Member of the Adnet Formation. But the under- as Pasilalm Member by HAUSNER & BLIND 1996), which lying formations are different. Defined in this paper. consists exclusively of Bositra alpina (RÖMER, 1836), can Type area: ÖK 96 Bad Ischl, . be attributed to this event. Type section: ÖK 96 Bad Ischl, Mount Hierlatz southwest A peculiar feature are occurrences of crystalline boulders, of Hallstatt (Upper Austria). especially in the higher parts of the Adnet Formation (Late Reference section(s): not designated. Pliensbachian to Early Toarcian - summarized in BÖHM et al. Derivation of name: after Mount Hierlatz (Hirlatz) southwest 1997). These clasts occur not only at different places in the of Hallstatt. Northern Calcareous Alps (e.g., JURGAN 1967, 1969, Synonyms: Lias-Brachiopodenkalk (TOLLMANN 1976a with LANTSCHER et al. 1996, BÖHM et al. 1997), but also in the references; see discussion in VÖRÖS 1991), additional Southern Alps (e.g., BERNOULLI 1964, 1971, DECONINCK & discussion in BÖHM (1992). BERNOULLI 1991). Lithology: mostly thick bedded to massive reddish, seldom In the westernmost Northern Calcareous Alps (Lechtal greyish and yellowish echinoderm- and micrite-rich nappe, Vorarlberg) south of the village Schröcken near the limestones. In rare cases with cherts. This facies occurs Körbersee (lake) KINDLE (1990) described a 8-10 metres thick (partly only in lenses) between shallow-water carbonates polymictic breccia on top of the Rhaetian Dachstein Lime- (mostly Dachstein Limestone) and overlying cephalopod stone and below the Adnet Formation. KINDLE (1990) named limestones of the Adnet Formation. It comprises grain- or this breccia level Körbersee Breccia, its age is Hettangian packstones, consisting of disintegrated crinoids, with to Early Piesbachian. locally abundant brachiopods and some cephalopds (SCHLA- GER 1974). For a detailed description of the lithology see TOLLMANN (1976a), VÖRÖS (1991), BÖHM (1992), EBLI (1997). Hierlatz Limestone Member Fossils: e.g., ammonites, crinoids, foraminifera, brachiopods, (Fig. 4, Fig. 7, Fig. 11) gastropods, bivalves (SZENTE 1996). Details and references in VÖRÖS (1991), BÖHM (1992), SIBLIK (1993), EBLI (1997), RAKÚS Validity: valid (Hierlatzkalk), first mentionend by SUESS (1852) (1999c) and VÖRÖS et al. (2003).

Fig. 10: Characteristic microfacies of the Scheck Member of the Adnet Formation; type locality in Adnet (Salzburg Calcareous Alps). Clast-supported breccias, the clast are hemipelagic wacke- and packstones and exhibit different roundness/spericity values. The Scheck Breccia is explained as mass-flow deposit resulting from submarine slides of partly semiconsolidated hemipelagic sediments, triggered by tectonic activities (HUDSON & JENKYNS 1969, BÖHM et al. 1995). Page 23. 1. Polymictic breccia with several clasts of different members of the Adnet and Schnöll Formations. Typical is the coarse- grained sparitic cement in between the clasts beside rare micritic matrix. Sample C 187, Scheck quarry. Width of photo: 1.4 cm. 2. Polymictic breccia with several clasts of different members of the Adnet and Schnöll Formations. The clasts are mostly angular to subrounded. Sample C 187, Scheck quarry. Width of photo: 1.4 cm. 3. Polymictic breccia with several clasts of different members of the Adnet and Schnöll Formations. Beside micrite and sparitic cement in between the components also echinoderm fragments occur as matrix. Sample C 187, Scheck quarry. Width of photo: 1.4 cm. 4. Polymictic breccia with several clasts of different members of the Adnet and Schnöll Formations. In the micritic matrix several echinoderm fragments (partly encrusted) are visible. Sample C 187, Scheck quarry. Width of photo: 1.4 cm. 5. Polymictic breccia with parautochthonous material and echinoderm fragments in a marly matrix (styloreactate sensu LOGAN & SEMENIUK (1976)). Boundaries between the clasts are marked by dark clay seams resulting from incipient pressure solution. Distal Scheck Member. Sample Ber 64/20, Wimbach gorge (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 6. Slump structures forming a stylobreccia is one of the most common features of the distal Scheck Member. Broken echinoderm clasts are a common feature. Sample Ber 64/20, Wimbach gorge (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 0.5 cm. For more details on microfacies and genesis see, e.g., BÖHM et al. (1995), FLÜGEL (2004).

22

Origin, facies: relatively shallow hemipelagic limestones, Chronostratigraphic age: Sinemurian to Pliensbachian formed widespread on top of structural/morphological highs according to VÖRÖS (1991) and RAKÚS (1999c). Probably the after a hiatus since the overall transgression in the ?Late sedimentation started widespread in the Late Hettangian Hettangian/Early Sinemurian (compare TOLLMANN 1960, resp. around the Hettangian/Sinemurian boundary as SCHLAGER 1974, BÖHM 1986, BÖHM et al. 1999). Due to sub- proven by crinoidal turbidites in the basinal sediments (e.g., marine bottom currents (JENKYNS 1971a, b) some morpho- distal Enzesfeld Formation). In rare cases Early Hettangian logical depressions (including fissures) were filled (compare grey brachiopod-rich, fissure fillings with some crinoids VÖRÖS 1991). Partly below the Hierlatz Limestone Member a are reported from, e.g., Mount Hohes Brett (BRAUN 1998 hardground is visible, the underlying Rhaetian Dachstein with references). But this occurrence overlie the Rhaetian Limestone shows meteoric as well as marine-phreatic Donnerkogel Formation in sense of KRYSTYN et al. (2009) diagenesis (BÖHM 1986). Basal breccias with a mixture of (compare MISSONI 2003). Dachstein Limestone and crinoidal limestone occur in Biostratigraphy: on basis of ammonites (rare occurrences) places (e.g., DIENER 1885). For detailed descriptions of an early Early Jurassic age for the Hierlatz Limestone Mem- microfacies see BÖHM (1992), and EBLI (1997). ber is most common (Sinemurian to Pliensbachian - compare

23 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

VÖRÖS 1991 and RAKÚS 1999c). Several occurrences of middle Limestone. In rare cases the Hierlatz Limestone Member Early Jurassic to probably late Early Jurassic ages (references should overlie the Hauptdolomit (TOLLMANN 1976a). summarized in TOLLMANN 1976a, 1985, EBLI 1997) may belong Overlying units (hanging wall boundary): other members to the crinoid-rich varieties of the Adnet Formation. of the Adnet Formation. Thickness: 20-80 metres, rarely up to 100 metres according Geographic distribution: mostly on top of Dachstein Lime- to TOLLMANN (1976a, 1985) and VÖROS (1991). Very variable stone, all over the Austroalpine domain, partly also the in thickness, the Hierlatz Limestone fills depressions and existence in the Hauptdolomit facies zone is discussed (for fissures on top of the flooded Dachstein Limestone (SCHÖLL discussion and references see TOLLMANN 1976a). Further & WENDT 1971, RAKÚS 1999c). descriptions of geographic distribution in BÖHM (1992) and Lithostratigraphically higher rank: integration as indepen- EBLI (1997). dent member into the Adnet Formation and therefore into Lateral units: the basal part with transition to the upper the Adnet Group. Schnöll Formation (Guggen Member) and with the lower Subdivision: no subdivision. Adnet Formation. Shedding into the basinal areas and Underlying units (foot wall boundary): Rhaetian Dachstein accumulation on the deeper slope-to-basin transition of the

24 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 11: Characteristic microfacies of the Hierlatz Limestone Member. Note that the Hierlatz Limestone Member according to its actual definition in parts is very similar to the Lienbach Member of the Adnet Formation, and in parts also to the upper Schnöll Formation (Guggen Member). Page 24. 1. Echinoderm- and filament-rich wackestone to packstone, partly with hardgrounds. Foraminifera are relatively rare. Sample Ber 24/9, Gotzen(tal), (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 2. Packstone with a great number of involutinid foraminifera such as Involutina liassica (JONES, 1853 in BRODIE 1853), other foraminifera, filaments and echinoderm fragments. Sample Ber 24/9, Gotzen(tal), Steinernes Meer (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 0.5 cm. 3. Wackestone with ammonoids, foraminifera (e.g., Involutina liassica (JONES, 1853 in BRODIE 1853)), filaments and fine- grained fragments of echinoderms. Sample Bue 18, Büchsenkopf, Torrener-Joch Zone (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 4. Crinodal-rich packstone with rare filaments. Sample 13b, farmer Jodl west of (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 5. Echinoderm-poor grainstone with some lithoclasts. Lowermost part of the Hierlatz Limestone directly on top of Rhaetian Dachstein Limestone. Sample K 996, Wildenstein waterfall (Drau Range, Northern Karavank Mountains). Width of photo: 1.4 cm. 6. Wackestone to packstone with rare ammonoids, foraminifera (e.g., Involutina liassica (JONES, 1853 in BRODIE 1853), filaments and fine-grained fragments of echinoderms. With hardground. Sample K 995, Wildenstein waterfall (Drau Range, Northern Karavank Mountains). Width of photo: 1.4 cm. drowned Rhaetian reefs. skeletons of assemblages living on the rock base (brachio- Remarks: crinoidal-rich sands were shed after the Late pods, minor ammonites, bivalves, gastropods, crinoids) is Hettangian transgression from morphological highs (e.g., characterized by polyphase sparitic cementation and Dachstein Limestone) into the adjacent basinal areas. In geopetal structures“ can not be confirmed. His model for former times these allodapic crinoidal limestones in the basin the true Hierlatz Limestone can easily be replaced by a model, were included into the Hierlatz Limestone Member (see TOLL- in which on structural highs some morphological de- MANN 1976a with references). Also a transition to several pressions (including fissures) were filled. From the structural breccias (e.g., Obersee Breccia - TOLLMANN 1976a) cannot highs material was transported to the slope (compare Lien- be confirmed. Also the described transition to several bach Member of Adnet Formation - BÖHM 2003). The Middle breccias in between grey cherty basinal sediments with Jurassic sediments do not belong to the Hierlatz Limestone allodapic crinoid layers on the northern rim of Mount Member, they belong to the Klaus Formation (see there). (TOLLMANN 1960, 1976a) cannot be confirmed. These breccias belong to the Klauskogelbach Member of the Strubberg Formation (WEGERER 2002). With respect to Kendlbach Formation origin and facies of the Hierlatz Limestone Member in several (Fig. 4, Fig. 7, Fig. 12) cases a clear separation to the overlying Adnet Formation is not possible due to several lithostratigraphic and Validity: valid (Kendlbach-Formation), first detailed microfacies similarities (see also BÖHM 2003). description by PLÖCHINGER (1982, 1990), compare VORTISCH Several occurrences formerly described as Hierlatz Lime- (1968), revised and differentiated by GOLEBIOWSKI (1990a), stone may represent a crinoid-rich variety of the Adnet For- formalized by BÖHM et al. (1999). mation. VÖRÖS (1991) incorrectly attributed the crinoid-rich Type area: ÖK 94 Hallein, ÖK 95 St. Wolfgang (for details occurrences in the Mitterwand area near Mount Hierlatz see PLÖCHINGER 1982, 1990). southwest of Hallstatt to the Hierlatz Limestone, but Type section: ÖK 94 Hallein, Kendlbach section, Osterhorn mentionend the correct Middle Jurassic age (?Bajocian- Mountains (details in PLÖCHINGER 1990, BÖHM 1992). Bathonian). Therefore this occurrence cannot be attributed Reference section(s): not designated. to the Hierlatz Limestone Member, in fact it is a proximal Derivation of name: after the Kendlbach section in the type of the Vils Limestone. Also the Klaus Formation here Kendlbachgraben (valley). in the type area (Klausalm) occurs in fact in fissure fillings Synonyms: Liasfleckenmergel, parte Allgäu Formation, parte or as matrix of a polymictic breccia (see section Klaus For- Kirchstein Limestone, parte Scheibelberg Formation. “Grauer mation). Additionally parts of these breccias, in which these Lamellibranchiatenkalk“ of HAHN (1910). More details in EBLI limestones are incorporated, belong partly to the Klaus- (1997). kogelbach Member of the Strubberg Formation. Therefore Lithology: alternating grey limestones with grey marls, the updated definition by VÖRÖS (1991) “Hierlatz limestone limestones partly in the upper part of the formation with is a peculiar formation that can be sufficiently described chert nodules and layers. Detailed descriptions of the both lithologically and genetically, based mainly on the lithology and microfacies can be found in PLÖCHINGER (1982, fossil content, diagenesis, stratigraphic age and the 1990), BÖHM (1992), EBLI (1997) and BLAU & GRÜN (1994). palaeo-environmental-palaeotectonic position. Thus the Further references in KRAINER & MOSTLER (1997). Hierlatz limestone is a sediment attached to Sinemurian- Fossils: bivalves, crinoids, ammonites (seldom), brachio- Pliensbachian submarine fault zones (“by-pass-margin“) pods, spicula, foraminifera; for more details see TOLLMANN and deposited in the form of Neptunian dykes and subma- (1976a), BÖHM (1992), EBLI (1997) and SIBLIK (1999). rine taluses. This sediment consisting of a great mass of Origin, facies: basinal setting, starting with grey marls and

25 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

26 Journal of Alpine Geology, 50: 1-152, Wien 2009 limestones, poor in bioclasts at the base with decreasing Enzesfeld Formation siliciclastic content to the upper part. Partly with chert (Fig. 4, Fig. 7, Fig. 13) nodules. Chronostratigraphic age: Latest Triassic to Early/Middle Validity: valid (Enzesfeld-Formation), first description by Hettangian. The latest Triassic part should be part of the STUR (1851) as “Enzesfelder Schichten“, history summarized Eiberg Member of the Kössen Formation (compare GOLE- by TOLLMANN (1976a). Completely revised by BÖHM (1992), BIOWSKI 1990a). EBLI (1997) and BÖHM et al. (1999). Defined in this paper. Biostratigraphy: in former times starting in the planorbis Type area: ÖK 94 Hallein, Osterhorn Mountains, Salzburg zone and reaching at least the marmorea zone; but see Calcareous Alps. HILLEBRANDT & URLICHS (2008) and HILLEBRANDT & KRYSTYN Type section: ÖK 94 Hallein, Kendlbach section, Osterhorn (2009), because the beginning of the Jurassic is defined by Mountains (details in PLÖCHINGER 1973, BÖHM 1992). The the Psiloceras spelae subzone of the Psiloceras tillmanni original type section in Enzesfeld does not exist any more. zone. Reference section(s): not defined. Several sections are des- Thickness: up to some tens of metres, 8 metres at the type cribed in BÖHM (1992) and EBLI (1997). section. Derivation of name: Schloss (palace) Enzesfeld in the Lithostratigraphically higher rank: none. settlement Enzesfeld (Lower Austria). Subdivision: subdivision in a lower member = Tiefengraben Synonyms: none. Member and an upper member = Breitenberg Member by Lithology: originally described as yellowish to reddish, often GOLEBIOWSKI (1990a). For another subdivision, contrary to grey bedded limestones (in basinal areas), partly (seldom) the original definition, see BLAU & GRÜN (1994), corrected with chert nodules. According to BÖHM (1992, 2003) the by BÖHM et al. (1999). Enzesfeld Formation at the type locality shows a special Underlying units (foot wall boundary): Kössen Formation, microfacies, clearly differing from the underlying and Eiberg Member. overlying formations (for details see BÖHM 1992, BÖHM et al. Overlying units (hanging wall boundary): Enzesfeld For- 1999, compare EBLI 1997). Hardgrounds are frequent and mation. typical (e.g., BLAU & GRÜN 1994, EBLI 1997, BÖHM et al. 1999). Geographic distribution: nearly in all tectonic units with We restrict the Enzesfeld Formation to the grey, partly exception of the Hallstatt Zone, but restricted to the distri- reddish basinal facies, which reaches the lower slope during bution of the Late Triassic Kössen Basin (Eiberg Basin). a transgressive to high sea-level stand (for details BÖHM et Lateral units: lateral transition to the lower member of the al. 1999). Whereas the thickness of the Kendlbach Formati- Schnöll Formation (see BÖHM et al. 1999, BÖHM 2003) in on reaches only one metre at its the type-locality (BÖHM direction to the slope of the drowned Rhaetian reef, basin- 1992), in several places of the slope-to-basin transition it ward lithologically more similar to the Scheibelberg Forma- attains more than ten metres. A basinward gradual decrease tion (see EBLI 1997). of the grain size is typical for the Enzesfeld Formation. Near Remarks: HAHN (1910) described a transitional evolution the slope the Enzesfeld Formation is coarser grained and from the Kössen Formation to the Kendlbach Formation. richer in crinoids than in the central basin. The Upper Schattwald Formation of the type section of the Fossils: foraminifera, ostracods, crinoids, ammonites, Schattwald Formation (MCROBERTS et al. 1997) is equivalent bivalves, gastropods, belemnites (for details see TOLLMANN to the Tiefengraben Member of the Kendlbach Formation. 1976a, BÖHM 1992, EBLI 1997, BÖHM et al. 1999). See remarks in section Schattwald Formation. According to Origin, facies: in the central basinal area condensed hemi- HILLEBRANDT & URLICHS (2008) the Triassic/Jurassic pelagic limestones, probably formed in the framework of a boundary lies in the lower Tiefengraben Member of the transgressive to high sea-level stand (discussion in BÖHM Kendlbach Formation. et al. 1999); according to BÖHM (1992) a bioclastic lag deposit

Fig. 12: Characteristic microfacies of the Kendlbach Formation. Page 26. 1. Radiolaria- and spicula-rich bioturbated packstone with some echinoderm fragments. The rock appears mottled because of burrowing. Sample H 30, Hatschek quarry in Ebensee (Tirolic units, Salzkammergut area). Width of photo: 0.5 cm. 2. Magnification of 1. Spicula dominate beside some echinoderm fragments, radiolarians are rare. Note the extreme close packing of bioclasts with reduced matrix in between. Width of photo: 0.25 cm. 3. Bioturbated wackestone with spicula and radiolarians. Sample H 28, Hatschek quarry in Ebensee (Tirolic units, Salz- kammergut area). Width of photo: 1.4 cm. 4. Magnification of 3. Spicula dominate, radiolarians and echinoderm fragments are rare. Width of photo: 0.25 cm. 5. Spicula- and radiolaria-rich wackestone with synsedimentary slumping and bioturbation. Sample Ber 64/1b, Wimbach gorge (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 6. Radiolaria- and spicula-rich laminated wackestone with synsedimentary slumpings. Sample Ber 64/1b, Wimbach gorge (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 0.5 cm. 7. Echinoderm-rich allodapic layer intercalated in a radiolaria- and spicula-rich wackestone. Sample Ber 64/1b, Wimbach gorge (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 8. Bioturbated radiolaria- and spicula-rich wackestone. Sample Ber 64/3, Wimbach gorge (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. For more details on microfacies see, e.g., BÖHM (1992), EBLI (1997), BÖHM et al. (1999).

27 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

28 Journal of Alpine Geology, 50: 1-152, Wien 2009 due to strong bottom currents. Near the slopes of the Enzesfeld Formation at the type locality into the respective drowned Rhaetian reefs much coarser grained and turbiditic. underlying lithostratigraphic unit, either the Schnöll or Chronostratigraphic age: after TOLLMANN (1976a) Early Kendlbach Formations. The upper part of the Schnöll For- Hettangian to Early Sinemurian; according to the revision mation shows affinities to the Enzesfeld Formation. Not and age dating by BÖHM (1992), EBLI (1997) and BÖHM et al. following BÖHM (2003), we restrict the term Enzesfeld For- (1999) ?Middle to Late Hettangian to Early Sinemurian. mation to the grey basinal facies, there it forms a character- Possible is a diachronous occurrence (EBLI 1997). istic level separating the Kendlbach and Scheibelberg For- Biostratigraphy: probably megastoma zone to marmorea mations. Obviously in the central basin in most cases the zone in the type area, partly reaching the bucklandi zone Enzesfeld Formation is relatively thin or represented by a (e.g., TOLLMANN 1976a, EBLI 1997, BÖHM et al. 1999). condensed horizon. At the base of the slope of the drowned Thickness: normally reduced in thickness from several Rhaetian reefs the formation can reach more than ten metres. decimetres to 1-2 metres (e.g., TOLLMANN 1976a, BÖHM 1992, There it forms a characteristic coarse-grained sequence, 2003, BLAU & GRÜN 1994, EBLI 1997, BÖHM et al. 1999, ZERBES rich in crinoid-rich turbiditic layers. In fact, the Enzesfeld 2001). In some cases the thickness probably reaches several Formation may represent parts of the basinal part of the tens of metres (e.g., PLÖCHINGER 1957, TOLLMANN 1976a). reddish basal Hierlatz Limestone Member or the upper part Lithostratigraphically higher rank: none. of the Schnöll Formation, which established on top of the Subdivision: no subdivision. flooded Hauptdolomit/Dachstein carbonate platform at that Underlying units (foot wall boundary): Kendlbach Formati- time. Near the deeper part of the slope partly thick crinoid- on or Schnöll Formation. rich allodapic limestones accumulated, which are missing Overlying units (hanging wall boundary): Adnet Formation in the central basin. In the central basin the Enzelsfeld For- or Scheibelberg Formation. mation can partly not be distinguished from the lower Geographic distribution: nearly in all tectonic units with ex- Kendlbach or upper Scheibelberg Formation (see also ception of the Hallstatt Zone, often only sporadically (more KRAINER & MOSTLER 1997). details in TOLLMANN 1976a), but should be obviously re- A possible shallower equivalent of the Enzesfeld Formati- stricted to the distribution of the Late Triassic Kössen Basin on and therefore of similar genesis as the Hierlatz Lime- (Eiberg Basin). stone Member of the Adnet Formation (see there), which Lateral units: in the transitional area to the slope (= Guggen occurs on top of the flooded Rhaetian carbonate platform, Member of Schnöll Formation) the Enzesfeld Formation are the Hochfelln Beds (named by BÖSE 1893) in the becomes red and relatively thin. In this transitional area it Hochfelln Mountains (for details see SEUSS et al. 2005). The- normally does not represent a mappable horizon (e.g., BÖHM se ?Late Hettangian to Early Sinemurian extremely fossil- 2003) and can easily be included in the Schnöll Formation, rich beds (compare AMMON 1893, NÖTH 1926, GANSS 1956, in which obviously only a slightly different microfacies ANTONIADIS 1975) occur in mould structures and may fill a exists (compare BÖHM et al. 1999, BÖHM 1992, 2003). relief (BÖHM 1910). The Hochfelln Beds were partly Remarks: BÖHM (2003) suggests to include the not mappable reinvestigated by SEUSS et al. (2005) with a modern des-

Fig. 13: Characteristic microfacies of the Enzesfeld Formation. The Enzesfeld Formation normally shows reddish colours, especially near the slope, and grey colours in the basin (compare Fig. 7). Page 28. 1. Echinoderm- and foraminifera-rich reddish packstone of the original type locality of the Enzesfeld Formation near Schloss (palace) Enzesfeld (Tirolic units, eastern Northern Calcareous Alps). Sample Enzesfeld. Width of photo: 1.4 cm. 2. Magnification of 1. Beside involutinid foraminifera and echinoderm fragments broken bivalve shells are common. Partly some components show Fe/Mn-crusts. Width of photo: 0.5 cm. 3. Foraminifera-rich type in a very condensed variety of the Enzesfeld Formation near Schloss (palace) Enzesfeld. Different of foraminifera occur together with echinoderm fragments and gastropods in a dark-grey to black Fe/Mn-rich marly matrix. Sample Enzesfeld. Width of photo: 0.5 cm. 4. The left side of the picture shows a similar foraminifera-rich reddish packstone (rich in Involutina liassica (JONES, 1853 in BRODIE 1853) as known from the original type locality. The right side shows the filling of a less condensed wackestone with shell and echinoderm fragments in an ammonoid. Sample A 1670/2, Mount Steinplatte (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 5. Magnification of 4. Packstone rich in broken shell fragments (ammonoid shells, gastropods and bivalves), foraminifera filled with black sediment rich in organic matter, broken echinoderm fragments and some gastropods. Sample A 1670/2, Mount Steinplatte (Tirolic units, Salzburg Calcareous Alps). Width of photo: 0.5 cm. 6. Grey to reddish packstone enriched in echinoderm fragments. Foraminifera, gastropods, ammonoidea (with geopetal filling) and other shell fragments are other typical elements. Sample OM 3B, Christlum west of Achensee (Bavaric units, western Northern Calcareous Alps). Width of photo: 1.4 cm. 7. Grey wackestone to packstone, rich in echinoderm fragments and spicula, partly clasts with Fe/Mn-crusts. Also some radiolaria occur, foraminifera are very seldom or absent. This type of sediment represents the basin-type Enzesfeld Forma- tion in between the Kendlbach and Scheibelberg Formations. Sample H 26, Hatschek quarry, municipal Ebensee (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 8. Magnification of 7. Recrystallized spicula beside echinoderm fragments are typical. Width of photo: 0.5 cm. For details on microfacies see, e.g., BÖHM (1992), EBLI (1997), BÖHM et al. (1999).

29 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

cription also of the microfacies characteristics. possible formalization of the Kirchstein Limestone the Scheibelberg Formation should be restricted to the distri- bution of the Late Triassic Eiberg Basin. Scheibelberg Formation Lateral units: transitional and partly equivalent to the basinal (Fig. 4, Fig. 7, Fig. 14) facies of the Allgäu Formation, to the slope by gradual facies change to the Adnet Formation (details in BÖHM 1992, EBLI Validity: valid (Scheibelberg-Formation), first description 1997), to the upper part (Sachrang Member) with gradual by GARRISON (1964); completely revised by BÖHM (1992), facies change to the Saubach Member of the Adnet Forma- EBLI (1997) and KRAINER & MOSTLER (1997). Defined by tion. KRAINER & MOSTLER (1997). For history see TOLLMANN Remarks: the Sachrang Member as upper part of the (1976a). Scheibelberg Formation (early Toarcian) was introduced as Type area: ÖK 91 St. Johann and ÖK 92 , Unken syncline Sachrang Formation by EBLI (1997) and EBLI et al. (1998). At in the Salzburg Calcareous Alps. the type locality Sachrang the bituminous marls and shales Type section: ÖK 92 Lofer, Karnergraben section (valley), were dated by ammonites as lower Toarcian (= Toarcian designated as new type-section by KRAINER & MOSTLER black shale), the overlying manganese-rich shales by radio- (1997). This section needs revision. larians. On base of the radiolarian fauna EBLI (1997) estimates Reference section(s): western part of Mount Scheibelberg that typical Middle Jurassic radiolarians (about Callovian (GARRISON & FISCHER 1969), formerly the original type sect- in age) should have a wider age range as estimated by ion (see also GARRISON 1964). BAUMGARTNER et al. (1995a, b). More recent proofs of the Derivation of name: Mount Scheibelberg, 5 km north of stratigraphic range of the radiolarian species (e.g., SUZUKI village Waidring. et al. 2001, SUZUKI & GAWLICK 2003a, BECCARO 2004, 2006, Synonyms: Liasfleckenmergel, probably parts of Kirchstein O´DOGHERTY et al. 2006, GORICAN et al. 2006, AUER et al. 2009) Limestone and Allgäu Formation (see remarks). clearly show that these species do not exist earlier than Lithology: light to dark-grey, 10-30 cm thick beds, partly Bathonian. Therefore, a gap or hiatus is proven in between nodular cherty limestones with some marly intercalations. the bituminous marls/shales (Toarcian) and the manganese Chert nodules partly grey, seldom red. For more details see shales (?Bathonian to Callovian). In the Unken syncline TOLLMANN (1976a), BÖHM (1992), EBLI (1997), FLÜGEL (2004); the transitional facies between the Toarcian Saubach detailed microfacies in BÖHM (1992) and EBLI (1997), compare Member of the Adnet Formation to the black shales and KRAINER & MOSTLER (1997). marls of the Sachrang Member consists of grey-greenish Fossils: echinoderms, spicula, radiolarians, ammonites marls, described by KRAINER & MOSTLER (1997). In the most (rare), foraminifera (for details see TOLLMANN 1976a, BÖHM distal parts of the basin the lower part of the Scheibelberg 1992, EBLI 1989, 1997, KRAINER & MOSTLER 1997). Formation is not easy to distinguish from the Kendlbach Origin, facies: grey basinal hemipelagic cherty limestones. Formation. Therefore, the Kendlbach Formation is partly Chronostratigraphic age: Latest Hettangian to Early Toarcian mapped together with the Scheibelberg Formation. (EBLI 1997, KRAINER & MOSTLER 1997). Biostratigraphy: basal part not exactly defined, probably marmorea zone to bifrons zone (compare SCHRÖDER 1925, Kirchstein Limestone EBLI 1997). Early Toarcian according to several ammonites, (Fig. 4, Fig. 15) zone not exactly defined. Thickness: around 20 metres in the type area according to Validity: invalid (Kirchsteinkalk); first introduced by TOLL- EBLI (1997); 16 metres in the type section according to MANN (1976a), with a complete history. A revision is KRAINER & MOSTLER (1997). In the Glasenbach gorge south necessary. Most likely the Kirchstein Limestone represents of Salzburg a thickness of nearly 100 metres is described parts of the Kendlbach, Scheibelberg or most likely Allgäu (VORTISCH 1970, BERNOULLI & JENKYNS 1970, TOLLMANN Formations (older names with priority). Due to facies, micro- 1976a). facies, age range and lithologic similarities the Kirchstein Lithostratigraphically higher rank: none. Limestone is a more or less completely equivalent to the Subdivision: the upper part of the Scheibelberg Formation, Kendlbach and Scheibelberg Formations and represents a directly below the Adnet Formation, partly with mass flows more basinal facies, where the Enzesfeld Formation is (equivalent to the Scheck Member) as well as the organic missing. See remarks Enzesfeld Formation, Kendlbach For- rich marls/shales are separated as Sachrang Member (com- mation, Scheibelberg Formation, Allgäu Formation. pare EBLI 1991, 1997: Sachrang Formation, none). Type area: in Tyrol. Underlying units (foot wall boundary): Enzesfeld Formati- Type section: ÖK 88 Achenkirch, Mount Kirchstein is on. Kendlbach Formation in such cases, where the Enzesfeld located 6.5 km westsouthwest of the village Lenggries/Isar Formation cannot be distinguished from the Kendlbach (). For more details see TOLLMANN (1976a). Formation (see section Enzesfeld Formation), but never Reference section(s): not designated. Kössen Formation (TOLLMANN 1976a). Derivation of name: after Mount Kirchstein. Overlying units (hanging wall boundary): Adnet Formation Synonyms: Liasfleckenmergel. (Saubach or Scheck Member). Saubach Member in the type Lithology: grey (partly dark-grey) cherty limestones, well section. bedded, partly with chert nodules or layers, marly inter- Geographic distribution: nearly in all tectonic units with calations are very rare. exception of the Hallstatt facies zone. After revision and Fossils: radiolarians (KOZUR & MOSTLER 1990), spicula

30 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 14: Characteristic microfacies of the Scheibelberg Formation. 1. Bioturbated spicula- and radiolaria-rich wackestone with rare gastropods. Sample Ber 64/5, Wimbach gorge (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 2. Bioturbated radiolaria- and spicula-rich condensed wackestone to packstone. Most spicula and radiolaria are transformed to calcite or quartz. Sample Ber 64/6, Wimbach gorge (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 3. Magnification of 2. Spicula dominate beside some radiolaria. Width of photo: 0.5 cm. 4. Bioturbated wackestone with recrystallized radiolaria, spicula and some ostracods. Sample Ber 64/8, Wimbach gorge (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 5. Bioturbated wacke- to packstone, slightly bioturbated. Beside radiolaria and spicula occur ostracods and rare echinoderm fragments. Clay and organic material is enriched on styloliths. Sample Ber 64/9, Wimbach gorge (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 6. Wackestone with a small ammonoid, recrystallized and broken filaments and recrystallized radiolarians. Sample Ber 64/ 9, Wimbach gorge (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 0.5 cm. For details on microfacies see, e.g., BÖHM (1992), EBLI (1997), BÖHM et al. (1999).

31 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Fig. 15: Characteristic microfacies of the Kirchstein Limestone. 1. Packstone with very fine-grained clast, micrite clasts are dominating beside recrystallized filaments. Sample B 50a, Stierkogel quarry near the municipal Alland (Bavaric units, eastern Northern Calcareous Alps). This sequence was designated by TOLLMANN (1976a: Fig. 179) as Scheibelberg Formation. Width of photo: 1.4 cm. 2. Magnification of 1. Most components, the originally micritic matrix as well as the filaments are recrystallized. Very typical are micrite clasts. Width of photo: 0.25 cm. 3. Bioturbated spicula-rich wacke- to packstone with echinoderm fragments and some filaments. Sample S 143 (coll. DUMFARTH), Jägergraben brooklet south of Klaus(alm)bach (valley) west of the village Kleinreifling (Bavaric units, Weyerer Bögen, eastern Northern Calcareous Alps). Width of photo: 1.4 cm. 4. Magnification of 3. The microfacies with a mixture of spicula-echinoderm wacke- to packstones resembles the microfacies of the Enzesfeld Formation between the Kendlbach and Scheibelberg Formations. Width of photo: 0.5 cm. 5. Other view of the same sample. Recrystallized spicula are the characteristic and dominating components beside echinoderm fragments. Width of photo: 0.5 cm. 6. Packstone enriched in shell fragments and micrite clasts beside some echinoderm fragments. Sample D 94 (coll. SCHWINGENSCHLÖGL), north of Kirchberg (Bavaric units, eastern Northern Calcareous Alps). Width of photo: 1.4 cm.

32 Journal of Alpine Geology, 50: 1-152, Wien 2009

(MOSTLER 1989a, b, 1996b), rare brachiopods and ammonites Allgäu Formation (TOLLMANN 1976a). (Fig. 4, Fig. 16, Fig. 17) Origin, facies: cherty hemipelagic, basinal facies equivalent to the Allgäu and Scheibelberg Formations, probably in the Validity: valid (Allgäu-Formation), introduced by GÜMBEL basal part to the Kendlbach Formation. (1856), in detail investigated by SCHRÖDER (1925) and Chronostratigraphic age: Hettangian to Sinemurian JACOBSHAGEN (1958, 1964, 1965, 1966). TOLLMANN (1976a) according to KOZUR & MOSTLER (1990) in the area of the summarized the history. Partly reinvestigated by EBLI (1997). type locality. Hettangian to early Toarcian according to Needs reinvestigation and clear separation from other TOLLMANN (1976a with references). basinal Early Jurassic sediments. A clear separation of the Biostratigraphy: Hettangian to Sinemurian according to different lithologies in different regions is necessary for a radiolarians (basal level) and very rare ammonites (TOLL- more differentiated classification of the Allgäu Formation MANN 1976a, KOZUR & MOSTLER 1990) at the type locality. in respect to the palaeogeograhic position (for details see, Hettangian to early Toarcian on basis of very rare ammonites e.g., TOLLMANN 1976a, 1985, EBLI 1997, EBERLI 1985, FRIEBE (TOLLMANN 1976a, 1985). 2007). Compare also DÖSSEGGER et al. (1982). Thickness: some tens to more than 100 metres (TOLLMANN Type area: Allgäu region in Bavaria. 1976a, KOZUR & MOSTLER 1990). The lower horizon Type section: JACOBSHAGEN (1965: Tab. 2) designated the (Hettangian) is about 30 metres thick. section between Höfats and the upper Hornbach valley near Lithostratigraphically higher rank: none. the town Oberstdorf (Allgäu) as type section. Subdivision: no subdivision. Reference section(s): not designated, several sections in Underlying units (foot wall boundary): Rhaetian Dachstein the Allgäu syncline (for details see JACOBSHAGEN 1958, 1965). Limestone after a gap. In the northeasternmost parts of the For the Lower Austroalpine DÖSSEGGER et al. (1982) de- Northern Calcareous Alps similar cherty limestones are signated the section between La Parè and Val Müschauns underlain by the Kalksburg Formation (SOLOMONICA 1934). (Graubünden) as reference section. Overlying units (hanging wall boundary): de facto Derivation of name: Allgäu region in Bavaria (Germany). unknown, Allgäu Formation, probably Chiemgau Series. The Synonyms: Liasfleckenmergel, partly Kirchstein Limestone Toarcian black shale (Sachrang Member) is missing. (see EBLI 1997). In former times some parts of the Strubberg Geographic distribution: in the entire Northern Calcarous and Sandlingalm Formations were included into the Allgäu Alps, basinal Early Jurassic facies, widespread in the Bavaric Formation, especially the manganese-rich horizons were units (TOLLMANN 1976a), but also in the Tirolic units in sen- correlated with the Toarcian Sachrang Member (e.g., se of TOLLMANN (1976b). But there most occurrences are CORNELIUS & PLÖCHINGER 1952, TOLLMANN 1976a). Also in revised and now included in the Kendlbach or Scheibelberg the Salzkammergut region several cherty limestones were Formations. If separated as own formation, the Kirchstein interpreted as Allgäu Formation (e.g., SCHÄFFER 1982, Limestone should be restricted to the (Restental) Allgäu SCHÄFFER & STEIGER 1986), but after revision of most Basin and therefore to the Bavaric units. localities in the central Northern Calcareous Alps these Lateral units: no transitions of the Kirchstein Limestone to cherty limestones represent several formations of the Ruh- other Early Jurassic formations are preserved. If the polding Radiolarite Group, most of them belong to the Strub- Kirchstein Limestone will be included into the Allgäu, berg or Sandlingalm Formations (for details see description Kendlbach and Scheibelberg Formations, there will be a and remarks there). transition to reddish, condensed slope deposits of the Lithology: bedded dark-grey, marly to cherty limestones, Schnöll and Adnet Formations (see remarks Schnöll and relatively thick marl intercalations, partly bioturbated Adnet Formations). (“Fleckenmergel“). JACOBSHAGEN (1965) distinguished a Remarks: lower part very similar to the Kendlbach Formati- lower, a middle and an upper Allgäu Formation. In general, on (cherty variety). In the upper level identical or very similar the lower part is characterized by a bedded limestone-marl to the Scheibelberg Formation in both, lithology and micro- succession with dominating grey bioturbated limestones. facies. In fact, the only difference is the diagenetic concen- Near the base the lower Allgäu Formation in the type area is tration of siliceous organisms in chert nodules and layers, more reddish and condensed (JACOBSHAGEN 1965). In the or there is no difference at all (compare FABRICIUS 1966, TOLL- Allgäu type region the lowermost part of the bedded grey MANN 1976a). Therefore, until a complete reinvestigation Allgäu Formation is relatively thick-bedded to massive and the so-called Kirchstein Limestone should not be formalized. cherty. Near the base of the cherty limestones a charac- It is expected that the term Kirchstein Limestone must be teristic horizon with resediments represent the margaritatus seen as synonym for the Scheibelberg and Kendlbach For- zone (late Pliensbachian). According to JACOBSHAGEN (1965) mations in some cases, probably also to the Allgäu Forma- the age range of the lower Allgäu Formation is Hettangian tion. Similar to the situation in the Sachrang section a to Pliensbachian (compare ANTONIADIS 1984). The middle stratigraphic gap in the (late) Lower Toarcian is expected in part of the succession, Toarcian in age (JACOBSHAGEN 1965, the basinal area, where the Kirchstein Limestone was EBLI 1997) is enriched in marls, partly with manganese-rich deposited. This becomes evident by Toarcian ammonites intercalations. This part is equivalent to the Sachrang (TOLLMANN 1976a). Further investigations about the age Member. The Sachrang Member represents the upper part range of this facies and the age of the overlying sediments of the middle Allgäu Formation and is overlain by the upper are necessary. Allgäu Formation (late Toarcian to early Middle Jurassic). For details and history of investigation see TOLLMANN (1976a), JENKYNS (1988), EBLI (1991) and EBLI et al. (1998).

33 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

34 Journal of Alpine Geology, 50: 1-152, Wien 2009

The upper part of the upper Allgäu Formation starts with Subdivision: lower, middle and upper part according to cherty limestones and rare marl intercalations, upsection JACOBSHAGEN (1965), Stadelwiese Member. the marl intercalations increase. Near the transition to the Underlying units (foot wall boundary): Adnet Formation, Penninic realm breccia layers and turbidites, especially in Rhaetian Dachstein Limestone, Kössen Formation. the lower part of the Allgäu Formation, are common (DÖSS- Overlying units (hanging wall boundary): Vils Limestone, EGGER et al. 1982, FURRER 1993). The subdivision of JACOBS- several formations of Ruhpolding Radiolarite Group, mostly HAGEN (1964, 1965) cannot be used for the Allgäu Formation the Ruhpolding Formation. in the western Lower Austroalpine units (DÖSSEGGER et al. Geographic distribution: widespread in the Austroalpine 1982). units; typical for the Early Jurassic basinal areas in the Fossils: radiolarians, spicula, foraminifera, ammonites (for Northern Calcareous Alps (Allgäu Basin) and especially details see BESLER 1959, JACOBSHAGEN 1965, TOLLMANN 1976a, for the transitional areas to the Penninic units, there with EBLI 1997). several breccia intercalations (e.g., Tarntal Breccia, Türken- Origin, facies: basinal, hemipelagic marly limestones. kogel Breccia, compare Chaschauna Breccia - DÖSSEGGER et Chronostratigraphic age: Hettangian to late Middle Jurassic al. 1982) mostly in the early Early Jurassic. (?Bathonian to ?Callovian) according to JACOBSHAGEN (1965) Lateral units: the lower Allgäu Formation with facial and DÖSSEGGER et al. (1982). JACOBSHAGEN (1965) includes transitions to the Scheibelberg and partly the Kendlbach the Vils Limestone equivalents into the Allgäu Formation Formations towards the basinal areas, and some transitions (western part of the Northern Calcareous Alps). In the to the Adnet Formation towards the slope and morphological eastern part of the Northern Calcareous Alps the age range highs. The upper Allgäu Formation with transition to the of the Allgäu Formation is Hettangian to Aalenian according Vils Limestone (compare section Kirchstein Limestone). to TOLLMANN (1976a). In the type area the onset of the All- Remarks: in several sections in the Bavaric units, where the gäu Formation should start diachronously somewhere in typical Allgäu Formation should occur, cherty bedded the early Early Jurassic (JACOBSHAGEN 1965, 1966, TOLLMANN limestones, similar to those of the Scheibelberg Formation 1976a - compare BÖSE 1894). In contrast, in more basinal (Kirchstein Limestone) were deposited in the early Early areas the onset of the Allgäu Formation is estimated as Jurassic (HELMCKE 1969 - western Northern Calcareous Alps; Hettangian (TOLLMANN 1976a). PLÖCHINGER 1960 - eastern Northern Calcareous Alps; Biostratigraphy: planorbis zone to Aalenian or Bajocian, to compare TOLLMANN 1976a). As far as known, these cherty ?Callovian (exact ammonite zone cannot be defined). limestones reach at least the uppermost Sinemurian Thickness: normally around 100 metres, but in the type (HELMCKE 1969). Anyhow, this lithology (equivalent to the region - the Allgäu syncline - it is more than 1500 metres lower part of the Allgäu Formation) should be, after its (JACOBSHAGEN 1958, 1965); probably with breccia inter- reinvestigation, be separated from the Allgäu Formation calations in other regions (e.g., Mount Eisenspitze region - and may be included in the Scheibelberg Formation compare section Eisenspitz Breccia) up to several 100 (compare EBLI 1997) or separated as Kirchstein Formation. metres. In this case, the Sachrang Member could represent the Lithostratigraphically higher rank: none. lithological boundary between a lower (= Kirchstein Lime-

Fig. 16: Characteristic microfacies of the lower Allgäu Formation. The microfacies documentation is made from the calcareous, partly chertified beds in between marly layers, the typical feature of the lower Allgäu Formation. Page 34. 1. Layered wacke- to packstone with crinoids, shell fragments and spicula of the lowermost part of the Allgäu Formation. The microfacies resembles that of the basinward Enzesfeld Formation. Sample WP 24 (coll. PAVLIK), Heitzerau north of the municipal Reichraming, Weyerer Bögen (Reichraming nappe, Bavaric units, eastern Northern Calcareous Alps). Width of photo: 1.4 cm. 2. Magnification of 1, lower part. Echinoderm and shell fragments are the dominating bioclasts of this layer. Width of photo: 0.5 cm. 3. In the finer-grained layers spicula are more common, also some radiolaria are visible beside very small shell fragments. Sample WP 24 (coll. PAVLIK), Heitzerau north Reichraming, Weyerer Bögen (Reichraming nappe, eastern Northern Calcareous Alps). Width of photo: 0.25 cm. 4. Slightly bioturbated spicula-rich wacke- to packstone with some (recrystallized) radiolaria of the lower Allgäu Formati- on. Sample TH 8, Thiersee syncline, Ampelsbach section (Bavaric units, western Northern Calcareous Alps). Width of photo: 1.4 cm. 5. Chertified spicula-rich wackestone to packstone, slightly bioturbated. In addition to the spicula occur some echinoderm fragments and radiolaria. Sample TH 8, Thiersee syncline, Ampelsbach section (Bavaric units, western Northern Calcareous Alps). Width of photo: 1.4 cm. 6. Magnification of 1. Most spicula as well as the rare radiolaria are recrystallized. Width of photo: 0.5 cm. 7. Echinoderm fragments, filaments, rare radiolaria are characteristic for the Toarcian part of the Allgäu Formation. The fine-grained biodetritus shows layering. Sample TH 16a, Thiersee syncline, Leiten section (Bavaric units, western Northern Calcareous Alps). Width of photo: 1.4 cm. 8. Magnification of 4. The filaments and the echinoderm fragments document the overall change in the microfacies characteristics in Toarcian times (compare, e.g., Adnet Formation, Saubach Member). Width of photo: 0.5 cm. For more details on microfacies see, e.g., EBLI (1997).

35 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

36 Journal of Alpine Geology, 50: 1-152, Wien 2009 stone resp. Scheibelberg Formation) and upper Allgäu For- Synonyms: none. mation (compare JENKYNS 1988). JACOBSHAGEN (1965) Lithology: polymictic megabreccias, which consist of local includes also the crinoid-rich intercalations of middle Middle material similar to the stratigraphic succession below Jurassic age into the Allgäu Formation. The crinoid-rich (Hauptdolomit, Oberrhät Limestone, Kössen Formation). limestones in fact represent the ?Middle/Late Bajocian and The breccias can be interpreted as mass-flow deposits reach partly the Callovian. These sediments represent there- intercalated in grey bioturbated marly limestones of the fore a time- and facies-equivalent to the Vils Limestone. Allgäu Formation (BLAU & SCHMIDT 1988, SCHMIDT & BLAU Therefore the crinoid-rich uppermost part of the Allgäu 1989). Different components are documented in BLAU & Formation represents the distal allodapic layers of the SCHMIDT (1988, 1990). shallower Vils Limestone and should not be included in the Fossils: up to now only one level of the matrix yielded Allgäu Formation. Breccia layers occurring in several ammonites (SCHLAGER 1963, BLAU 1998), other ammonites horizons (e.g., in the late Pliensbachian - JACOBSHAGEN 1965) come from the scree (BLAU & SCHMIDT 1988). should also belong to the Allgäu Formation (e.g., Eisen- Origin, facies: interpreted by BLAU & SCHMIDT (1988, 1990) spitz Breccia in the Lechtal Alps - but see remarks there). as breccia formed on top of morphologic highs (resp. gra- ben flanks), from there mobilized and transported as gravity flows or rock fall breccias into the adjacent, newly formed Stadelwiese Member basin, deposited near the base of the newly formed slope (Fig. 18) together with the Allgäu Formation. Chronostratigraphic age: Sinemurian (SCHLAGER 1963, BLAU Validity: valid (Stadelwiese-Subformation), defined in this 1998). paper. The sedimentary column of the Stadelwiese was first Biostratigraphy: unknown in detail. mentionend by SCHLAGER (1963) and v. BEMMELEN & Thickness: the base of the Stadelwiese Member is eroded MEULENKAMP (1965). It was analysed in detail by BLAU & and the upper limit is fault bounded. The preserved thick- SCHMIDT (1988, 1990). Due to its mass-flow intercalations ness is around 400 metres (BLAU & SCHMIDT 1988). the succession is clearly distinguishable from the “normal“ Lithostratigraphically higher rank: Allgäu Formation. Allgäu Formation development. Subdivision: no subdivision. Type area: Lienz Dolomites, alp Stadelwiese southwest of Underlying units (foot wall boundary): unknown due to the town Lienz. erosion, most probably Oberrhät Limestone. Type section: ÖK 179 Winklern, Lienz Dolomites. The type Overlying units (hanging wall boundary): unknown, fault. section is a composite section. The basal part of the Geographic distribution: only known from the type area, succession is represented by the section in the southern but similar breccias are typical for the Lower Austroalpine part of the Stadelwiese area, the upper part of the succession units. is the section in the northwestern part of the Stadelwiese Lateral units: unknown. (BLAU & SCHMIDT 1990: Fig. 2). Remarks: the Stadelwiese Member most probably represents Reference section: the whole Stadelwiese outcrops show an equivalent to different breccias known from the time the typical characters of the succession, therefore a defini- interval Hettangian to Sinemurian/Pliensbachian, as tion of a reference section is not necessary. described from the newly formed basins due to the extension Derivation of name: after the locality Stadelwiese, local name in and around the South Penninic realm (compare sections for an alp in the Lienz Dolomites. Tarntal Breccia, Türkenkogel Breccia) (e.g., EBERLI 1988, 1991,

Fig. 17: Characteristic microfacies of the upper Allgäu Formation. Page 36. 1. Grey cherty packstone with echinoderm fragments and spicula, slightly bioturbated, partly dark-grey marls. Sample PA 93/87, Hohenberg southeast of the Marxerboden, Weyerer Bögen (Frankenfelser nappe, Bavaric units, eastern Northern Calcareous Alps). Width of photo: 1.4 cm. 2. Echinoderm-rich packstone with shell fragments, partly brachiopods, and some spicula. This microfacies in the upper Allgäu Formation resembles the Vils Limestone. Sample PA 94/87, Hohenberg southeast of the Marxerboden, Weyerer Bögen (Frankenfelser nappe, Bavaric units, eastern Northern Calcareous Alps). Width of photo: 1.4 cm. 3. Polymictic breccia with several different radiolarian wackestone components, partly with spicula, partly with filaments. Mount Glasfelder Kopf, Allgäu Alps (Bavaric units, western Northern Calcareous Alps). Width of photo: 1.4 cm. 4. Other view of the same sample. On the right side the dark-grey matrix of cherty marl is visible. Width of photo: 0.5 cm. 5. Other view of the same sample. The coarser-grained matrix consists of echinoderm fragments and rare filaments. Width of photo: 0.5 cm. 6. Bioturbated filament- and radiolaria-rich wacke- to packstone of the upper Allgäu Formation. Sample TH 7, Thiersee syncline, Ampelsbach section (Bavaric units, western Calcareous Alps). Width of photo: 1.4 cm. 7. Magnification of 6. Beside filaments and mostly recrystallized radiolaria some fine-grained biodetritus and peloids are common. Width of photo: 0.5 cm. 8. Magnification of 6. Clearly visible is the bad preservation of the organisms as a result of recrystallization. The microfacies characteristics partly resemble the microfacies of the Klaus Formation in transition to several formations of the Ruhpol- ding Radiolarite Group. Width of photo: 0.25 cm. For more details on microfacies see, e.g., EBLI (1997).

37 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

38 Journal of Alpine Geology, 50: 1-152, Wien 2009

HÄUSLER 1988). gliding over (very) short distances. Chronostratigraphic age: ?Late Hettangian to ?Early Pliensbachian (BLAU 1987b, BLAU & SCHMIDT 1988, BLAU & Lavant Breccia MEISTER 1991, BLAU & GRÜN 1995). (Fig. 4, Fig. 19) Biostratigraphy: unknown in detail. Thickness: around 20 metres (BLAU & SCHMIDT 1988). Validity: valid (Lavanter Brekzie), first mentionend by Lithostratigraphically higher rank: none. MARIOTTI (1972a, b), analysed in detail by BLAU (1987a, b, Subdivision: no subdivision. 1994) and BLAU & SCHMIDT (1988). Underlying units (foot wall boundary): Oberrhät Limestone. Type area: Lienz Dolomites, Amlacher syncline. Overlying units (hanging wall boundary): Adnet Formation Type section: ÖK 180 Lienz, Lienz Dolomites, a type section (Pliensbachian-Toarcian; GEYER 1903, BLAU & MEISTER 1991). was not designated by BLAU & SCHMIDT (1988: Fig. 2). But Geographic distribution: only known from the type area. the Himperlahn section (north of the municipal Lavant) can Lateral units: Allgäu Formation. be designated as type section. Remarks: a possible younger synonym resp. equivalent is Reference section(s): not designated. But several sections probably the Körbersee Breccia in Vorarlberg (Bavaric units, described by BLAU & GRÜN (1995) can be used as reference south of the village Schröcken near the hotel Körbersee - sections. The breccia seen by CSÁSZÁR et al. (2001) in the KINDLE 1990). Age range and component spectrum similar Stadtweg section and denominated as Lavant Breccia to the Lavant Breccia. represents a slump deposit at the base of the Adnet Forma- tion (see BLAU & GRÜN 1995: Figs. 1, 4). This slump deposit has already been seen by CORNELIUS-FURLANI (1953). Dürrnberg Formation Derivation of name: after the municipal Lavant near the river (Fig. 4, Fig. 20) Drau, southeast of the town Lienz. Synonyms: unknown. Validity: valid (Dürrnberg-Formation), first description and Lithology: polyphase more or less in situ brecciated definition by GAWLICK et al. (2001). variegated (bio-)micritic limestones, oncoidal limestones Type area: ÖK 93 Bad Reichenhall, ÖK 94 Hallein, blocks in (Fig. 19: 1), partly plasticlastic (Fig. 19: 4). The breccia is cut the Sandlingalm Formation in the area Hallein-Bad by several generations of neptuninan dykes which are filled Dürrnberg to Berchtesgaden, as well as in the Strubberg by micrite and may contain clasts of the variegated Formation east of the Königssee (lake). limestones (compare section Allgäu Formation) and of the Type section: farmer at the end of the Kleinkirchentalweg Oberrhät Limestone (see Fig. 19: 2). Additional brecciation close to the Austrian/German border south of Mount Barm- in the early Middle Jurassic (BLAU & SCHMIDT 1988, BLAU & steine (for details see GAWLICK et al. 2001). GRÜN 1995) occurs. For more details on the lithology, the Reference section(s): the complete Dürrnberg Formation can differences between the breccias on top of morphologic only be reconstructed from different sections, partly highs, and the mass flows in the basin see BLAU & SCHMIDT overlapping in time. The lower Dürrnberg Formation is vi- (1988, 1990). sible in the Jakobberg gallery of the salt-mine Hallein-Bad Fossils: Schizosphaerella sp., different foraminifera (e.g., Dürrnberg (KOLLMANN 1963 in MEDWENITSCH 1963: Jakob- BLAU 1987a, b), ostracods, brachiopods, crinoids, juvenile berg Series; GAWLICK & LEIN 2000, GAWLICK et al. 2001), but ammonites (only in thin sections) and a single schlotheimiid cannot be designated as reference section, because the ammonite. Jakobberg gallery is closed. The upper part of the formation Origin, facies: interpreted by BLAU & SCHMIDT (1988) as is exposed in the Teltschengraben (valley) east of the town breccia formed on top of morphologic highs (graben flanks), (O´DOGHERTY & GAWLICK 2008). and mobilized there more or less in situ with synsedimentary Derivation of name: after Bad Dürrnberg south of Salzburg.

Fig. 18: Characteristic lithology and exposures of the Stadelwiese Member of the Allgäu Formation in the type area, the Lienz Dolomites. Page 38. 1. Panoramic view of the northwestern cliff of the alp Stadelwiese. Exposed is the Allgäu Formation. The arrows indicate large boulders of intercalated megabreccias (mass flows). Hanging wall is to the left of the picture. 2. Large boulder of Hauptdolomit in a megabreccia in the southern part of the alp Stadelwiese. The area framed in white is shown in detail in Fig. 3. 3. Detail of the contact between a megabreccia and the matrix sediments (Allgäu Formation). The boulder shown in 2 is covered by polymictic breccia consisting of smaller components (hammer) which eventually are overlain by Allgäu beds. Hanging wall is to the right. 4. Detail of a polymictic breccia. Components are angular to (sub-)rounded and consist of Hauptdolomit (white) and Kössen Formation (here “Lithodendronkalk“, indicated by the arrow). 5. Detail of another polymictic breccia. Components are angular to (sub-)rounded and consist of Hauptdolomit and Kössen Formation. 6. A mass-flow deposit showing the erosive contact at the base. 7. Panoramic view of the southern part of the alp Stadelwiese. Due to their erosive resistance the megabreccias appear as steps (arrows) in the meadow.

39 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

40 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 19: Characteristic microfacies of the Lavant Breccia. All photos from the type area in the Lienz Dolomites. Page 40. 1. Oncoidal limestone dissected by a neptunian dyke filled with micritic limestone in a matrix of foraminifer-crinoid wackestone (left side). The inset shows a detail of the foraminifer-crinoid wackestone. Foraminifera fauna consists of involutinids and lagenids. Scale: 5.0 mm. 2. Components of Late Triassic shallow-marine limestones (see inset) and of foraminifer-crinoid wackestones (Early Jurassic) in a micritic matrix. Scale: 5.0 mm. 3. Internal sediments filling a void in oncoid limestones. The oncoids are not disrupted which indicates that the host sediment was not completely lithified. Scale: 5.0 mm. 4. A neptunian dyke filled by several generations of internal sediments dissects red limestone rich in crinoids, juvenile ammonites and gastropods. Reworked components are surrounded by dark seams. Scale: 5.0 mm. For details on microfacies see e.g., BLAU (1987a, b), BLAU & SCHMIDT (1988).

Synonyms: detailed synonymy in GAWLICK et al. (2001). Underlying units (foot wall boundary): Zlambach Formati- Lithology: in the lower part gradual transition from dark- on. grey marls of the Rhaetian Zlambach Formation to dark- Overlying units (hanging wall boundary): Birkenfeld For- grey, partly cherty marls of the Dürrnberg Formation mation. (Hettangian), overlain by grey cherty limestones with marl Geographic distribution: expectable in all areas where diffe- intercalations (Late Hettangian to Sinemurian) followed by rent formations of the Hallstatt Mélange are preserved, dark-grey cherty limestones with increasing grey marl described from the Berchtesgaden and Salzburg Calcareous content (Pliensbachian) (details in GAWLICK et al. 2001, Alps and the Salzkammergut region (RAKÚS 1999b, GAWLICK MISSONI 2003, O´DOGHERTY & GAWLICK 2008). et al. 2001, MISSONI 2003, O´DOGHERTY & GAWLICK 2008, Fossils: radiolarians (GAWLICK et al. 2001, O´DOGHERTY & MISSONI & GAWLICK in review). More details in GAWLICK et GAWLICK 2008), spicula, in the lower part seldom ammonites al. (2001). (RAKÚS 1999b). Lateral units: unknown. Origin, facies: pelagic basinal facies in the Hallstatt Zone Remarks: widespread as blocks and slides, as well as representing a deeper shelf facies. In their stratigraphic and components in mass flows in the Strubberg and Sandlingalm lithofacies evolution the Dürrnberg Formation differs Formations. Often mapped as Zlambach Formation or All- completely from the Early Jurassic evolution in the more gäu Formation (compare SCHÄFFER & STEIGER 1986). Very proximal shelf regions (Tirolic and Bavaric realms - often without dateable fossil content. Kendlbach, Enzesfeld, Scheibelberg and Allgäu Formations). Chronostratigraphic age: Hettangian to Pliensbachian. Biostratigraphy: Hettangian to Sinemurian: part Trexus Birkenfeld Formation dodgensis zone with Gorgansium alpinum, Bagotum sp. A (Fig. 21, Fig. 23) and Bagotum erraticum subzones; Pliensbachian without zonation according to SUZUKI & GAWLICK (2003a) - see Validity: valid (Birkenfeld-Formation), first description as chapter 4 in this paper. “Birkenfeld Einlagerung“ by GÜMBEL (1888) in the salt-mine Thickness: several tens of metres for the lower marly part, Berchtesgaden (for history see KELLERBAUER 1996). around 20 metres for the middle part, and more than 10 metres Radiolarian dating by SUZUKI & GAWLICK (2003b) and MISSONI for the upper part. & GAWLICK (in review). Defined by MISSONI & GAWLICK (in Lithostratigraphically higher rank: none. review). Subdivision: no subdivision. Type area: ÖK 93 Bad Reichenhall, in the salt-mine Berch-

Fig. 20: Characteristic microfacies of the Dürrnberg Formation. Page 42. 1. Bioturbated wacke- to packstone with spicula and radiolarians. Sample Ber 30/1a, type locality north of the village Bad Dürrnberg (Hallstatt Mélange, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 2. Slightly bioturbated wacke- to packstone with spicula and radiolarians, partly chertyfied. Sample Ber 30/1c, type locality north of the village Bad Dürrnberg. Width of photo: 1.4 cm. 3. Bioturbated wacke- to packstone with spicula and radiolarians, partly marly, with some stylolites. Sample B 220, cross Kranzbichlweg/Rengerweg in the village Bad Dürrnberg. Width of photo: 1.4 cm. 4. Magnification from 3. Both radiolarians and spicula are mostly recrystallized and occur as calcite. Only few radiolarians are very well preserved. Width of photo: 0.5 cm. 5. Pliensbachian bioturbated crinoid-rich cherty packstone with recrystallized radiolarians. Sample BMW 23, Teltschengraben (valley) near Bad Mitterndorf (Hallstatt Mélange, Salzkammergut area). Width of photo: 1.4 cm. 6. Magnification of 5. The radiolarians are completely recrystallized to calcite. The matrix between the radiolarians and the crinoids is cherty marl. Width of photo: 0.25 cm. 7. Partly bioturbated Pliensbachian cherty marl with radiolarians, small crinoid fragments and remnants of foraminifers. Sample BMW 55, Teltschengraben (valley) near Bad Mitterndorf. Width of photo = 1.4 cm. 8. Magnification of 7. Well preserved radiolarians in the cherty marly matrix with fragments of microorganisms. Width of photo: 0.25 cm.

41 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

42 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 21: Characteristic microfacies of the Birkenfeld Formation. 1. Filament-, spicula and radiolaria-rich marly wacke- to packstone, slightly bioturbated, partly rich in organic material. Sample Ber 73/1, salt-mine Berchtesgaden, Birkenfeld gallery (Hallstatt Mélange). Width of photo: 1.4 cm. 2. Magnification of 1. Most spicula and radiolaria are recrystallized, but some occur as quartz. Slightly bioturbated. Width of photo: 0.5 cm. 3. Bioturbated and laminated marly wackestone. In the lower part filaments are dominating, in the upper part the fauna mainly consists of recrystallized (calcite and quartz) radiolaria and spicula. Sample Ber 73/3b, salt-mine Berchtesgaden, Birkenfeld gallery. Width of photo: 1.4 cm. 4. Clay-rich wackestone with recrystallized spicula, radiolarians, some echinoderms and filaments. Dark dots are organic material or pyrite. Sample Ber 73/5a, salt-mine Berchtesgaden, Birkenfeld gallery. Width of photo: 0.5 cm. 5. Radiolaria- and spicula-rich slightly bioturbated wacke- to packstone. Sample Ber 73/5c, salt-mine Berchtesgaden, Birkenfeld gallery. Width of photo: 1.4 cm. 6. Magnification of 5. Most spicula and radiolarians are recrystallized to calcite, some occur as quartz, some a filled with clay or organic material (partly pyrite). Rarely occur ostracods. Dark dots are mostly organic material or pyrite. Width of photo: 0.25 cm.

43 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Fig. 22: Characteristic microfacies of the Hahnkogel Formation. 1. Bioturbated radiolarian wackestone with some marly intercalations. Rarely occur filaments and fragments of echinoderms. Sample M 110a, Mount Hahnkogel south of the village Rosenbach (Hahnkogel unit according to KRYSTYN et al. 1994). Width of photo: 1.4 cm. 2. Slightly bioturbated wackestone to packstone. Beside recrystallized radiolarians some spicula, filaments and echinoderm fragments occur. Sample M 268, Mount Hahnkogel south of the village Rosenbach (Hahnkogel unit according to KRYSTYN et al. 1994). Width of photo: 1.4 cm. 3. Wackestone with some recrystallized radiolarians and some peloids. Sample M 278a, Mount Hahnkogel south of the village Rosenbach (Hahnkogel unit according to KRYSTYN et al. 1994). Width of photo: 1.4 cm. 4. Magnification from 3. Beside rare radiolarians and peloids, fine-grained biodetritus dominates. Dark dots are organic material or pyrite. Width of photo: 0.5 cm. tesgaden (Bavaria). ous Alps established by SUZUKI & GAWLICK (2003a). See Type section: type locality is the Birkenfeld gallery in the chapter 4 in this paper. salt-mine of Berchtesgaden. Thickness: several tens of metres in the salt-mine of Ber- Reference section(s): unknown. chtesgaden. Derivation of name: after the Birkenfeld Schachtricht (gallery) Lithostratigraphically higher rank: none. in the salt-mine Berchtesgaden. Subdivision: no subdivision. Synonyms: unknown. Underlying units (foot wall boundary): Dürrnberg Formati- Lithology: dark-grey cherty marls to cherty limestones. on. Fossils: ammonites, radiolarians, bivalves (for details see Overlying units (hanging wall boundary): onset of thrusting e.g., GÜMBEL 1888, BÖSE 1898, KELLERBAUER 1996, SUZUKI & in the Hallstatt realm, overlying formations unknown. GAWLICK 2003a, MISSONI & GAWLICK in review). Geographic distribution: actually only known from the type Origin, facies: deep-water sediments, interpreted as deepen- locality, a possible other occurrence is in the Backhaus ing event in the Hallstatt Zone due to the onset of inner- gallery in the salt-mine Hallstatt. oceanic thrusting in the Neotethys Ocean. Lateral units: unknown. Chronostratigraphic age: Toarcian to Aalenian. Remarks: often mapped as Zlambach Formation. Mostly Biostratigraphy: Hsuum exiguum zone with Eucyrtidiellum without dateable fossil content, radiolarians are seldom cf. disparile and Hexasaturnalis hexagonus subzones ac- preserved. According to MISSONI & GAWLICK (in review) the cording to the radiolarian zonation for the Northern Calcare- slight change in sedimentation with an increase of silici-

44 Journal of Alpine Geology, 50: 1-152, Wien 2009 clastics may be caused by the eastward tilt of the distal Lithostratigraphically higher rank: none. Triassic to Early Jurassic passive margin, as first conse- Subdivision: no subdivision. quence of the onset of compression/(inneroceanic)thrusting Underlying units (foot wall boundary): Frauenkogel Forma- in the Neotethys oceanic realm. This tectonic process tion. According to SCHLAF (1996) the Triassic/Jurassic resulted in eastward dipping normal faults, which cut into boundary can be defined by the occurrence of an around the Zlambach Formation as probable source area for the 10 metres thick terrigenous layer (without datable organisms clays in the Birkenfeld Formation. Another possible source - KRYSTYN et al. 1994), probably a time-equivalent to the area for the clays can be the accreted Neotethys ophiolites. Schattwald Formation. Overlying units (hanging wall boundary): Middle to early Late Jurassic cherty limestones of the Kahlkogel Formation 3.1.2. Southern Karavank Mountains (see GAWLICK et al. 2006a, SUZUKI et al. 2008). = Koschuta and Hahnkogel units Geographic distribution: only known from the type area. Lateral units: unknown. Hahnkogel Formation Remarks: on base of microfacies the characteristics of the (Fig. 22) Hahnkogel Formation are partly similar and time equivalent to the Dürrnberg Formation (see there), but with less marls Validity: valid (Hahnkogel-Formation), first description and and deposited in a more restrictive environment. On top of definition by KRYSTYN et al. (1994) and SCHLAF (1996). Needs the bioturbated mudstones some dark-grey cherty some revision. limestones contain Bathonian/Callovian to Middle Oxfordian Type area: ÖK 210 Villach-Land, Karavank Mountains. radiolarians (GAWLICK et al. 2006a, SUZUKI et al. 2008, this Type section: Mount Hahnkogel; north of the Slovenian/ paper), a lithologic change to the newly formalized Middle Austrian border south of the village Rosenbach (Carinthia). Jurassic formation (Kahlkogel Formation) is not well visible Reference section(s): Mount Schwalbenwand west of in the field. The increase of siliceous material is gradual. Mount Hahnkogel (see SCHLAF 1996 for details). See also section Kahlkogel Formation. Derivation of name: after Mount Hahnkogel. Synonyms: unknown. Lithology: grey to dark-grey dm-bedded limestones, mostly 3.1.3. Lower Austroalpine, Central Alpine Mesozoic units bioturbated or laminated mudstones to wackestones. Seldom with some chert nodules and layers. Tarntal Breccia in siliciclastically influenced equivalents Fossils: spicula, radiolarians, very rare ammonites. of the Allgäu Formation Origin, facies: hemipelagic sequence in a slightly restricted (Fig. 4, Fig. 24) basin/shelf area. Chronostratigraphic age: ?Rhaetian, Hettangian to Sine- Validity: invalid (Tarntaler Brekzie im Kalkmarmor/-schiefer- murian according to an ammonite remnant (KRYSTYN et al. and Tonschiefer-Komplex), first description by YOUNG 1994). Not exact datable due to the lack of organisms, also (1908), named by YOUNG (1909). Detailed investigations and the radiolarians are completely recrystallized. descriptions by SANDER (1910, 1941b), SPITZ (1919), Biostratigraphy: unknown. ENZENBERG (1967) and ENZENBERG-PRAEHAUSER (1976). See Thickness: around 200 metres, but unknown in detail. also TOLLMANN (1977). Newly investigated and interpreted Probably more than 100 metres of the estimated thickness by HÄUSLER (1987, 1988). The sedimentary succession needs belong to the overlying Kahlkogel Formation. some revision and formalization.

Fig. 23: Palaeotopographic profile with formations in the time span Late Pliensbachian to Aalenian. The Lower Austroalpine domain was controlled by the final breakup of the South Penninic Ocean in Toarcian times (RATSCHBACHER et al. 2004), whereas the tectonic movements on the continental margin facing the Neotethys Ocean (Hallstatt Zone and later Tirolic units) was controlled by normal faulting due to the onset of eastward dipping inneroceanic thrusting in the Neotethys Ocean (e.g., GAWLICK et al. 2008). Therefore the newly formed horst-and-graben morphology is interpreted probably as a fore-bulge in the Austroalpine lower plate (compare Fig. 2).

45 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

46 Journal of Alpine Geology, 50: 1-152, Wien 2009

Type area: ÖK 119 Innsbruck-Land, Tarntal. Lithostratigraphically higher rank: none. Type section: not designated. Subdivision: no subdivision. Reference section(s): not designated. Several sections (see Underlying units (foot wall boundary): often erosive, partly geological map by ENZENBERG-PRAEHAUSER 1976) can be Hauptdolomit; mostly with tectonic contact. designated as type or reference sections. Overlying units (hanging wall boundary): not to define, Derivation of name: after the Tarntal (valley) south of Mount see remarks. Tarntaler Köpfe (Tyrol). Geographic distribution: type area of the Tarntal Mountains Synonyms: see TOLLMANN (1977) and HÄUSLER (1988). but in fact typical for the Lower Austroalpine units. Lithology: different mass flows in a mostly shaly, partly Lateral units: fault scarps and most probably siliciclastically limy matrix (for details: CLAR 1940, ENZENBERG-PRAEHAUSER influenced equivalents of the Allgäu Formation. 1976; Kalkmarmor/-schiefer- and Tonschiefer-Komplex), Remarks: in some parts equivalent to the Schwarzeck Breccia which is a metamorphosed and shale/marl-rich equivalent in the Radstädter Tauern (e.g., CLAR 1940), see remarks in of the Allgäu Formation transitional to the Bündner Schie- section Schwarzeck Breccia and TOLLMANN (1963, 1966b). fer. Characteristic in several mass flows are limestone and In all older interpretations the Tarntal Breccia was interpreted dolomite clasts of most probably Triassic age of the so- as a solely Early Jurassic breccia event. The age is based called Tarntal Mesozoic (details in ENZENBERG-PRAEHAUSER on age dating of the underlying Late Triassic series. The 1976). Also common are arkoses and greywackes. For radiolarites, cherty limestones and cherty shales below the detailed description of equivalent sediments in Graubün- second breccia level were interpreted as part of the Early den see EBERLI (1988) and CONTI et al. (1994). Jurassic series, but represent in fact a typical equivalent to Fossils: unknown. the Middle to Late Jurassic radiolarites in the South Penninic Origin, facies: mostly fault-scarp bounded rock-fall breccias, (Piemont-Ligurian) realm. See also Geier Series (ENZENBERG partly mass flows, partly in transition to turbidites (see 1967). More details in HÄUSLER (1988). details in ENZENBERG-PRAEHAUSER 1976, TOLLMANN 1977). Probably an equivalent of the upper level of the Tarntal Compare EBERLI (1988). Breccia, but located in the western Northern Calcareous Chronostratigraphic age: the Tarntal Breccia is a composite Alps (Bavaric nappes, Tegernsee area) is the Gscheigraben of two or three different breccia events. One breccia event Breccia (DACQUÉ 1912, BODEN 1915, LEUCHS 1929). These can be manifested in the Early Jurassic (e.g., ENZENBERG polymictic breccia is associated with the Ammergau Forma- 1967) and a younger one on top of the radiolarite resp. in tion or the Aptychus Limestone and occur in several levels. connection with Aptychus Limestone (THIELE 1967, ENZEN- A first analysis of the components was carried out by LEUCHS BERG-PRAEHAUSER 1976, TOLLMANN 1977). Detailed investi- (1929), modern investigations are missing. gations on the ages are not possible due to the metamorphic overprint. See discussion below. Biostratigraphy: unknown. Türkenkogel Breccia in siliciclastically influenced Thickness: due to intense deformation not easy to estimate, equivalents of the Allgäu Formation in both levels up to several tens of metres as a minimum. (Fig. 23) According to LINNER & HEJL (2009) in the Radstädter Tau- ern the Early Jurassic part should not exceed 20 metres Validity: invalid (Türkenkogel-Brekzie im Kalkmarmor/- (compare HÄUSLER 1988). schiefer- and Tonschiefer-Komplex), first description by

Fig. 24: Characteristic microfacies of the upper level of the Tarntal Breccia. Section Eisgraben (Lizumer Boden south of the municipal Wattens, Lower Austroalpine units). From different components in this breccia a Late Triassic to Late Jurassic mobilized sedimentary suc-cession can be reconstructed. Page 46. 1. Polymictic breccia with sheared micritic matrix (right side). Dolomitic components (Hauptdolomit) are dominating, be- side some shallow-water limestone components (Oberrhät Limestone). The matrix contains several completely recrystallized elongated round particels, which were originally most probably radiolarians. Sample Ti 2. Width of photo: 1.4 cm. 2. Beside several dolomitic clasts (Hauptdolomit) a recrystallized oolithic limestone of the Oberrhät Limestone occurs. Practically without matrix. Sample Ti 3. Width of photo: 1.4 cm. 3. Beside completely recrystallized components a cherty radiolarian and spicula wackestone to packstone occurs, with some filaments. This component is most probably derived from the Middle Jurassic Allgäu Formation. Sample Ti 3. Width of photo: 0.5 cm. 4. Beside completely recrystallized dolomitic clasts occur laminated dolomite clasts (Hauptdolomit) and several basinal sediments with some echinoderms and filaments, both most probably derived from the Allgäu Formation. Sample Ti 4-2. Width of photo: 1.4 cm. 5. Recrystallized Rhaetian oolithic limestone (Oberrhät Limestone) and recrystallized dolomite with a foraminifer. Sample Ti 4-2. Width of photo: 0.5 cm. 6. Clast with echinoderms and aptychus, most probably a Late Jurassic hemipelagic limestone. Sample Ti 4-2. Width of photo: 0.5 cm. 7. Polymictic breccia consisting mainly of different dolomitic clasts, partly with transported deformation. Sample Ti 4-1. Width of photo: 1.4 cm. 8. Beside several dolomitic clasts (Hauptdolomit) a grainstone of Oberrhät Limestone occurs. Sample Ti 4-1. Width of photo: 0.5 cm. 47 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

CLAR (1937), SCHWINNER (1951): Türkenwand-Konglomerat. Jurassic age for the Cak Conglomerate. Later investigated and interpreted by TOLLMANN (summa- rized in TOLLMANN 1977), revised by HÄUSLER (1987, 1988). Needs revision and will be probably in parts a synonym of Nomenclature of polymictic breccias facing the Penninic the lower part of the Tarntal Breccia. The sedimentary Ocean succession needs some revision and formalization. Type area: ÖK 126 Tamsweg, Radtstädter Tauern. Generally there is some confusion about the nomenclature Type section: not designated. North face of Mount Schwarz- and definition of the polymictic breccias in the Lower eck (Dürchenwand = Türkenwand). Not the type-locality of Austroalpine domain, because the Tarntal Breccia in the the Schwarzeck Breccia, but of the older Türkenkogel type area occurs at least in two levels: Breccia, more details in HÄUSLER (1988). Obviously the A) in Early Jurassic times and Türkenkogel Breccia occurs in two levels, one basal level B) in latest Jurassic resp. around the Jurassic/Cretaceous directly on top of the Late Triassic basement and an upper boundary. level below the radiolarite (HÄUSLER 1988). If the lower level of the Tarntal Breccia (Hettangian to Reference section(s): not designated. Several possible Sinemurian level) is designated as Tarntal Breccia sensu sections were investigated by HÄUSLER (1988). novo (equivalent to the lower level of the Lischana Breccia Derivation of name: after Mount Türkenkogel, Radstädter in Graubünden), then the breccia level in the late Early Tauern. Different mass flows in a shaly/marly matrix (= Kalk- Jurassic to ?early Middle Jurassic should be named Türken- marmor/-schiefer- and Tonschiefer-Komplex), which is a kogel Breccia (equivalent to the middle level of the Lischana metamorphosed and shale/marl-rich equivalent of the All- Breccia), and the breccia level around the Jurassic/Creta- gäu Formation transitional to the Bündner Schiefer (compare ceous boundary Schwarzeck Breccia (equivalent to the HÄUSLER 1987, 1988). For detailed description of equivalent upper level of the Lischana Breccia) (compare HÄUSLER 1988). sediments in Graubünden see EBERLI (1988). Synonyms: most probably in parts a syonym of the Tarntal The Türkenkogel Breccia also occurs in two levels: Breccia (Early Jurassic part). A) directly on top of the Late Triassic basement and Lithology: similar to the lower level of the Tarntal Breccia B) below the radiolarite (FAUPL 1978, HÄUSLER 1987, 1988). (see description there). Therefore the lower level of the Türkenkogel Breccia is a Fossils: unknown. synonym of the Tarntal Breccia. If the upper level of the Origin, facies: mostly fault-scarp bounded rock-fall breccias, Tarntal Breccia (Jurassic/Cretaceous boundary, type area) partly mass flows, partly in transition to turbidites. is designated as Tarntal Breccia sensu novo, then consi- Chronostratigraphic age: Early Jurassic and probably basal derable confusion in the nomenclature would arise: part of Middle Jurassic, unknown in detail. 1) the term Schwarzeck Breccia has to be cancelled, Biostratigraphy: unknown. 2) for the two lower levels the terms Penken Breccia (SAN- Thickness: several tens of metres (TOLLMANN 1977) up to DER 1921, KRISTAN-TOLLMANN 1962b) and Türkenkogel 200 metres (HÄUSLER 1988, LINNER & HEJL 2009). Breccia (upper level) could be used; maybe Penken Lithostratigraphically higher rank: none. Breccia for the lower level (according to KRISTAN-TOLL- Subdivision: no subdivision. MANN 1962b, compare HÄUSLER 1988) and Türkenkogel Underlying units (foot wall boundary): Late Triassic do- Breccia for the upper level. The terms Lischana Breccia lomite (Hauptdolomit) and limestone (Oberrhät Limestone) and Falknis Breccia are younger and should not be used with erosive or tectonic contact. Partly Tarntal Breccia in in this context (compare GRUNER 1981, DÖSSEGGER et al. siliciclastic influenced equivalents to the Allgäu Formati- 1982, MADER 1987). on. Overlying units (hanging wall boundary): Triassic series The Brennkogel (fault scarp) Breccia (FRASL 1958, FRISCH et with tectonic contact. In rare cases the radiolarite (Middle al. 1987) and other Early Jurassic breccias should belong to to Late Jurassic) represented the originally overlying se- the northern passive continental margin (Jurassic: Helvetic quence, e.g., in the type area (HÄUSLER 1988: Fig. 34). realm; Cretaceous: Middle Penninic realm) of the South Geographic distribution: Radstädter Tauern. Penninic Ocean (KURZ et al. 1998), obviously at that time Lateral units: faults, basinal sediments of most probably the South Penninic (Piemint) Ocean did not exist and Early Jurassic age. therefore the breccias are probably connected. To designate Remarks: Early Jurassic breccias occur widespread in the especially the Early Jurassic breccias as Penninic breccias, Eastern Alps in the transitional area to the Austroalpine/ is artificial (compare POPP 1984). Penninic realm as decribed in detail by EBERLI (1988, 1991) from several well-dated basin fills in Graubünden. All We prefer to clearly distinguish the three horizons of breccia breccias in this palaeogeographic position with an enormous formation also in the nomenclature. The lower breccia level amount of names (see also HÄUSLER 1987, 1988) should be should be named Tarntal Breccia or Tarntal Breccia Group, revised and may be summarized to one or few formations. the level below the radiolarite Türkenkogel Breccia or See also Cak Conglomerate in the “Stratigraphic table of Türkenkogel Breccia Group, and the highest level Schwarz- Austria“ (PILLER et al. 2004). According to SCHÖNLAUB (1973) eck Breccia or Schwarzeck Breccia Group. The “Group“ the age of the Cak Conglomerate is Early to early Late denominations should be used to include the different local Cretaceous. MOSTLER & PAHR (1981) dated some compo- names. Therefore it will be necessary to designate clear nents as Middle (to Late) Triassic and do not exclude a type sections.

48 Journal of Alpine Geology, 50: 1-152, Wien 2009

The same problem exists in the Engadin Dolomites with the Reitmauer Limestone (e.g., TRAUTH 1950, KUNZ 1967, TOLL- Lischana Breccia (DÖSSEGGER et al. 1982): the lower levels of MANN 1976a). Unterstein Limestone (Untersteiner Kalk: LAU- the Lischana Breccia are Early Jurassic in age, the upper ER 1970). Rotenstein Limestone (OPPEL 1863). Also Lower levels occur in the Late Jurassic resp. at the Jurassic/ Steinmühl Limestone (TRAUTH 1950, FLÜGEL 1967). See also Cretaceous boundary (e.g., SCHILLER 1904, 1906, DÖSSEGGER section Steinmühl Formation. et al. 1982). Compare also Falknis Breccia (GRUNER 1981). Lithology: reddish to brownish condensed hemipelagic According to MADER (1987) three levels can be recognized: limestones, partly nodular, with subsolution, Fe/Mn-crusts the oldest level directly overlies Hauptdolomit with an an- are common (e.g., WENDT 1969, GERMANN 1971, TOLLMANN gular unconformity, a second level is dated as Toarcian 1976a). Partly with reddish marls. Modern microfacies (MADER 1987), and a third level occurs in the Late Jurassic investigations were carried out by BÖHM (1992) and EBLI resp. at the Jurassic/Cretaceous boundary (e.g., GRUNER (1997). The filament-rich variety is often described as Reit- 1981). mauer Limestone (TRAUTH 1922, KUNZ 1964, 1967) of late For a summary of the Early Jurassic breccias see, e.g., EBERLI Middle Jurassic age (compare BÖHM 1992). (1988). Fossils: ammonites (for details e.g., NEUMAYR 1870, 1871, KRYSTYN 1970, 1971, 1972), protoglobigerinas, Bositra-shells (filaments, posidonia shells - compare FLÜGEL 2004), benthic 3.2. Bajocian to Tithonian foraminifera, echinoderms, rare ostracods, spicula, radiolaria, (Fig. 3) deep-water stromatolites (BÖHM & BRACHERT 1993), brachio- pods (e.g., SIBLIK 2008). The Bajocian to Tithonian period was mainly controlled by Origin, facies: hemipelagic, condensed limestones. Sedimen- following factors: tation normally slow, sometimes continuos, but more often A) the Toarcian/Aalenian morphology after the breakup of interrupted by frequent periods of erosion, subsolution and the South Penninic (Piemont) Ocean, especially in the non-deposition causing stratigraphic condensation, sub- Lower Austroalpine to the (westernmost) Bavaric units, marine erosion subsurfaces and hardgrounds (SCHLAGER B) the onset of inneroceanic subduction processes in the 1974). Neotethys realm and the formation of a propagating Chronostratigraphic age: Late Bajocian to Callovian/ thrust belt. Thrusting started in the outer shelf area Oxfordian boundary; diachronous in the upper part, partly (Meliata and Hallstatt Zones) in Bajocian and prograded up to the lower Oxfordian (KRYSTYN 1971, compare GEYER towards the Tirolic realm in Oxfordian times. 1910). C) the newly formed carbonate platform on top the nappe Biostratigraphy: parkinsoni zone (Neumühle quarry - stacke since the Late Oxfordian, KRYSTYN 1972) to macrocephalites zone (type locality), in D) the gravitational collapse of this carbonate platform rare cases up to the Callovian/Oxfordian boundary or the around the Early/Late Tithonian boundary due to uplift lower Oxfordian (KRYSTYN 1971, MANDL 1982). in the south and normal faulting in the north, and Thickness: condensed, some decimetres to some metres. E) extensional overprint of the Lower Austroalpine passive Very often as matrix of breccias or in fissure fills - type continental margin around the Jurassic/Cretaceous locality! boundary, possibly due to rifting processes in the North Lithostratigraphically higher rank: none. Penninic (Valais) Ocean. Subdivision: no subdivision. Underlying units (foot wall boundary): normally occurs a gap at the base. The limestones of the Klaus Formation 3.2.1. Northern Calcareous Alps and Drau Range therefore overlie different older formations (e.g., Dachstein Limestone, Adnet Limestone - SPENGLER 1919, KRYSTYN 1971, Klaus Formation TOLLMANN 1976a, BÖHM 1992, EBLI 1997, WESSELY 2006). (Figs. 25-27) Overlying units (hanging wall boundary): normally diffe- rent formations of the Ruhpolding Radiolarite Group Validity: valid (Klaus-Formation), first description by SUESS (diachronous onset: Bajocian to Oxfordian): in the southern (1852), later by JÜSSEN (1890), stratigraphic description by Northern Calcareous Alps different formations of the Hall- KRYSTYN (1970, 1971, 1972), lithologic revision by BÖHM (1992, statt Mélange (e.g., Sandlingalm Formation, Strubberg For- 2003) on base of microfacies studies. Definition in KRYSTYN mation), in the more northern parts Tauglboden Formation (1971). or Ruhpolding Formation. Here the onset of the radiolarites Type area: ÖK 96 Bad Ischl, Salzkammergut area. of the Ruhpolding Formation is partly proven as Late Type section: ÖK 96 Bad Ischl, Klausalm (Klaus Alpe) west Bathonian to Early Callovian (e.g., northern part of the Oster- of the municipal Hallstatt and south of Mount Plassen horn Group - GAWLICK 2000). In the upper part diachronously (details in SPENGLER 1919). overlain by different formations of the Ruhpolding Radio- Reference section(s): not designated. Possible reference larite Group depending on the formation of the newly formed sections could be the Brielgraben brooklet east of the Middle to early Late Jurassic radiolarite basins. In contrast, settlement Gosau (KRYSTYN 1971), or the Steinmühle quarry the northern part of the Northern Calcareous Alps (Bavaric near Vienna (KRYSTYN 1972). units) seems practically unaffected by the Middle Jurassic Derivation of name: Klaus Alpe west of Hallstatt. basin formation (compare LACKSCHEWITZ et al. 1991, HAAS Synonyms: partly Saubach Member of the Adnet Formati- 2002). on, details in BÖHM (2003). According to KRYSTYN (1971): Geographic distribution: all over the Austroalpine units,

49 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Fig. 25: Palaeotopographic profile with formations in the Middle to early Late Jurassic. Especially in the Neotethys-ward part the Austroalpine domain was controlled by crustal shortening and nappe stacking due to the partial closure of the Neotethys Ocean (GAWLICK et al. 1999a, FRISCH & GAWLICK 2003, GAWLICK & FRISCH 2003, GAWLICK et et. 2007b, MISSONI & GAWLICK in review), trench-like basins were formed. Most other areas of the Austroalpine domain remained tectonically relatively quiet at that time and show stable sedimentary environments. In the inner parts of the drowned continent (with the Austroalpine domain as part of it) mostly condensed sediments were deposited (future Bavaric nappes, Lower Austroalpine realm facing the South Penninic (Piemont) Ocean). A) Bajocian to Callovian time span, characterized by the formation of trench-like deep-water basins in front of advancing nappes in a propagating thrust belt. The Hallstatt Mélange (= resedimented Juvavic units, eroded nappe stack) and Upper Tirolic nappe (system) were formed at that time. B) Oxfordian: in Early Oxfordian times the nappe stack reached the inner part of the continent, the Lower Tirolic nappe was formed at that time. The Upper Tirolic nappe system and the Lower Tirolic nappe were separated by the nappe front of the Upper Tirolic nappe, named Trattberg Rise. The Brunnwinkl Rise to the north was formed slightly later and shed its material to the north into the newly formed Rofan Basin (GAWLICK et al. 2007a).

but not in the basinal areas of the Middle Jurassic Allgäu were included into the Klaus Formation (e.g., FISCHER 1969, Formation and not in the Hallstatt Zone. At that time the WENDT 1969, TOLLMANN 1976a, 1985). The Aalenian Hallstatt Mélange starts to form and different formations of limestones are defined as part of the Adnet Formation (BÖHM the Ruhpolding Radiolarite Group dominate. 1992, 2003). The microfacies characteristics of the Late Lateral units: transition to the basinal Allgäu Formation is Toarcian to Aalenian limestones are similar to the limestones unknown. Also a possible transition to the Vils Limestone of the Klaus Formation (BÖHM 1992, 2003, EBLI 1997), e.g., is unknown. with Bositra-shells, some filaments, and radiolarians. Remarks: very often the reddish limestones of Aalenian age

50 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 26: Characteristic microfacies of the Klaus Formation in the type locality Klausalm (Klaus Alpe) west of the municipal Hallstatt (Tirolic units, Salzkammergut area). Here the Klaus Formation occurs in fissures and as matrix of a oligomictic breccia below the Klauskogelbach Member of the Strubberg Formation. 1. Fissure filling of red filament- and echinoderm-rich wacke- to packstone in grey micritic limestone. Sample A 69-7. Width of photo: 1.4 cm. 2. The fissure shows thick needles of a radiaxial-fibrous calcite cement at the rims representing the first generation of the fissure filling before the filling of the red filament- and echinoderm-rich wacke- to packstone. Sample A 69-7. Width of photo: 1.4 cm. 3. Laminated fine-grained red marly limestone as fissure filling in between the brecciated matrix. Sample A 69-7. Width of photo: 1.4 cm. 4. Magnification from 2. Beside filaments, echinoderm fragments also some foraminifera occur. Width of photo: 0.5 cm. 5. Small fissure fill with a foraminifer. This fissure shows no calcite cement at the rims of the fissure. Sample A 69-7. Width of photo: 1.4 cm. 6. Recrystallized filament limestone as matrix in between metre to tens of metres sized blocks of Dachstein Limestone. Sample 6. Width of photo: 1.4 cm.

51 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

52 Journal of Alpine Geology, 50: 1-152, Wien 2009

Vils Limestone 1976a), in several cases according to HAHN (1914) up to 250 (Fig. 25, Fig. 28) metres. Lithostratigraphically higher rank: none. Validity: invalid (Vilser Kalk), first description by HAUER Subdivision: no subdivision. (1853), revised by TRAUTH (1922), more details in ZACHER Underlying units (foot wall boundary): on submarine highs (1964, 1966) and KRYSTYN (1971). Detailed microfacies resp. their slopes different members of the Adnet Formati- description in EBLI (1997). Needs revision and formalization. on, in basinal areas cherty limestones of the Allgäu Forma- Type area: ÖK 85 Reutte, Vilser Alpen in the western Northern tion; typical with a gap at the base. Calcareous Alps, but very widespread in the northern part Overlying units (hanging wall boundary): mostly dia- of the eastern Northern Calcareous Alps (e.g., ABERER 1951). chronously overlain by different formations of the Ruhpol- Type section: ÖK 85 Reutte, section south of the municipal ding Radiolarite Group. Vils. Geographic distribution: according to TOLLMANN (1966a, Reference section(s): not designated. As reference section 1976a) only in the Bavaric units of the western and eastern the locality Laubenstein (for details see EBLI 1997) can be Northern Calcareous Alps. But widespread as allodapic discussed. material also in the central Northern Calcareous Alps (Tirolic Derivation of name: Vils in Tyrol. units) below the onset of different formations of the Ruh- Synonyms: Weissenhaus Limestone (TRAUTH 1922, compare polding Radiolarite Group (e.g., Mount Grimming - TOLL- TRAUTH 1954), Laubenstein Limestone (TRAUTH 1922). MANN 1960, WEGERER 2002; - MISSONI Lithology: yellowish to white, sometimes reddish crinoid- 2003). TOLLMANN (1960) includes the crinoidal limestones and brachiopod-rich limestones. Bedded to massive in areas into the Klaus Formation as special variety, but according of submarine highs, well bedded and partly graded in basinal to KRYSTYN (1971) these Middle Jurassic echinoderm-rich areas. Partly with cherts (diffuse or as nodules), especially biosparitic limestones should be better designated as Vils in the slope and basinal areas. As microfacies characteristic Limestone. sometimes a lot of onkoids occur (details in EBLI 1997). Lateral units: to the deeper slope resp. the basinal areas Fossils: crinoids, brachiopods (e.g., OPPEL 1861, ROTHPLETZ transition to the younger Allgäu Formation, partly inter- 1886, FINKELSTEIN 1888, TRAUTH 1954, GSCHWEND 1992, SIBLIK calated by grey cherty limestones of Middle Jurassic age in 2008), ammonites (e.g., TRAUTH 1922, ZACHER 1964, 1966), the basinal areas (JACOBSHAGEN 1965). rarely bivalves, some foraminifera (e.g., EBLI 1997, HAAS 2002), Remarks: TRAUTH (1922) used the term Vils Limestone only bryozoans, gastropods. For references see TOLLMANN for the crinoid- and brachiopod-rich limestones of probably (1976a). Bathonian-Callovian age. Later, the term Vils Limestone was Origin, facies: according to TOLLMANN (1976a) mostly used for all light-grey to yellowish crinoid- and brachiopod- deposited on submarine highs (swells), but also redeposited rich limestones of Middle Jurassic age (e.g., TOLLMANN as allodapic limestones in adjacent basinal areas (compare 1976a, HAGN 1981). The exact age determinations of these Dogger-Spatkalk of TOLLMANN 1976a). limestones was mostly made on base of brachiopods and Chronostratigraphic age: according to TOLLMANN (1976a, rarely on base of ammonites (e.g., ZACHER 1964, 1966). 1985) the complete Middle Jurassic (compare HAGN 1981, JACOBSHAGEN (1965) included these allodapic crinoid-rich EBLI 1997); diachronous end in the upper part; partly the limestones in the basinal areas into the upper Allgäu For- Vils Limestone ends in the Bathonian, mostly in the Callovian. mation, but this Middle Jurassic (Bajocian to Callovian) In the basinal areas Late Bajocian to Callovian (JACOBSHAGEN sequence represents the basinal equivalent of the Vils 1965). Limestone, which were deposited on submarine highs. In Biostratigraphy: not exactly defined. fact, crinoids live on submarine highs and slopes, from there Thickness: normally few metres up to 50 metres (TOLLMANN a lot of material was shed into the adjacent basinal areas.

Fig. 27: Characteristic microfacies of the Klaus Formation. Page 52. 1. Filament-radiolarian wacke- to packstone with some lithoclasts and hardgrounds. Sample DD 9, Mount Sarstein east of the municipal Bad Goisern (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 2. Beside the dominating filaments also some gastropds and some protoglobigerinids are visible. Sample DD 9, Mount Sarstein east of the municipal Bad Goisern (Tirolic units, Salzkammergut area). Width of photo: 0.5 cm. 3. Layered filament limestone with some lithoclasts and hardgrounds. Sample T 98, Mount Trisselwand complex northeast of the Grundlsee (lake) (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 4. Bioturbated filament limestone with some radiolarians. Sample Ber 15/28, Klingerbach west of the Königssee (lake) (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 5. Filament-radiolarian wacke- to packstone with some echinoderm fragments. Sample Ber 60/3, Abwärtsgraben east of the Königssee (lake) (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 6. “Protoglobigerina“ packstone with some filaments and echinoderms. For determination of this “Globigerina“ see FUCHS (1973). Sample Ber 31/5a, Sillenköpfe east of the Königssee (lake) (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 0.5 cm. 7. Fe/Mn-oncolith in a “protoglobigerina“ wackestone. Sample VD, Steinernes Meer south of the Königssee (lake) (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 8. Magnification from 7. Width of photo: 0.5 cm. For details on microfacies see, e.g., BÖHM (1992) and EBLI (1997).

53 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

54 Journal of Alpine Geology, 50: 1-152, Wien 2009

Shedding started in Bajocian times and ended partly in the ding Radiolarite Group (compare also DIERSCHE 1980). Bathonian or earliest Callovian, partly probably in the Early Fossils: some ammonites (FAHLBUSCH 1962), radiolarians Oxfordian (central Northern Calcareous Alps), as proven (e.g., OZVOLDOVA & FAUPL 1993), rare spicula. The upper by radiolarians from the overlying radiolarites or by co- level (“Spatkalk“) rich in crinoids. occurring ammonites and brachiopods. The Aalenian part Origin, facies: basinal sequence, hemipelagic deposition. (but in fact with relatively problematic age dating - e.g., Chronostratigraphic age: middle to late Middle Jurassic, GSCHWEND 1992) may represent a special variety of the Adnet Bajocian (FAHLBUSCH 1962) in the basal part, probably Formation, Saubach Member (Laubenstein Limestone - Bathonian to Callovian for the main part of the succession TRAUTH 1922, EBLI 1997). Compare also Middle Jurassic and therefore a time equivalent of several formations of the Crinoidal Limestone in the Lower Austroalpine units. Ruhpolding Radiolarite Group (compare OZVOLDOVA & FAUPL 1993). Partly with relatively thick crinoidal intercalations (Vils Limestone). Should partly reach the Late Jurassic (SOLO- Chiemgau Series MONICA 1934). (Fig. 25, Fig. 29) Biostratigraphy: unknown in detail. Thickness: 30-60 metres in the type region, 6-8 metres for Validity: invalid (Chiemgauer Schichten), first description the crinoid-rich part of the succession. and name by TOLLMANN (1976a). First detailed investigations Lithostratigraphically higher rank: none. by FAHLBUSCH (1962). Needs some revision and probably Subdivision: no subdivision. formalization. Underlying units (foot wall boundary): Allgäu Formation or Type area: (Bavaria). Vils Limestone. Type section: C 8239 Niederaschau/Chiemgau, Lochgraben Overlying units (hanging wall boundary): mostly pure north of Mount Kampenwand (FAHLBUSCH 1962, TOLLMANN radiolarite of the Ruhpolding Radiolarite Group. 1976a) south of the settlement Aschau in the Chiemgau Geographic distribution: Bavaric nappes in the western and region (Bavaria). eastern Northern Calcareous Alps. Reference section(s): not designated. Lateral units: unknown. Derivation of name: named after the Chiemgau Alps. Remarks: After revision an intergration of the main part of Synonyms: in parts probably equivalent to the Upper All- the “Chiemgauer Schichten“ into the Ruhpolding Radiolarite gäu Formation (cherty variety). Especially the cherty Kohl- Group is the most likely possibility. In the moment several statt Schichten (MÜLLER-DEILE 1940, TOLLMANN 1976a) are cherty limestones (especially in the Bavaric units of the similar to the Ruhpolding Formation. eastern Northern Calcareous Alps) are subsumed in the term Lithology: light- to dark-grey cherty limestones, cherty “Chiemgauer Schichten“ (compare TOLLMANN 1976a). In this shales, limestones with chert nodules and layers. Partly area an exact dating in combination with microfacies investi- with some allodapic, chertified crinoid layers in the lower gations and the analysis of the underlying and overlying part and relatively thick (“Spatkalk“ - 6-8 metres) in the formations will clarify the exact position of the successions. uppermost part (more details in FAHLBUSCH 1962, TOLLMANN In the type area a gradual transition from the Allgäu Forma- 1976a, HAAS 2002). Due to the microfacies characteristics, tion to the cherty “Chiemgauer Schichten“ is described by mostly radiolarian wackestones and packstones, partly with FAHLBUSCH (1962), a clear lithological boundary is not vi- some allodapic crinoidal layers. The lithology and micro- sible and therefore the division into Allgäu Formation and facies is very similar to several formations of the Ruhpol- “Chiemgauer Schichten“ is not designated. Bajocian ammo-

Fig. 28: Characteristic microfacies of the Vils Limestone. Page 54. 1. Crinoidal packstone with rare lithoclasts and a reduced micritic, radiolaria-rich matrix. Sample E 60, Mount Ewige Wand east of the municipal Bad Goisern (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 2. Coarse-grained crinoidal packstone overlain by a crinoid- and foraminifera-rich packstone. The upper part of the crinoidal turbidite shows submarine solution. Sample E 60-2, Mount Ewige Wand east of the municipal Bad Goisern (Salzkammergut area). Width of photo: 0.5 cm. 3. Partly bioturbated crinoidal packstone with some radiolarians in the micritic matrix. Sample E 64, Mount Ewige Wand east of the municipal Bad Goisern (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 4. Crinoidal packstone with several different lithoclasts, all angular. This coarse-grained microbreccia occurs as intercalations in radiolarites. Sample Ber 15/6b, Klingerbach valley west of the Königssee (lake) (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 5. Crinoid- and brachiopod-rich packstone. The crinoids show syntaxial cements. Sample EW 155, Mount Grimming southwest of the municipal Bad Mitterndorf (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 6. Magnification of 5. Crinoids as well as brachiopods are very well preserved. After a first phase of cementation, partly with syntaxial calcite, micritic material is secondarily filled in the remaining pores. Width of photo: 0.5 cm. 7. Slightly slumped crinoidal packstone. Some radiolarians occur in the micritic matrix. Sample EW 154, Mount Grimming southwest of the municipal Bad Mitterndorf (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 8. Several crinoid-rich grainstones occur as clasts in a micritic, crinoid- and radiolaria-rich matrix. Partly the components are completely silicified, as visible in the left component. Sample EW 185, Mount Grimming southwest of the municipal Bad Mitterndorf (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm.

55 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

56 Journal of Alpine Geology, 50: 1-152, Wien 2009 nites occur in the basal part of the cherty succession, where Reference section(s): not explicitly designated. On ÖK 75 the lithology is less cherty. Also a possible correlation of Puchberg/Schneeberg in the area near the farmer Ödenhof the crinoid-rich layers is missing, probably the lower a similar section may be designated as reference section. crinoidal cherty limestones represent an equivalent to the Derivation of name: after the hill Florianikogel, west of the Vils Limestone. The upper crinoidal level (“Spatkalk“) may village Sieding. represent the formation of newly formed topographic highs Synonyms: none. around the Middle/Late Jurassic boundary, where crinoid- Lithology: slightly metamorphosed (e.g., GAWLICK et al. 1994, rich sediments were formed (compare LACKSCHEWITZ et al. SPÖTL et al. 1999) deep-water dark-grey cherty limestones 1991) and shed into the adjacent basinal areas. Especially to radiolarites with dark-grey sandy shales, partly with some the mass flows in the “Kohlstatt Schichten“ (MÜLLER-DEILE sandstone layers of volcanoclastic material, with inter- 1940, RICHTER 1970, TOLLMANN 1976a) testify to a newly calated mass flows and slides of hemipelagic Hallstatt Lime- formed relief. stones and Triassic (Late Anisian to Carnian) radiolarites to cherty limestones (details in MANDL & ONDREJICKOVA 1991, 1993, KOZUR & MOSTLER 1992, NEUBAUER et al. 1999, Ruhpolding Radiolarite Group 2007). (Fig. 3) Fossils: radiolarians in the matrix. Conodonts and radio- larians in different components and slides (details in MANDL The Ruhpolding Radiolarite Group (Ruhpoldinger Radiola- & ONDREJICKOVA 1991, 1993, KOZUR & MOSTLER 1992). rit-Gruppe) was introduced by GAWLICK & FRISCH (2003), Origin, facies: deep-water trench-like basin deposit; similar but not formalized in detail. Into the Ruhpolding Radiolarite to other formations of the Ruhpolding Radiolarite Group, Group all different formations with breccias in a radiolaritic e.g. the Sandlingalm or Strubberg Formations, but slightly matrix as well as radiolarite successions without mass-flow older and thus more ocean-near as these formations. With intercalations (Ruhpolding Radiolarite s. str.) were included. relatively coarse-grained volcanoclastic material (NEUBAU- Also the more calcareous varieties (!type locality of the ER et al. 1999, 2007). Ruhpolding Formation) with the characteristic microfacies Chronostratigraphic age: ?Bajocian to Callovian according are included to the Ruhpolding Radiolarite Group. to radiolarians, but mainly Callovian (KOZUR & MOSTLER 1992). Biostratigraphy: zones not defined. Florianikogel Formation Thickness: unknown, but as estimated from mapping more (Fig. 25, Fig. 30) than 100 metres are preserved. Lithostratigraphically higher rank: Ruhpolding Radiolarite Validity: valid (Florianikogel-Formation), first description Group. by CORNELIUS (1952), revised by MANDL & ONDREJICKOVA Subdivision: no subdivision. (1991, 1993), KOZUR & MOSTLER (1992) and NEUBAUER et al. Underlying units (foot wall boundary): unknown, covered. (1999, 2007). See also GAWLICK et al. (2007b). Needs some Overlying units (hanging wall boundary): unknown, thrust revision. Compare MANDL (1996). Defined in this paper. contact. Type area: ÖK 105 Neunkirchen; Florianikogel - indicated Geographic distribution: type area in the southeastern part by a chapel on top of the hill. of the eastern Northern Calcareous Alps (Florianikogel, Type section: ÖK 105 Neunkirchen, eastern slope of the hill Ödenhof). Remnants of this formation occur resedimented Florianikogel (Lower Austria). in the Strubberg Formation (GAWLICK 1993). Also several

Fig. 29: Characteristic microfacies of the cherty sediments of the Chiemgau Series. Page 56. 1. Dark-grey radiolarian wackestone to packstone, cherty limestone with recrystallized radiolaria. Sample TH 14, Thiersee syncline, Leiten section (Bavaric units, western Northern Calcareous Alps). Width of photo: 1.4 cm. 2. Magnification of 1. All radiolaria are recrystallized and occur as calcite. Between the radiolaria rare fragments of filaments are visible. Width of photo: 0.5 cm. 3. Dark-grey radiolarian wacke- to packstone with filaments, cherty limestone. Sample TH 15a, Thiersee syncline, Leiten section (Bavaric units, western Northern Calcareous Alps). Width of photo: 1.4 cm. 4. Magnification of 3. The occurrence of filaments between the dominating radiolaria resemble the filament-rich Klaus Formation. Here in the basinal setting radiolaria dominate. Width of photo: 0.5 cm. 5. Black radiolarite intercalation in between cherty limestones with some marly intercalations. It shows the typical features of a radiolarite with completely recrystallized (to quartz) radiolaria. Sample TH 15, Thiersee syncline, Leiten section (Bavaric units, western Northern Calcareous Alps). Width of photo: 1.4 cm. 6. Magnification of 5. Beside the radiolaria some remnants of filaments as well as undeterminable clasts are visible. Width of photo: 0.5 cm. 7. Filament- and radiolaria-rich wacke- to packstone, without visible bioturbation. The original sedimentological features of a low-energy and low-density turbidite are preserved. Most radiolaria are recrystallized and occur as calcite. Sample TH 15c, Thiersee syncline, Leiten section (Bavaric units, western Northern Calcareous Alps). Width of photo: 0.5 cm. 8. Magnification of 7. Beside the recrystallized radiolaria only few radiolaria show a better preservation, they are filled with micrite. Most filaments are broken. Width of photo: 0.25 cm

57 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Fig. 30: Characteristic microfacies of the Florianikogel Formation, type locality (Hallstatt Mélange, eastern Northern Calcareous Alps). 1. Black laminated Triassic radiolarite, tectonized and recrystallized. Sample Florianikogel 1, Florianikogel type section. Width of photo: 1.4 cm. 2. Magnification of 1. Most radiolarians are completely recrystallized and occur as quartz. Only few radiolarians show original structures. Width of photo: 0.5 cm. 3. Magnification of 1. The radiolarians occur in a black shaly matrix and are partly flattened. In the centre a radiolaria with a quartz core shows better preservation. Width of photo: 0.25 cm. 4. Strongly bioturbated radiolaria-rich wacke- to packstone. Jurassic grey cherty limestones to radiolarites from the matrix between different Hallstatt Limestone and Triassic radiolarite slide blocks. Sample Florianikogel 2, Florianikogel type section. Width of photo: 1.4 cm. 5. Magnification of 4. Pracitically all radiolarians are recrystallized, flattened, and very badly preserved. Width of photo: 0.5 cm. 6. Magnification of 5. Beside the recrystallized radiolarians some filaments and pyrite occur. Width of photo: 0.25 cm. For details on microfacies see, e.g., MANDL & ONDREJICKOVA (1991, 1993).

58 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 31: Characteristic microfacies of the cherty sediments of the Sandlingalm Formation. Page 60. 1. Laminated black radiolarite to cherty limestone with marly intercalations. Radiolarian wacke- to packstone, slightly slumped. Sample D 595, southern Fludergraben valley north of the municipal Altaussee (Hallstatt Mélange, Salzkammergut area). Width of photo 1.4 cm. 2. Magnification of 1. Most radiolarians are recrystallized, but those filled with clay show very good preservation. Width of photo 0.5 cm. 3. Cherty limestone with radiolaria and filaments, completely bioturbated. Sample D 599, southern Fludergraben valley north of the municipal Altaussee (Hallstatt Mélange, Salzkammergut area). Width of photo 1.4 cm. 4. Magnification of 3. Beside the recrystallized radiolarians (calcite) and filaments rarely fragments of crinoids occur. Width of photo 0.5 cm. 5. Bioturbated clay-rich black radiolarite with recrystallized radiolarians and several fragments of crinoids. Sample D 610, southern Fludergraben valley north of the municipal Altaussee (Hallstatt Mélange, Salzkammergut area). Width of photo 0.5 cm. 6. Massive radiolarite, completely chertified, with some clay content. Radiolarians are badly visible due to the diagenetic overprint. Sample EW 238, southern Fludergraben valley north of the municipal Altaussee (Hallstatt Mélange, Salz- kammergut area). Width of photo 1.4 cm. 7. Magnification of 6. Most radiolarians are completely recrystallized and occur as quartz. Some radiolarians were originally filled with clay and show a better preservation. Width of photo 0.5 cm. 8. Bioturbated cherty limestone, radiolarian wackestone and rare filaments. All radiolarians are recrystallized and occur as calcite. Sample EW 241, southern Fludergraben valley north of the municipal Altaussee (Hallstatt Mélange, Salzkammergut area). Width of photo 1.4 cm. For details on the microfacies see, e.g., GAWLICK et al. (2007b). reworked Triassic radiolarite components (Anisian to Rhaet- & GAWLICK 2003b, GAWLICK et al. 2007b). ian) exist in some basal Gosau conglomerates near the type Origin, facies: cherty basinal deposits (cherty limestones, area of the Florianikogel Formation (locality Pfenningbach radiolarites, cherty marls and shales) with intercalated - SUZUKI et al. 2007) and prove a derivation from the turbidites, breccias and mass flows with components of the Neotethys oceanic domain. distal Hallstatt Zone (Hallstatt Salzberg facies) and some Lateral units: unknown. components of the distal Pötschen Formation. Volcanoclastic Remarks: the most ocean-near trench-like basin fill known sandstone components. from the Northern Calcareous Alps, also probably the oldest Chronostratigraphic age: Early Callovian to Late Oxfordian one. A similar but in detail different formation exists in the in the type area, slightly older (Late Bajocian and Bathonian) Western Carpathians, known as Meliata Formation (KOZUR in other areas of the Salzkammergut (e.g., AUER et al. 2009). & MOCK 1985), but also the Meliata Formation needs re- Biostratigraphy: Zhamoidellum ovum zone after the ra- vision. Differences to the Meliata Formation of the type diolarian zonation of SUZUKI & GAWLICK (2003a) in the type area are the missing of ophiolite blocks and slides in the area, see chapter 4 in this paper. mélange of the Florianikogel section. The Meliata Formati- Thickness: 600 to 800 metres. on represent therefore a more ocean-near trench-like basin Lithostratigraphically higher rank: Ruhpolding Radiolarite fill as the Florianikogel Formation. Group. Subdivision: no subdivision. Underlying units (foot wall boundary): Klaus Formation. Sandlingalm Formation Overlying units (hanging wall boundary): hemipelagic (Fig. 25, Figs. 31-32) biomicrites of the Plassen Group, Sillenkopf Formation, Plassen Formation. Validity: valid (Sandlingalm-Formation), defined and Geographic distribution: central and eastern Northern described by GAWLICK et al. (2007b). Calcareous Alps, Hallstatt Mélange regions. Type area: ÖK 96 Bad Ischl, Salzkammergut. Lateral units: independent basin fill. Type section: ÖK 96 Bad Ischl, between the Fludergraben Remarks: the Sandlingalm Formation in the type area has an valley to the north and Vordere Sandlingalm () to the age range of earliest Callovian to Late Oxfordian (GAWLICK south (see GAWLICK et al. 2007b). et al. 2007b), in other areas the onset of the Sandlingalm Reference section(s): not designated, Mount Rötelstein east Formation is proven as Bajocian (e.g., AUER et al. 2009) or of the village Kainisch can be used as reference section. Bathonian (Bad Mitterndorf area - O´DOGHERTY et al. in Derivation of name: name refers to the Vordere Sandlingalm review, unpublished data). These slightly older occurrences northeast of Mount Sandling. of the Sandlingalm Formation may represent older and Synonyms: detailed synonymy in GAWLICK et al. (2007b). palaeogeographically more Neotethys-ward trench-like Lithology: well-bedded, mostly laminated and turbiditic basin fills. But the components in the matrix as well as the cherty sediments (cherty limestones, cherty marls and lithology of the matrix are identical to the Sandlingalm For- radiolarites) with intercalated polymict breccias and sliding mation in the type area. Therefore it seems not necessary, blocks deriving from the Hallstatt facies realm (Hallstatt to subdivide the Sandlingalm Formation into further Limestones). Radiolarite slump deposits are common. members or formations. Completely different to the Fossils: radiolarians (e.g., WEGERER et al. 1999, 2001, SUZUKI Sandlingalm Formation is the Florianikogel Formation in 59 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

60 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 32: Characteristic microfacies of the different mass-flow deposits of the Sandlingalm Formation with Hallstatt Lime- stone components. Page 62. 1. Polymictic breccia composed of components of Hallstatt Limestones (Sevatian to Early Rhaetian). Condensed facies with ostracods, crinoids, radiolaria and foraminifera. Sample D 211, Vordere Sandlingalm north of Mount Sandling (Hall- statt Mélange, Salzkammergut region). Width of photo 1.4 cm. 2. Component of red Hallstatt Limestone rich in halobiid shells. Stratigraphy: Early Sevatian (Hangendgraukalk) or Late Tuvalian (Roter Bankkalk). Sample D 213, Vordere Sandlingalm north of Mount Sandling (Hallstatt Mélange, Salzkammergut region). Width of photo 0.5 cm. 3. Polymictic breccia, mainly composed of Hallstatt Limestones (Tuvalian and Lacian). Components of radiolaria-bearing “Hellkalk“ (Massiger Hellkalk) and red limestones (Roter Bankkalk) with filaments, most probably halobiids, occur. All components show angular shape. Sample D 214-1, Vordere Sandlingalm north of Mount Sandling (Hallstatt Mélange, Salzkammergut region). Width of photo 1.4 cm. 4. Magnification of 6, other part of the thin section. Radiolaria-bearing micrite (Massiger Hellkalk) and grey limestones (probably from the overlying Roter Bankkalk) rich in filaments, probably halobiids, occur as components. Width of photo 0.5 cm. 5. Massiger Hellkalk rich in radiolaria and Roter Bankkalk with abundant halobiids. Sample D 214-2, Vordere Sandlingalm north of Mount Sandling (Hallstatt Mélange, Salzkammergut region). Width of photo 0.5 cm. 6. Polymictic breccia with different Hallstatt Limestone clasts. In the fine-grained dark matrix some radiolarians are visible. Sample EW 256-3, Fludergraben valley north of Mount Sandling (Hallstatt Mélange, Salzkammergut region). Width of photo 1.4 cm. 7. Beside different Hallstatt Limestone clasts several completely recrystallized clasts occur. Some clasts show transported deformation. Sample EW 256-5, Fludergraben valley north of Mount Sandling (Hallstatt Mélange, Salzkammergut region). Width of photo 1.4 cm. 8. Completely unsorted polymictic breccia of different Late Triassic Hallstatt Limestone clasts. Sample EW 256-7, Fluder- graben valley north of Mount Sandling (Salzkammergut region). Width of photo 1.4 cm. For details on microfacies see, e.g., GAWLICK et al. (2007b). respect to matrix sediments and component spectrum. gebirge (mountain range) (Lammer Basin fill, for references Triassic radiolarites are missing in the component spectrum see GAWLICK et al. 2002, GAWLICK & FRISCH 2003, MISSONI et of the Sandlingalm Formation. To include the huge Alpine al. 2005, MISSONI & GAWLICK in review). Haselgebirge slides (Haselgebirge Mélange - e.g., SPÖTL Type section: originally Mount Strubberg (Salzburg) south 1989, SPÖTL & HASENHÜTTL 1998, SPÖTL et al. 1998) into the of the municipal Abtenau (CORNELIUS & PLÖCHINGER 1952, Sandlingalm Formation or not, is a matter of debate in the PLÖCHINGER 1990). A new type section was defined by moment (MISSONI & GAWLICK in review). These slides occur GAWLICK (1996, 2000) and GAWLICK & SUZUKI (1999): the intercalated between the Sandlingalm Formation sensu Sattlberg section south of the village Oberscheffau, on the stricto and the Plassen Carbonate Platform, or the Sillen- forest road west of Mount Sattlberg (more details in GAWLICK kopf Formation. Anyhow, the formation of the Plassen Car- 1996, GAWLICK & SUZUKI 1999, GAWLICK 2000). In the area bonate Platform as well as the deposition of the Sillenkopf around Mount Strubberg (former type locality according to Formation represent a completely new sedimentary cycle. CORNELIUS & PLÖCHINGER 1952) the cherty sediments with a The Alpine Haselgebirge also contains mafic volcanic rocks high diagenetic overprint are tectonically isolated (GAWLICK and sediments, partly with sodic amphiboles (e.g., KIRCH- 1997). But mass-flow deposits are missing in the cherty NER 1977, 1980a, b). VOZÁROVÁ et al. (1999) described the sediments around Mount Strubberg. Also the type section, existence of oceanic basalts with tholeiitic magmatic trend, which was located in a gallery below Mount Strubberg, is which were metamorphosed under HP/LT conditions, from closed today. Therefore the section Sattlberg was defined metabasaltic fragments in the Alpine Haselgebirge of Bad as new type section. Ischl. GAWLICK & HÖPFER (1999) described HP/LT Reference section(s): no reference section is designated, metamorphosed Hallstatt Limestones with two phases of similar sections exist east of the Königssee (lake) in the metamorphic overprint from the eastern Lammer valley Berchtesgaden Calcareous Alps (GAWLICK et al. 2003, (compare FRANK & SCHLAGER 2006). MISSONI 2003). Derivation of name: Mount Strubberg south of the municipal Abtenau was originally designated as type section Strubberg Formation (CORNELIUS & PLÖCHINGER, 1952). For details see geological (Fig. 25, Figs. 33-35) map ÖK 94 Hallein (PLÖCHINGER 1987), PLÖCHINGER (1990) and HÄUSLER (1981). Validity: valid (Strubberg-Formation), first description by Synonyms: parte Tauglboden Formation, parte Grünanger CORNELIUS & PLÖCHINGER (1952), later by HÄUSLER (1981), Formation, parte Allgäu Formation beside others. completely revised by GAWLICK (1996) and GAWLICK & SUZUKI Lithology: mostly cherty sediments (grey and black) of the (1999), defined by GAWLICK & FRISCH (2003). Lammer Basin fill with mass-flow deposits, olistostromes Type area: ÖK 94 Hallein and ÖK 95 St. Wolfgang, Lammer (in sense of GÖRLER & REUTER 1968) and allochthonous slides valley east of the municipal Golling, and south to southeast (Hallstatt Mélange): Hallstatt Limestones, Pötschen Lime- of the municipal Abtenau on the northern rim of the Tennen- stones and Dolomites, components and slides of the Triassic 61 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

62 Journal of Alpine Geology, 50: 1-152, Wien 2009

63 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Fig. 33: Characteristic microfacies of the cherty sediments of the Strubberg Formation (Hallstatt Mélange). Page 63. 1. Bioturbated dark-grey to black cherty limestone with recrystallized radiolarians. Sample 1-89, Mount Sattlberg south of the village Oberscheffau (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 2. Radiolarian packstone. Nearly all radiolarians occur as calcite. Sample 1c-89, Mount Sattlberg south of village Oberscheffau (Tirolic units, Salzburg Calcareous Alps). Width of photo: 0.25 cm. 3. Laminated dark-grey cherty limestone with recrystallized radiolarians. Not bioturbated, with marls. Sample Ber 9/1, Unterer Krautkaser (valley) southeast of Berchtesgaden (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 4. Black radiolarite with slumps. Radiolarian packstone. Sample Ber 9/4, Unterer Krautkaser (valley) southeast of Berchtesgaden (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 5. Laminated black radiolarite. Radiolarian wackestone to packstone. Some laminae are strongly chertified, some show more clay content. Radiolarians are mostly preserved as quartz. Sample Ber 33/2, Büchsenkopf east of Königssee (lake) (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 6. Strongly recrystallized and chertified laminated black radiolarite. Radiolarians are mostly recrystallized and only few are well preserved. Sample Ber 33/3, Büchsenkopf east of Königssee (lake) (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 7. Partly well-preserved radiolarians in a laminated black radiolarite with low clay content. Sample Ber 33/7, Büchsenkopf east of Königssee (lake) (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 8. Dark-grey cherty limestone with slumps. Radiolarian wacke- to packstone, originally laminated. Together with the radiolarians occur several very small recrystallized lithoclasts. Sample K 15, Kuchlbach south of village Unterscheffau, (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. For details on microfacies see, e.g., GAWLICK (2000), GAWLICK & FRISCH (2003), GAWLICK et al. (2003) and MISSONI et al. (2005). reef rim. Several lithologies are included in the Strubberg fill see GAWLICK (1996, 2000) and GAWLICK & FRISCH (2003). Formation: bedded or laminated radiolarites, cherty lime- Fossils: consist mostly of radiolarians, rare Saccocoma in stones, cherty shales, cherty marls, manganese-rich shales the uppermost parts, rare spicula, rare foraminifera (HÄUS- and siliceous carbonates, mostly bedded or laminated, often LER 1981, PLÖCHINGER 1990). massive and amalgamated, slump deposits are common. For Origin, facies: deep-water trench-like basin deposits, chaotic the environment of the manganese-rich sediments compare basin fill (Lammer Basin) with mass-flow deposits and slides HUCKRIEDE & MEISCHNER (1996), see also PLÖCHINGER (1952b) (details in GAWLICK 1996, 2000). For depositional modes of and HEIN & KOSKI (1987). For details of the Lammer Basin dark-grey siliceous sediments see e.g., DE WEVER & BAUDIN

Fig. 34: Characteristic microfacies of the matrix and components of the different mass-flow deposits of the Strubberg Formation (Hallstatt Mélange). Page 65. 1. Different grey limestone clasts of the Pötschen Formation (limestones and dolomites) reworked in a dark-grey cherty matrix with recrystallized radiolarians. Most clasts are micritic hemipelagic limestones of Late Triassic age, some contain reefal detritus of the nearby Dachstein reef belt. Also several amalgamated cherty sediments of the Strubberg Formation are incorporated. Sample Ber 9/2, Unterer Krautkaser (valley) southeast of Berchtesgaden (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 2. Big clast of a spicula-rich hemipelagic wackestone of the Dürrnberg Formation together with Late Triassic Pötschen Limestone clasts. The matrix consists of radiolaria-rich dark-grey cherty shale to radiolarite. Sample Ber 46/1a, Unterer Krautkaser (valley) southeast of Berchtesgaden (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 3. Hemipelagic filament-rich Late Triassic Pötschen Limestone clast together with several totally recrystallized hemipelagic dolomites of the Pötschen Formation (Pötschen Dolomite). The matrix consists of dark marl to shale, free of radiolarians. Sample BRS 10, Infanggraben brooklet south of the village Unterscheffau (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 4. Coarse-grained breccia. Pötschen Dolomite clasts as well as Pötschen Limestone clast are mostly angular to subrounded. The matrix consists of radiolaria-free dark shale. Sample BS 3, Infangalm south of the village Unterscheffau (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 5. Polymictic breccia, which consists of reef-near clasts (Gosausee Limestone facies) and crinoid-rich clasts, most probably from the Donnerkogel Formation (KRYSTYN et al. 2009). Sample bue 15b2, Büchsenkopf east of Königssee (lake) (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 6. Reefal limestone clasts surrounded by a dark-grey radiolaria-rich cherty matrix. Sample bue 37d, Büchsenkopf east of Königssee (lake) (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 7. Several radiolaria-rich wackestones (Pötschen Limestone) together with filaments and shallow-water detritus clasts in a dark-grey marly to shaly cherty matrix. Most components are angular. Sample L 17, south of the municipal Golling (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 8. Pötschen Limestone and Pötschen Dolomite clast of Late Triassic age in a dark-grey cherty matrix. All clasts are angular. Sample O 4-2, Mount Sattlberg south of the village Oberscheffau (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. For details on microfacies see, e.g., GAWLICK (2000), GAWLICK & FRISCH (2003), GAWLICK et al. (2003) and MISSONI et al. (2005). 64 Journal of Alpine Geology, 50: 1-152, Wien 2009

65 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

66 Journal of Alpine Geology, 50: 1-152, Wien 2009

(1996). 2000, AUER et al. 2007). These dark-grey to black cherty Chronostratigraphic age: Early Callovian to Middle Ox- sediments, deposited on the southern rim of the northern fordian, based on radiolarians (e.g., GAWLICK & SUZUKI 1999, nappe front (Trattberg Rise) are not separated as own MISSONI et al. 2001b, 2005, GAWLICK et al. 2003). member, because the lithology and microfacies is identical Biostratigraphy: radiolarians, Zhamoidellum ovum zone with the matrix between the mass flows and slide blocks (SUZUKI & GAWLICK 2003a), see chapter 4 in this paper. (GAWLICK 2000). Thickness: up to 2000 metres for the complete (recon- Remarks: complete description of the history and older structed) proximal basin fill (GAWLICK 1997). references in GAWLICK & FRISCH (2003). Literature about the Lithostratigraphically higher rank: Ruhpolding Radiolarite type area and the manganese shales/carbonates: BERAN et Group. al. (1981, 1983), CORNELIUS & PLÖCHINGER (1952), DIERSCHE Subdivision: Klauskogelbach Member (Early Callovian - (1980), HAMILTON (1981), FAUPL & BERAN (1983), GAWLICK SUZUKI et al. 2001, GAWLICK 2007) was separated as basal (1996, 2000), GAWLICK et al. (1999a), GAWLICK & SUZUKI (1999), part of the Strubberg Formation on basis of the different HÄUSLER (1979, 1981), HÖCK & SCHLAGER (1964), PLÖCHINGER component spectrum in the mass-flow deposits. These mass (1980, 1983, 1984, 1990), TOLLMANN (1976a, b, 1981, 1985), flows occur in reddish and black cherty sediments on top RANTITSCH et al. (2003). of a few metres thick well-bedded red radiolarite. Underlying units (foot wall boundary): red nodular lime- stones of the Klaus Formation, or limestones of the higher Tauglboden Formation Adnet Group after a sedimentary gap. (Fig. 25, Figs. 36-38) Overlying units (hanging wall boundary): the southern part of the basin fill is partly overthrusted, and partly overlain Validity: valid (Tauglboden-Formation), first description by by the Sillenkopf Formation; the northern part of the basin SCHLAGER (1956). First detailed investigation by SCHLAGER fill with overlying remnants of Late Oxfordian to Tithonian & SCHLAGER (1969, 1973) and later by DIERSCHE (1980). Plassen Formation on top of slides, which belong to the Completely revised by GAWLICK et al. (1999b, 2007b) and Strubberg Formation. GAWLICK (2000), defined by GAWLICK & FRISCH (2003). Geographic distribution: to the west of the type area on ÖK Type area: ÖK 94 Hallein, Tauglboden valley east of the 93 Bad Reichenhall (Berchtesgaden National Park), north municipal in the inner parts of the Osterhorn Block of the Hagengebirge and the Steinernes Meer Mountains, (Tauglboden Basin fill in the type area, for references see and from there striking to the north (e.g., MISSONI et al. GAWLICK & FRISCH 2003). 2001b, 2005, GAWLICK et al. 2003). Also on ÖK 92 Lofer in the Type section: Kesselwand section. The type section was Unken area. Remnants can be found in the Salzkammergut described by SCHLAGER (1956), SCHLAGER & SCHLAGER region (e.g., AUER et al. 2007). (1973), DIERSCHE (1980), GAWLICK et al. (1999b), GAWLICK Lateral units: cherty shales, partly manganese-rich, cherty (2000) and GAWLICK & FRISCH (2003). The type section starts limestones and radiolarites without mass-flow deposits or in the gorge of the Urban Graben (see HUCKRIEDE 1971) and slides represent the distal part of the Lammer Basin (GAWLICK ends at the end of the forestal road Kesselstrasse (SCHLA-

Fig. 35: Characteristic microfacies of the Klauskogelbach Member (matrix and breccia components). Page 66. 1. Polymictic breccia with several lagoonal Dachstein Limestone components, reworked cherty sediments of the Strubberg Formation, and micrite clasts. The dark-grey matrix is very rich in radiolarians, which are partly recrystallized to calcite. Also a foraminifer occurs in the matrix. Sample DD 53, Klauskogelbach brooklet west of the municipal Hallstatt (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 2. Adnet Formation clast, chertified clast, and several dark-grey Strubberg Formation clasts occur in a radiolarian-rich matrix of Early Callovian age (compare SUZUKI et al. 2001). Sample DD 53, Klauskogelbach brooklet west of the municipal Hallstatt (Tirolic units, Salzkammergut area). Width of photo: 0.5 cm. 3. Crinoid-rich Hierlatz Limestone clast in a radiolaria-rich matrix. Sample DD 53, Klauskogelbach brooklet west of municipal Hallstatt (Tirolic units, Salzkammergut area). Width of photo: 0.5 cm. 4. Also some spicula-rich clasts (?hemipelagic grey Early Jurassic clasts) occur. Sample EW 78, Klauskogelbach brooklet west of the municipal Hallstatt (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 5. Rhaetian lagoonal Dachstein Limestone clast together with clasts of the Strubberg Formation and Hierlatz Limestone in a radiolaria-rich cherty matrix. Sample EW 78, Klauskogelbach brooklet west of the municipal Hallstatt (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 6. Matrix-free polymictic breccia with lagoonal Dachstein Limestone clasts and filament-rich clasts, most probably from the Klaus Formation. Sample D 157, Blekar north of Mount Plassen west of the municipal Hallstatt (Tirolic units, Salz- kammergut area). Width of photo: 1.4 cm. 7. Adnet Limestone clasts together with clasts of the Scheibelberg Formation in a marly matrix with some recrystallized radiolarians. Sample EW 176, northern side of Mount Grimming west of Bad Mitterndorf (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 8. Spiculite clast (?Early Jurassic Scheibelberg Formation) in a microbreccia matrix with clay. Fragments of crinoids occur in the matrix. Sample EW 181, northern side of Mount Grimming west of Bad Mitterndorf (Tirolic units, Salzkammergut area). Width of photo: 0.5 cm.

67 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

68 Journal of Alpine Geology, 50: 1-152, Wien 2009

GER & SCHLAGER 1969, 1973). In respect to the facies, Oberalmer Basiskonglomerat (KÜHNEL 1925, PLÖCHINGER component content of the mass flows and their thickness, 1952a, 1990) = basal Tauglboden Formation (MISSONI & and the lack of huge slides, the type area in the inner parts GAWLICK in review), Grubhörndl Breccia (compare ORTNER et of the Osterhorn Block represents a central position in the al. 2008). Tauglboden Basin. Proximal parts of the basin are not Lithology: mostly grey and black cherty sediments with preserved in the type area, but can be seen in the Knerzen- mass-flow deposits and parautochthonous slides derived alm (Knerzenkalk - ROSENBERG 1969) area (e.g., MANDL 1982, from adjacent highs (Trattberg Rise) (SCHLAGER & SCHLA- WEGERER 2002, GAWLICK et al. 2007b) southeast of Bad Ischl GER 1973, DIERSCHE 1980). Mostly bedded or laminated (PÖTTLER & GAWLICK 2000) and in the Unken valley (GARRISON cherty limestones, radiolarites and cherty marls, often rich & FISCHER 1969, VECSEI et al. 1989). in radiolarians, partly with filaments and sponge spicula. Reference section(s): a section of the proximal Tauglboden The components of the mass-flow deposits are: Haupt- Basin fill is described in GAWLICK et al. (2007b) from an area dolomit, lagoonal Dachstein Limestone, Kössen Formati- southeast of the Höherstein-Plateau, in the central Salz- on, several limestones of the Adnet Group, Kendlbach and kammergut area. The section starts in the gorge Fluder- Scheibelberg Formations, Klaus Formation, radiolarites, dis- graben above red limestones (Klaus Foramation, Callovian/ tal Strubberg Formation; in the lowermost and highest parts Oxfordian boundary - MANDL 1982) with few metres thick of the successions, very rarely, shallow-water limestones red radiolarites (Fludergraben Member - GAWLICK & FRISCH of a precursor of the late Jurassic Plassen Carbonate Platform 2003) and black cherty limestones, cherty shales and (AUER et al. 2006, GAWLICK et al. 2007b). For details of the radiolarites with mass-flow deposits, and ends south of the Tauglboden Basin fill see GARRISON & FISCHER (1969), SCHLA- Knerzenalm area with the onset of the Oberalm Formation GER & SCHLAGER (1973), DIERSCHE (1980), GAWLICK (2000), with massive Barmstein Limestones of the northern Höher- GAWLICK & FRISCH (2003), and GAWLICK et al. (2007b). stein-Plateau. Fossils: radiolarians, spicula, filaments, seldom ammonites, Derivation of name: Tauglboden valley in the central Oster- rarely trace fossils (LOBITZER et al. 1994). horn Mountains (SCHLAGER 1956). For details see geological Origin, facies: deep-water trench-like basin deposits, map of ÖK 94 Hallein - PLÖCHINGER (1987), and further chaotic basin fill with mass-flow deposits and slides. GAWLICK et al. (1999b), GAWLICK (2000). Chronostratigraphic age: Early Oxfordian to late Early Synonyms: parte Grünanger Breccia (SCHÄFFER 1982, Tithonian, based on radiolarian dating (e.g., GAWLICK et al. SCHÄFFER & STEIGER 1986, revision in e.g,. WEGERER et al. 1999b, 2007b) and dating of underlying and overlying 2001, SUZUKI et al. 2001, GAWLICK et al. 2007b, GAWLICK 2007), sediments (e.g., HUCKRIEDE 1971, MANDL 1982, STEIGER 1992). parte Allgäu Formation (revision for the Salzkammergut area Biostratigraphy: radiolarians, Williriedellum dierschei in e.g., WEGERER et al. 2001, WEGERER 2002, SUZUKI & subzone of the Zhamoidellum ovum zone to Cinguloturris GAWLICK 2009), Obersee Breccia (revision from LEIN et al. cylindra zone according to the radiolarian zonation of 2009 and unpublished data; see section Obersee Breccia), SUZUKI & GAWLICK (2003a), see chapter 4 in this paper. Schwarzbergklamm Breccia (GARRISON 1964, SCHLAGER & Thickness: in the type area (central Tauglboden Basin) about SCHLAGER 1973, VECSEI et al. 1989, ORTNER et al. 2008). 500 metres with mass-flow deposits and slides. Without

Fig. 36: Characteristic microfacies of the cherty sediments of the Tauglboden Formation. Page 68. 1. Laminated dark-grey cherty limestone (for lamination of radiolarites see e.g., GURSKY 1996). The radiolarian content in the laminae is different, from nearly radiolaria-free to radiolarian packstones. The radiolarian packstone laminae are normally more silicified than the radiolaria-poor laminae. Only in the radiolarian packstone layers the preservation of the radiolarians is relatively good, wheras in other layers the radiolarians are recrystallized to calcite. Sample TB 3/98, Tauglboden valley east of the municipal Kuchl (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 2. Bioturbated dark-grey radiolarian wacke- to packstone; cherty limestone. Most radiolarians occur as calcite. Sample TB 4/2001, Tauglboden valley east of the municipal Kuchl (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 3. Turbidite consisting of different older carbonate clasts overlying a series of radiolarian-rich laminae. The turbidite cuts erosively into the radiolaria-rich cherty limestone. Sample TB 8/2001, Tauglboden valley east of the municipal Kuchl (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 4. Dark-grey radiolarian wacke- to packstone, slightly bioturbated. All radiolarians are recrystallized and occur as calcite. Sample TB 13/2001, Tauglboden valley east of the municipal Kuchl (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 5. Fine-grained carbonate clast-rich turbiditic layers as intercalation in dark-grey cherty limestone with numerous recrystallized radiolarians, but without allochthonous clasts. Sample D 10-2, Fludergraben valley northwest of the municipal Altaussee (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 6. Packstone consisting of fine-grained carbonate detritus and partly well-preserved radiolarians. Sample D 13-3, Fluder- graben valley northwest of the municipal Altaussee (Salzkammergut area). Width of photo: 1.4 cm. 7. Laminated cherty limestone. Radiolarian packstone with rare carbonate clasts. Sample D 313, Fludergraben valley northwest of the municipal Altaussee (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 8. Slightly bioturbated cherty marl with slumps. Some parts are strongly chertified. Most radiolarians are recrystallized and occur as calcite in the more marly parts and as quartz in the silicified parts. Sample D 314, Fludergraben valley northwest of the municipal Altaussee (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. For details on microfacies see, e.g., GAWLICK (2000), GAWLICK & FRISCH (2003) and GAWLICK et al. (2007b). 69 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

70 Journal of Alpine Geology, 50: 1-152, Wien 2009 slides, only with the mass-flow deposits about 250 metres Eisenspitz Breccia in the central and northern parts of the Tauglboden Basin. In the proximal Tauglboden Basin, e.g., south of the Höher- Validity: invalid (Eisenspitzbrekzie), first description by stein-Plateau (Fludergraben-Knerzenalm) up to 800 metres. AMPFERER (1921, 1943), reinvestigated by, e.g., HUCKRIEDE Lithostratigraphically higher rank: Ruhpolding Radiolarite (1959a), WESTRUP (1970) and ACHTNICH (1982). The exact Group. age range of the Eisenspitz Breccia is rather enigmatic, Subdivision: Fludergraben Member (earliest Oxfordian red needs some revision and probably formalization. radiolarite - GAWLICK & FRISCH 2003, SUZUKI et al. 2004, Type area: ÖK 144 Landeck, Mount Eisenspitze near the compare MANDL 1982) separated as basal part of the Taugl- municipal Flirsch in the Lechtal Alps. boden Formation. This few metres thick red radiolarite Type section: ÖK 144 Landeck, southern rim of Mount passes abruptly into black cherty sediments with inter- Eisenspitze. calated mass-flow deposits. Reference section(s): not designated. Underlying units (foot wall boundary): in the proximal to Derivation of name: Mount Eisenspitze near the municipal central Tauglboden Basin occur red nodular limestones of Flirsch (Tyrol). the Klaus Formation or limestones of the higher Adnet Synonyms: unknown. Group, after a sedimentary gap. In the northern basin black Lithology: several polymictic mass-flow deposits with and red radiolarites of the Ruhpolding Radiolarite Group. intercalations of cherty limestones, manganese shales and Overlying units (hanging wall boundary): Oberalm Forma- radiolarites in the uppermost part. The clast spectrum is tion with Barmstein Limestone (late Early Tithonian to described in detail by HUCKRIEDE (1959a), WESTRUP (1970) Berriasian - STEIGER 1992). and ACHTNICH (1982). Only clasts of local origin occur in the Geographic distribution: the Tauglboden Basin stretches different mass flows. from the Unken area, in the west to the southern Lunz area Fossils: only known from the components. Some Sacco- (G. BRYDA, pers. comm.) to the east. coma remnants in the uppermost levels of the breccias Lateral units: partly laminated cherty shales, cherty (ACHTNICH 1982) remain enigmatic. limestones and radiolarites without mass-flow deposits or Origin, facies: mass-flow deposits, slope to basin. slides represent the distal part of the Tauglboden Basin, Chronostratigraphic age: according to HUCKRIEDE (1959a) not separated as an own member. and ACHTNICH (1982) the Eisenspitz Breccia should occur in Remarks: complete description of the history and older several levels in the lower, middle and upper part of the references in GAWLICK & FRISCH (2003). Literature about the Allgäu Formation and should therefore span the age range type area: DIERSCHE (1980), GARRISON & FISCHER (1969), from ?Pliensbachian to late Middle Jurassic, probably GAWLICK (2000), GAWLICK et al. (1999a, b), HUCKRIEDE (1971), reaching the Late Jurassic. PLÖCHINGER (1983), SCHLAGER (1956), SCHLAGER & SCHLA- Biostratigraphy: unknown. GER (1969, 1973), TOLLMANN (1976a, 1985), VECSEI et al. (1989), Thickness: up to several 100 metres, the thickness depends VORTISCH (1950, 1953a, b, 1955). on the palaeogeographic position. On top of the Adnet

Fig. 37: Characteristic microfacies of the polymictic breccias of the Tauglboden Formation. Page 70. 1. Polymictic breccia with subangular clasts of Rhaetian Dachstein Limestone and the Adnet Formation, as well as an amalgamated clast of the Tauglboden Formation. Without matrix. Sample TB 6/1998, Tauglboden valley east of the municipal Kuchl (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 2. Matrix-free polymictic breccia with several Early Jurassic grey hemipelagic carbonates (Kendlbach and Scheibelberg Formations). Sample TB 8/1998, Tauglboden valley east of the municipal Kuchl (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 3. Polymictic breccia with several angular clasts of Late Triassic to Middle Jurassic components: Rhaetian Dachstein Limestone, Kössen Limestone, Adnet Group, Kendlbach and Scheibelberg Formations as well as clasts of the distal Strubberg Formation. Without matrix. Sample TB 3/1997, Tauglboden valley east of the municipal Kuchl (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 4. Clast of Kendlbach Formation transitional to Enzesfeld Formation in a dark-grey cherty matrix with some recrystallized radiolarians. Sample Br 11, Mount Dürreckberg east of the town Berchtesgaden (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 5. Several not consolidated radiolarite clasts of nearly contemporaneous age in a dark-grey matrix of cherty shale. Sample Br 11, Mount Dürreckberg east of Berchtesgaden (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 6. Polymictic breccia with several Rhaetian Dachstein Limestone clasts in a radiolaria-rich matrix of dark-grey cherty shale. Sample D 6, Fludergraben valley northwest of the municipal Altaussee (Salzkammergut area). Width of photo: 1.4 cm. 7. The radiolarians in the dark-grey matrix between the components (Rhaetian Dachstein Limestone, grey Early Jurassic limestone) are completely recrystallized. Sample D 6-6, Fludergraben valley northwest of the municipal Altaussee (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 8. Breccia of mostly angular Early Jurassic grey hemipelagic limestone clasts (Kendlbach and Scheibelberg Formations), practically without matrix. Some clasts are chertified. Sample D 8-1, Fludergraben valley northwest of the municipal Altaussee (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. For details on microfacies see, e.g., GAWLICK (2000), GAWLICK & FRISCH (2003) and GAWLICK et al. (2007b).

71 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

72 Journal of Alpine Geology, 50: 1-152, Wien 2009

Formation several tens of metres, in the slope area in transi- Calcareous Alps with similar breccia horizons have shown tion to the basinal area up to several 100 metres. that similar manganese horizons also occurs around the Lithostratigraphically higher rank: most probably Ruhpol- Callovian/Oxfordian boundary (e.g., DIERSCHE 1980, GAWLICK ding Radiolarite Group. & SUZUKI 1999, MISSONI 2003, MISSONI et al. 2005). Similar Subdivision: no subdivision. breccias as the Eisenspitz Breccia were also described in Underlying units (foot wall boundary): in morphological the Salzkammergut region in the Callovian (Klauskogelbach higher parts the Adnet Formation, in basinal areas cherty Member of Strubberg Formation - GAWLICK 2007) or in the limestones and marls of the “Allgäu Formation“. Several Oxfordian (Tauglboden Formation - SCHLAGER & SCHLAGER mass flows are underlain by manganese shales and others 1973, DIERSCHE 1980, GAWLICK & FRISCH 2003). by radiolarites. Overlying units (hanging wall boundary): diachronous, several levels of breccias should be overlain by manganese Obersee Breccia shales; several horizons are overlain by radiolarites, and (Fig. 25, Fig. 39) some should be overlain by the Ammergau Formation (details in ACHTNICH 1982). Validity: invalid (Oberseebrekzie), first description by TOLL- Geographic distribution: Mount Eisenspitze area. MANN (1976a). First investigations on the age were carried Lateral units: grey basinal sediments, which should partly out by LEIN et al. (2009). The exact age range of the Obersee belong to the (unproven) Allgäu Formation. Breccia was rather enigmatic (BÖHM & BRACHERT 1993), needs Remarks: LEIN (1985) argued that the Eisenspitz Breccia some revision and probably formalization. It is estimated partly represents an equivalent to the Rofan Breccia and that the term is a synonym of the Rofan Breccia. therefore belongs to the Late Jurassic. This is confirmed by Type area: ÖK 71 Ybbsitz, Lunz area (Lower Austria). the intercalation of radiolarite in the upper part of the mass Type section: ÖK 71 Ybbsitz, according to TOLLMANN flows of the Eisenspitz Breccia. ACHTNICH (1982) and KRAINER (1976a) the type section should start north of the Obersee & MOSTLER (1997) argued that the Eisenspitz Breccia was (lake), in the gorge Seebachtal and should continue to the mainly formed in the late Early Jurassic (Pliensbachian, To- biological station in the municipal Lunz east of the Lunzer arcian) and interpreted the manganese shales as reference See (lake). horizon for the Toarcian. In this case this breccia should Reference section(s): not designated. belong to the widespread breccia formation event in the Derivation of name: after Obersee (lake) south the municipal Pliensbachian-Toarcian (e.g., SPIELER 1994), which should Lunz (Lower Austria). be therefore a time equivalent to the Scheck Member of the Synonyms: Obersee Breccia is a possible synonym of the Adnet Formation (MEISTER & BÖHM 1993, BÖHM et al. 1995). Rofan Breccia or in parts probably of the Tauglboden For- New investigations in the Salzburg and Berchtesgaden mation (see remarks).

Fig. 38: Characteristic microfacies of the Fludergraben Member. Page 72. 1. Basal red cherty limestone to radiolarite. Laminated radiolaria wacke- to packstone, partly slightly bioturbated, with some fine-grained biodetritus. Sample D 1029, Fludergraben valley northwest of the municipal Altaussee (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 2. Allodapic intercalation between violet to dark-grey cherty shale to radiolarite with contemporaneous shallow-water material and echinoderm fragments of a precursor (Early Oxfordian) of the Plassen Carbonate Platform. Sample D 1053-2, Fludergraben valley northwest of the municipal Altaussee (Tirolic units, Salzkammergut area). Width of photo: 0.5 cm. 3. Basal red radiolarite showing a transitional facies to the Klaus Formation below, with recrystallized radiolaria, some echinoderm fragments and remnants of filaments. Sample Urban 1, Tauglboden valley/Urbangraben east of the municipal Kuchl (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 4. Allodapic intercalation in between grey cherty limestone to radiolarite with contemporaneous shallow-water material and echinoderm fragments of a precursor (Early Oxfordian) of the Plassen Carbonate Platform. Sample B 381-1, Tauglboden valley/Urbangraben east of the municipal Kuchl (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 5. Allodapic intercalation in cherty sediment rich in reworked clasts of the matrix sediments and echinoderm fragments. A characteristic feature in the Fludergraben Member is the frequent encrusting of the chinoderm fragments, partly also showing borings. Sample B 381, Tauglboden valley/Urbangraben east of the municipal Kuchl (Tirolic units, Salzburg Calcareous Alps). Width of photo: 0.5 cm. 6. Allodapic intercalation in red cherty limestone and radiolarite with contemporaneous shallow-water clasts of a precursor (Early Oxfordian) of the Plassen Carbonate Platform. Sample Mb 14, Mount Katrin southwest of the town Bad Ischl (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 7. Turbiditic layer consisting of shallow-water clasts overlying a radiolarian wackestone (compare AUER et al. 2006). Sample Mb 17, Mount Katrin southwest of town Bad Ischl (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 8. Magnification of 7. The existence of contemporaneous turbidites with shallow-water components in the Early Oxfordian Tauglboden Formation proves the onset of an early shallow-water carbonate platform (Early Oxfordian precursor of the Plassen Carbonate Platform) in the Northern Calcareous Alps. In contrast to the preserved Plassen Carbonate Platform (Late Oxfordian to Berriasian) the detritus of the precursor platform is rare in determinable microorganisms. Beside mostly micrite clasts occur some small foraminifera without characteristic age features. Width of photo: 0.5 cm.

73 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Lithology: consists of different chaotic mass-flow deposits. (1976a), not exactly measured. Following components are known: lagoonal Rhaetian Dach- Lithostratigraphically higher rank: Ruhpolding Radiolarite stein Limestone (Oberrhät Limestone), Hierlatz Limestone, Group. limestones of the Enzesfeld Formation, Allgäu Formation or Subdivision: no subdivision. Scheibelberg Formation, especially in the basal part (TOLL- Underlying units (foot wall boundary): in most cases Hier- MANN 1976a, RUTTNER 1980, RUTTNER & SCHNABEL 1988, BÖHM latz Limestone Member, but partly also radiolarites of the 1992). Upsection occurs a lot of Middle Jurassic compo- Ruhpolding Formation. nents (mostly limestones of the Klaus Formation, in addition Overlying units (hanging wall boundary): first investiga- Vils Limestone), but also shallow-water clasts of Kim- tions date the overlying shallow-water carbonates as meridgian age (see section Ammergau Formation + Seekar- Kimmeridgian, and therefore as Seekarspitz Limestone. But spitz Limestone). further investigations about the exact age range of the Fossils: most organisms are deriving from components, shallow-water carbonates on top of the Obersee Breccia some radiolarians in the cherty limestones to radiolarites of are needed. the very rare matrix. Geographic distribution: Lunz area, Lower Austria. If part Origin, facies: chaotic basin fill with mass-flow deposits of the Tauglboden Formation see geographic distribution and slides, probably similar to the deep-water trench-like there. If part of the Rofan Basin see geographic distribution basin deposits of the Tauglboden Basin, or of the Rofan of the Rofan Breccia. Basin. Lateral units: not investigated, but probably similar to those Chronostratigraphic age: the age range of the Obersee of the Rofan Breccia, or perhaps to the Tauglboden Forma- Breccia was generally estimated as middle/late Early Jurassic tion. to Late Jurassic, but this age was not confirmed by exact Remarks: the Obersee Breccia is similar in the component data (e.g., TOLLMANN 1976a, RUTTNER 1980, BÖHM 1992). spectrum and more or less also in age range to the Taugl- Recent investigations on the age of some radiolarites, which boden Formation, but more exactly to the Rofan Breccia. In occur at the base of the Obersee Breccia in the type region, respect to the existence of some Middle Jurassic components show a Callovian to Early Oxfordian age range (LEIN et al. as well as radiolaritic components, and in some cases the 2009). Shallow-water clasts with Labyrinthina mirabilis existence of underlying radiolarites of Callovian to Early/ WEYNSCHENK, 1951 prove also a Kimmeridgian age (Fig. 39). Middle Oxfordian age (LEIN et al. 2009), the age range of the In other places the Obersee Breccia directly overlies the Obersee Breccia should be Early/Middle Oxfordian to ?Early Early Jurassic Hierlatz Limestone Member of the Adnet For- Kimmeridgian. Further detailed investigations on the age mation. range are necessary to decide, if the Obersee Breccia is an Biostratigraphy: only dated by components in different equivalent to the Tauglboden Formation (Early Oxfordian mass flows, therefore no detailed biostratigraphy in moment. to Early Tithonian) or to the slightly younger, but age- The underlying radiolarites belong to the lower part of the restricted Rofan Breccia (Middle/Late Oxfordian to ?Early Zhamoidellum ovum zone according to SUZUKI & GAWLICK Kimmeridgian). In respect to the known components in the (2003a). The upper part of the Obersee Breccia reaches the Obersee Breccia and the overlying sequence (Seekarspitz Kimmeridgian, also proven by the overlying Seekarspitz Limestone) a comparison with the Rofan Breccia is more Limestone. likely than with the Tauglboden Formation (compare LEIN Thickness: more than 200 metres according to TOLLMANN 1985, LEIN et al. 2009). Interestingly the component spectrum

Fig. 39: Characteristic microfacies of the Obersee Breccia in the Lunz area (Bavaric units according to TOLLMANN 1976b, but this part of the Lunzer nappe should be part of the Tirolic units). All photos come from breccias northwest of the Molterboden (for details see LEIN et al. 2009). Most clasts are angular. In most cases the breccia is free of matrix. The component spectrum is more or less identical with that of the Rofan Breccia (see there). Page 75. 1. Polymictic breccia with clasts of the Kössen Formation (micritic clasts), Rhaetian Dachstein Limestone/Oberrhät Lime- stone, and Seekarspitz Limestone with Labyrinthina mirabilis WEYNSCHENK, 1951 of (Early) Kimmeridgian age. Sample A 3599-2. Width of photo: 1.4 cm. 2. Polymictic breccia with a Rhaetian Dachstein Limestone clast with Triasina hantkeni MAJZON, 1954 and a Seekarspitz Limestone clast. Sample A 3599-2. Width of photo: 1.4 cm. 3. Polymictic breccia with clasts of Vils Limestone, distal Enzesfeld Formation, Scheibelberg Formation and Rhaetian Dachstein Limestone/Oberrhät Limestone. Sample A 3598-1. Width of photo: 1.4 cm. 4. Sample A 3598-1, other view. Several Early Jurassic clasts of a reworked basinal succession (Kendlbach, Enzesfeld and Scheibelberg Formations). Width of photo: 1.4 cm. 5. Matrix-free polymictic breccia with several Rhaetian Dachstein Limestone clasts and a chertified clast of the distal Enzesfeld Formation. Sample A 3598-2. Width of photo: 1.4 cm. 6. Beside the Early Jurassic clasts also filament-rich clasts of the Middle Jurassic Klaus Formation occur. Sample A 3598- 1. Width of photo: 0.5 cm. 7. Polymictic breccia (Late Triassic to Middle Jurassic clasts: Rhaetian Dachstein Limestone/Oberrhät Limestone, Kössen Formation, Enzesfeld Formation and Vils Limestone can be identified) with echinoderm fragments as matrix. Sample A 3598- 3. Width of photo: 1.4 cm. 8. Additionally to the known clasts a clast of late Middle Jurassic clay-rich cherty marl (Ruhpolding Radiolarite Group) occurs. Sample A 3598-2. Width of photo: 1.4 cm. 74 Journal of Alpine Geology, 50: 1-152, Wien 2009

75 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

of the Obersee Breccia shows a reworked Early to Middle also some reefal limestones of the Plassen Carbonate Plat- Jurassic basinal sequence in the source area, unknown from form of Kimmeridgian age occur. In the possible type section the region south of the type area. See also remarks in the sedimentological contact of the underlying radiolarites sections Eisenspitz Breccia and Rofan Breccia. with the mass-flow deposits and slides of the Rofan Breccia on top as well as the contact to the overlying hemipelagic limestones (Ammergau Formation) with intercalated Rofan Breccia shallow-water limestones (Seekarspitz Limestone) is well (Fig. 25, Fig. 40) preserved. See section Ammergau Formation + Seekarspitz Limestone. Validity: invalid (Rofanbrekzie), first description by GÜMBEL Fossils: only from the components, e.g., corals (see KÜHN (1861), further investigations by FOLGNER (1917), WÄHNER 1935). Radiolarians from the underlying radiolarites (e.g., (1903), WÄHNER & SPENGLER (1935), SPENGLER (1935), SAN- HEITZER 1930, partly revised by SUZUKI & GAWLICK 2003b). DER (1941a), TRAUTH (1950), VORTISCH (1956) and WÄCHTER Resedimented corals (see KÜHN 1935) and benthonic fora- (1987). Name “Rofan Brekzie“ is mentioned in TOLLMANN minifera in some components of the mass flows: Proto- (1976a), compare LEIN (1985). Needs some revision and later peneroplis striata WEYNSCHENK, 1950 and Labyrinthina formalization, should be described and defined together mirabilis WEYNSCHENK, 1951 (see WEYNSCHENK 1950, 1951). with the radiolaritic matrix as Rofan Formation. Origin, facies: deep-water trench-like basin deposit similar Type area: ÖK 119 Schwaz, Sonnwend Mountains. to the Tauglboden Formation (compare WEYNSCHENK 1949, Type section: not designated. A possible type section may VORTISCH 1956). To the top increasing resediments of the be designated in the area between the Erfurter Hütte in the prograding Plassen Carbonate Platform sensu lato (Wolf- south, the Mount Gschöllkopf to the west, Mount Roßköpfe gangsee carbonate platform = Seekarspitz Limestone). The to the north and Mount Haidachstellwand to the east. Wolfgangsee carbonate platform established on top of the Reference section(s): not designated. Brunnwinkl Rise and shed its material to the north and to Derivation of name: Mount Rofanspitze in the Sonnwend the south (GAWLICK et al. 2007a). These platform is the source Mountains. area for the shallow-water components (e.g., WEYNSCHENK Synonyms: Rofan-Hornstein-Breccie, Seekarspitzk Kalk 1949) in the uppermost part of the Rofan Breccia (compare (TRAUTH 1950) - should be used for the shallow-water section Obersee Breccia) resp. the overlying succession carbonates in the Ammergau Formation and the adjacent (see section Ammergau Formation + Seekarspitz Limestone). shallow-water carbonate platform (compare FENNINGER & As source area for the Triassic to Middle Jurassic compo- HOLZER 1972), detailed synonymy in TOLLMANN (1976a). nents, a west-east trending equivalent to the Brunnwinkl Lithology: mass-flow deposits and slides on top of Rise is discussed (GAWLICK et al. 2007a, MISSONI & GAWLICK radiolarites; mass flows with a radiolaritic matrix, especially in review). near the base, the upper part of the mass flows with a matrix Chronostratigraphic age: ?Middle/Late Oxfordian to Early of cherty limestones (e.g., WEYNSCHENK 1949). As compo- Kimmeridgian. According to WENDT (1969) younger than nents occur Late Rhaetian reefal (Oberrhät Limestone) and Late Oxfordian based on ammonites from red nodular lagoonal Dachstein Limestone, several red limestones of limestones below the radiolarites resp. red limestones with the Adnet Group, and dark-grey cherty Early Jurassic lime- red chert nodules and layers. This is in contradiction to the stones to Middle Jurassic radiolarites. In the upper part radiolarian ages from the “radiolarites“ (e.g., SUZUKI &

Fig. 40: Characteristic microfacies of the Rofan Breccia. Most clasts are angular. In most cases the Rofan Breccia is free of matrix. All samples from the Sonnwend Mountains type area in the western Northern Calcareous Alps, Tirolic units. The component spectrum is more or less identical with the component spectrum of the Obersee Breccia (see there). Page 77. 1. Matrix-free polymictic breccia with mostly angular clasts. Early and Middle Jurassic clasts dominate: Scheibelberg Formation, Adnet Formation and Klaus Formation. Beside the clasts several crinoid fragments occur. Some clasts are completely recrystallized. Sample RF 1-1. Width of photo: 1.4 cm. 2. Matrix-free polymictic breccia with mostly angular clasts. Beside several Early Jurassic clasts several Rhaetian Dach- stein Limestone (reef, lagoon) clasts occur as well as micrites of the Kössen Formation. Sample RF 2-1. Width of photo: 1.4 cm. 3. Polymictic breccia with mostly angular clasts, practically matrix-free. Beside Kössen Limestone clasts, clasts of Rhaetian Dachstein Limestone, Scheibelberg Formation, crinoid-rich Vils Limestone (upper left). Matrix-free. Sample RF 2-2. Width of photo: 1.4 cm. 4. Finer-grained polymictic breccia with a mixture of Rhaetian to Early Jurassic clasts beside several crinoids. Matrix free resp. the crinoids. Sample RF 2-3. Width of photo: 1.4 cm. 5. Matrix-free polymictic breccia with predominantly Early Jurassic clasts: Kendlbach, Enzesfeld and Scheibelberg Forma- tions. Some clasts are partly silicified. Crinoids are common. Sample RF 2-3. Width of photo: 1.4 cm. 6. Poorly sorted polymictic breccia without matrix. The smaller grains are partly not determinable. Dominant is the clast of lagoonal Rhaetian Dachstein Limestone. Sample RF 2-4. Width of photo: 1.4 cm. 7. Big clast of the Scheibelberg Formation beside a clast of Rhaetian Dachstein Limestone and several smaller clasts. Poorly sorted. Sample RF 5-1. Width of photo: 1.4 cm. 8. Angular clasts of the Klaus and Scheibelberg Formations beside several smaller micrite clasts. Practically without matrix. Sample RF 5-4. Width of photo: 1.4 cm. 76 Journal of Alpine Geology, 50: 1-152, Wien 2009

77 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

GAWLICK 2003b). They indicate a Middle resp. an early Late radiolarites) and Ammergau Formation. Oxfordian age as youngest part. But the dark-red marly lime- Remarks: to use the name “Rofan Breccia“ as overall name stones with chert nodules and layers on top of the Late Ox- for different Late Jurassic breccias (e.g., Schwarzbergklamm fordian red nodular limestones, described by WENDT (1969), Breccia - GARRISON & FISCHER 1969, Hornstein Breccia - are completely different to those radiolarites with the older WÄHNER & SPENGLER 1935, further compare LEIN 1985) as radiolarian species. Radiolarites occur partly on top of red mentionend by TOLLMANN (1976a, 1985) is impossible due nodular limestones and partly below these red limestones. to different age ranges of these breccias. E.g., the Schwarz- Therefore these red Late Oxfordian nodular limestone, dated bergklamm Breccia belongs to the Tauglboden Formation by WENDT (1969), seems to be the base of the overlying se- (Early Oxfordian to Early Tithonian), and the Rofan Breccia quence similar to sequences known from the Salzkammergut has an age range from ?Middle Oxfordian to Early Kim- area (Mount Tressenstein, Mount Hornkogel - compare meridgian. Also the component spectrum of these breccias GAWLICK & SCHLAGINTWEIT 2009). These red limestones could is slightly different as well as the overlying successions. be a cherty equivalent of the Agatha Formation. Biostratigraphy: not defined, more investigations are needed. Ruhpolding Formation Thickness: according to mapping more than 100 metres (Fig. 25, Fig. 41) (around 150 metres according to FENNINGER & HOLZER 1972) in the type area (compare WÄCHTER 1987). Validity: valid (Ruhpoldinger Radiolarit, Ruhpolding-Radi- Lithostratigraphically higher rank: Ruhpolding Radiolarite olarit-Formation), name “Ruhpoldinger Schichten“ by Group. TRAUTH (1950), in detail investigated firstly by DIERSCHE Subdivision: no subdivision. (1980). More recent investigations summarized in GAWLICK Underlying units (foot wall boundary): Ruhpolding Forma- (2000), GAWLICK & FRISCH (2003), GAWLICK et al. (2007b) and tion (Early/Middle Oxfordian according to the radiolarians MISSONI & GAWLICK (in review). Formalized in this paper. described by HEITZER 1930, with partly revision of the radio- Type area: Lechtal Alps in southeast Bavaria (compare larians and their stratigraphic ranges, summarized in SUZUKI HUCKRIEDE 1959b). & GAWLICK (2003b)). Red limestones of Middle Jurassic to Type section: 1:25.000 Ruhpolding, topographic map No. Late Oxfordian age occur below the (younger) radiolarite 8241 of Bavaria. Urschlauer Achen (valley) southeast of (WENDT 1969), but with a manganese-iron bearing crust in the village Ruhpolding. Gschwendlbach section (valley) in between (GERMANN 1971). The onset of the radiolarites is the Röthelmoos area south of village Urschlau (for details maybe diachronous in this area, like in the Tauglboden see STEIGER & STEIGER 1994). The lower part of the section Basin. starts with grey to red cherty limestones, the upper part is Overlying units (hanging wall boundary): Ammergau For- the so-called “Ruhpoldinger Marmor“, a cherty limestone. mation with resediments of the Plassen Carbonate Platform However, the type section does definitively not show the (type “Barmstein Limestone“) of Kimmeridgian to ?Early characteristic lithologic/petrographic features of a radiolarite Tithonian age (Seekarspitz Limestone). See section Ammer- as generally known in the Austroalpine realm, but it is gau Formation + Seekarspitz Limestone. characteristic in its microfacies. Geographic distribution: in the moment only known in the Reference section(s): Section Mörtlbach (GAWLICK 2000): type area, possible equivalents may exist in the Obersee here a complete radiolarite succession is preserved (?Late Breccia (see remarks there). Bathonian/Callovian to Oxfordian - GAWLICK 2000). This Lateral units: basinal sediments (cherty limestones to section show the characteristic lithologic/petrographic

Fig. 41: Characteristic microfacies of the Ruhpolding Formation. Page 79. 1. Black radiolarian wacke- to packstone, not laminated, with high content of organic material. Completely chertified. Sample Gai schwarz, reference section Mörtlbach/Gaissau; road to the village Gaissau (Tirolic units, Osterhorn Block, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 2. Magnification of 1. All visible radiolarians are completely chertified and not well preserved, they occur as quartz. Also visible is the high content of organic material. Width of photo: 0.5 cm. 3. Typical feature of a radiolarite with numerous quartz-filled veins. Red radiolarian wacke- to packstone, with some carbonate content in several parts. Sample Gai rot, reference section Mörtlbach/Gaissau; road to the village Gaissau (Tirolic units, Osterhorn Block, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 4. Magnification of 3. In more chertified parts of the rock the radiolarians are mostly recrystallized and occur as quartz. In those parts of the rock with higher carbonate content the radiolarians are much better preserved and partly filled with carbonate. Width of photo: 0.5 cm. 5. Magnification of 4. Clearly visible is the excellent preservation of the radiolarians in this part with high carbonate content. Width of photo: 0.25 cm. 6. Red radiolarian packstone. Most radiolarians in this massive radiolarite with high carbonate content are recrystallized. Sample Gai 4, reference section Mörtlbach/Gaissau; road to the village Gaissau (Tirolic units, Osterhorn Block, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 7. Magnification of 6. Clearly visible is the strong recrystallization of the radiolarians. Width of photo: 0.5 cm. 8. Other view as 7. Partly the radiolarians are recrystallized and partly they are filled with quartz. Width of photo: 0.25 cm.

78 Journal of Alpine Geology, 50: 1-152, Wien 2009

79 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

features of a radiolarite as generally known in the Austro- Overlying units (hanging wall boundary): diachronous, alpine realm. Also the type section of the Steinmühl Forma- possible are limestones of the following formations: Plassen tion (Arrach quarry; FLÜGEL 1967) can be used as reference Formation, Agatha Formation, Oberalm Formation (+ Barm- section. Here the lithology is similar to the type section. stein Limestone), Lärchberg Formation, Ammergau Forma- Derivation of name: after the settlement Ruhpolding in Ba- tion (+ Seekarspitz Limestone), Steinmühl Formation, Apty- varia. chus Limestone, Saccocoma Limestone. Partly also mass- Synonyms: detailed synonymy in MILLER (1963), history in flow deposits (e.g., GAWLICK et al. 2006b). DIERSCHE (1980). Geographic distribution: all over the Austroalpine domain. Lithology: black, green and red radiolarites to cherty Lateral units: several Middle to Late Jurassic red limestones limestones and cherty marls/shales. Detailed description (e.g., Klaus Formation, Steinmühl Formation, Micrite Ooid on the lithology, genesis and partly microfacies in DIERSCHE Formation, Agatha Limestone) on top of submarine highs. (1980) and GAWLICK & FRISCH (2003). In a lot of cases the The red limestones are partly also very rich in radiolarians. radiolarite (and associated cherty sediments) form the matrix Several red cherty limestones, which consist only of radio- of several mass-flow deposits (summarized in TOLLMANN larian wacke- to packstones, are today included in several 1976a, GAWLICK & FRISCH 2003). See other formations of the red limestone formations. These successions should be after Ruhpolding Radiolarite Group for details. The characteristic reinvestigation included in the Ruhpolding Formation. feature of the microfacies is the occurrence of radiolarian Remarks: The type section is not characteristic for the typical wackestones to packstones. Other organisms are very rare, radiolarite in the Austroalpine domain. Some other reference e.g., spicula, crinoids (Saccocoma), or filaments (for details sections should be designated (e.g., LACKSCHEWITZ et al. see DIERSCHE 1980, GAWLICK & FRISCH 2003). 1991). The onset of radiolarian-rich sediments with the Fossils: radiolarians (e.g., DIERSCHE 1980, LACKSCHEWITZ et typical microfacies of the Ruhpolding Formation starts in al. 1991, STEIGER & STEIGER 1994, SUZUKI & GAWLICK 2003a), several cases in the Bajocian (e.g., GAWLICK et al. 2007b, first investigations on the radiolarians were carried out by AUER et al. 2009, O´DOGHERTY et al. in review) and reaches RÜST (1885, 1898) (compare STEIGER 1995). the Early Tithonian (e.g., GAWLICK et al. 1999b, GAWLICK & Origin, facies: deep-water radiolarian ooze. For details see FRISCH 2003). So the onset of radiolarites is diachronous in DIERSCHE (1980), GAWLICK (2000) and GAWLICK & FRISCH the Austroalpine domain (Bajocian to Oxfordian onset) in (2003). Especially the palaeooceanography and the estima- respect to their different palaeotectonic position (newly ted depositional water depth of the Tethyan radiolarites is a formed submarine highs and basins). Typical radiolarites of long-lasting matter of speculations and controversial dis- the Ruhpolding Formation without resedimented material cussions (e.g., CORNELIUS 1951, GRUNAU 1965, DIERSCHE 1980, occur only in the Bavaric units (but compare “Kohlstatt JENKYNS & WINTERER 1982, BERNOULLI & JENKYNS 2009). The Schichten“ in section Chiemgau Series) and equivalents as maximum thickness of the Lammer basin fill GAWLICK (1996) well as in the Central Alpine Mesozoic units. All other oc- showed that the water depht cannot have exceeded 2000 currences are connected with resediments (compare Fig. 3). metres, excluding the contemporaneous basin subsidence. Following HUCKRIEDE (1959b) the younger radiolarite Therefore, for the (Bajocian/Bathonian to) Callovian to (around the Jurassic/Cretaceous boundary or lowermost Oxfordian radiolarites of the Austroalpine a water depht Cretaceous - HUCKRIEDE 1959b) should not be included in much less than 2000 metres is estimated (compare MCBRIDE the Ruhpolding Formation. & FOLK 1979 for Italian Jurassic radiolarites). The Kim- meridgian to Tithonian radiolarites were deposited probably in less water dephts as shown by the thickness of the Sillenkopf Formation prograding Plassen Carbonate Platform. The Kimmeridgian (Figs. 42-44, Fig. 47) part of the Plassen Formation does not exceed 300 metres (SCHLAGINTWEIT et al. 2003), then the basin was filled up. For Validity: valid (Sillenkopf-Formation), first description by this time slightly uplift can not be excluded. MISSONI et al. (2001a), defined by MISSONI et al. (2001a), Chronostratigraphic age: (Late) Bajocian to Early Tithonian revised by MISSONI & GAWLICK (in review). (summarized in GAWLICK 2000, GAWLICK & FRISCH 2003, SUZUKI Type area: northern rim of Steinernes Meer (mountain range), & GAWLICK 2003a, GAWLICK et al. 2007a, b). Diachronous east of the Königssee (lake) in the Berchtesgaden Calcare- onset and diachronous end with a transition to cherty ous Alps in Bavaria (Sillenkopf Basin fill in the type area, limestones of the Oberalm Formation, Ammergau Formati- for references see MISSONI et al. 2001a, GAWLICK & FRISCH on, Steinmühl Formation or Aptychus Limestone. 2003, MISSONI 2003). Biostratigraphy: Eucyrtidiellum unumaense zone to Cingu- Type section: ÖK 93 Bad Reichenhall or 1:25000 Hoher Göll, loturris cylindra zone (SUZUKI & GAWLICK 2003a), see chapter topographic map No. 8444 of Bavaria, Sillenkopf section. In 4 in this paper. the type section only characteristic parts of the formation Thickness: without breccias 5 to 100 metres. are exposed. Type section starts in late Early Kimmeridgian, Lithostratigraphically higher rank: Ruhpolding Radiolarite overlying the Alpine Haselgebirge. For the base of the Group. sedimentary sequence see section Abwärtsgraben (MISSONI Subdivision: no subdivision. et al. 2001a, MISSONI 2003) and the section Gotzen(tal) Underlying units (foot wall boundary): diachronous, (MISSONI 2003) in the National Park Berchtesgaden. possible are limestones of the following formations: Adnet Reference section(s): Abwärtsgraben section. ÖK 93 Bad Formation with a gap, Klaus Formation, Vils Limestone, Reichenhall. Chiemgau Series, Allgäu Formation. Derivation of name: Sillenköpfe in the Nationalpark Ber-

80 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 42: Characteristic microfacies of cherty sediments of the Sillenkopf Formation of the type locality in the southern Berchtesgaden Calcareous Alps (Tirolic units, Steinernes Meer mountain range). 1. Fine-grained dark-grey packstone with small micritic carbonate lithoclasts and recrystallized radiolaria, in parts bioturbated. Sample Ber 31/2. Width of photo: 1.4 cm. 2. Laminated dark-grey cherty limestone, radiolarian wackestone to packstone. Nearly all radiolaria are recrystallized and occur as calcite. Sample Ber 31/3. Width of photo: 1.4 cm. 3. Laminated dark-grey cherty limestone, radiolarian wackestone to packstone with a completely certified layer. Sample Ber 31/3c. Width of photo: 1.4 cm. 4. Fine-grained turbiditic layer intercalated in cherty sediments. Most clasts are parautochthonous material from the Lärchberg carbonate platform to the south. Sample Ber 31/4b. Width of photo: 1.4 cm. 5. Magnification of 4. Rare remnants of broken foraminifera occur beside dominating micrite clasts and frequent echinoderm fragments. Some components with a micritic envelope. Width of photo: 0.5 cm. 6. Marl-rich dark fine-grained packstone with carbonate clasts and recrystallized radiolaria. The lower right part shows complete chertification of the sediment, here all original sedimentary features are preserved. Sample Ber 31/3. Width of photo: 1.4 cm.

81 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

82 Journal of Alpine Geology, 50: 1-152, Wien 2009

chtesgaden (MISSONI et al. 2001). For details see “Geological Chronostratigraphic age: Late Oxfordian to Tithonian, based Map of Nationalpark Berchtesgaden“ - SCHWERD et al. on radiolarians and shallow-water organisms (e.g., MISSONI (1998), BRAUN (1998). et al. 2001a, O´DOGHERTY & GAWLICK 2008, MISSONI & Synonyms: in the type area originally mapped as radiolarite GAWLICK in review). (HAHN 1913, LEBLING et al. 1935, Ruhpolding Radiolarite - Biostratigraphy: radiolarians and shallow-water organisms, TRAUTH 1950). DIERSCHE (1980) and BRAUN (1998) mapped uppermost part of the Williriedellum dierschei subzone of the successions as Tauglboden Formation. the Zhamoidellum ovum zone to the ?Cinguloturris cylin- Lithology: grey cherty sediments with mass-flow deposits dra zone, according to the radiolarian zonation of SUZUKI & and allochthonous slides. Mostly bedded or laminated GAWLICK (2003a), see chapter 4 in this paper. The younger cherty limestones, radiolarites and cherty marls, often rich part of this formation is eroded in the type area. in radiolarians, partly with filaments and spicula. The Sillen- Thickness: around 100 metres in the type region with mass- kopf Formation contain mass-flow deposits with: 1) dolo- flow deposits, but without the Alpine Haselgebirge (see mites and limestones of the Pötschen Formation, Late section Sandlingalm Formation). As slides, mostly in the Triassic; 2) cherty sediments of the Ruhpolding Radiolarite vicinity of the Alpine Haselgebirge around or more than Group; 3) Kimmeridgian shallow-water carbonates of the 1000 metres. Lärchberg Formation; 4) Protoglobigerina-wackestones, Lithostratigraphically higher rank: Ruhpolding Radiolarite Klaus Formation; 5) carbonate-cemented sandstones; 6) Group. crystalline components; 7) salty-clayey mudstone, gypsum Subdivision: the lowermost reddish radiolarite to cherty (most probably Alpine Haselgebirge); 8) magmatic limestone is separated as Gotzen (Gotzental) Member after quartz (details in MISSONI et al. 2001a, MISSONI 2003, GAWLICK the Gotzen(tal)-Alm (MISSONI 2003, GAWLICK & FRISCH 2003). & FRISCH 2003, MISSONI & GAWLICK in review). Underlying units (foot wall boundary): partly Strubberg Fossils: radiolarians, spicula, resedimented shallow-water Formation, partly Sandlingalm Formation, partly direct on organisms (e.g., calcareous algae, benthic foraminifera, stro- an erosional surface (e.g., Dachstein Limestone, limestones matoporoids, corals) from the Plassen Carbonate Platform, of the Adnet and Klaus Formations). in the southern and central basin most probably from the Overlying units (hanging wall boundary): unknown in the Lärchberg Formation resp. the Lärchberg carbonate plat- central basin, mostly eroded. In the southern part of the form, in the northern part of the basin from the Plassen basin overlain by the prograding Lärchberg Formation, in Formation (details in MISSONI et al. 2001, MISSONI 2003, the northern part of the basin by different limestones of the GAWLICK & FRISCH 2003). prograding Plassen carbonate platform sensu stricto. Origin, facies: deep-water starved (radiolarite) basin between Geographic distribution: the Sillenkopf Formation stretches prograding shallow-water carbonate platforms of the Plassen from the Lofer/Unken area in the west to the area of Bad Carbonate Platform (Plassen Formation and Lärchberg For- Mitterndorf in the east (e.g., WEGERER et al. 2003, O´DOGHER- mation) (MISSONI & GAWLICK in review). TY & GAWLICK 2008).

Fig. 43: Characteristic microfacies of different components in the mass-flow deposits of the Sillenkopf Formation in the southern Berchtesgaden Calcareous Alps (Tirolic units, Steinernes Meer). Page 82. 1. Radiolarian wackestone to packstone erosively followed by a calciturbidite (packstone); most components of these allodapic layers consist of micrite. Sample Ber 105/12, Gotzen(tal)-Alm, Steinernes Meer (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 2. Graded calciturbidite with several older clasts of Pötschen Formation beside clasts from the Lärchberg carbonate platform. Sample Ber 31/4b, Sillenköpfe (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 3. Well-sorted calciturbidite (packstone). Beside the dominating clasts of the Lärchberg carbonate platform clasts of the Pötschen Formation and evaporitic clasts, most probably the Permian Alpine Haselgebirge, occur. Sample Ber 105/1b, Gotzen(tal) Alm, Steinernes Meer (Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 4. Breccia layer with a fine-laminated clast, in which several subangular extraclasts are floating. The clasts are fine-grained siliciclastics and partly gypsum clasts, most probably from the Permian Alpine Haselgebirge. Sample Ber 105/14b, Gotzen(tal)- Alm, Steinernes Meer (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 5. Mass-flow deposit with densely packed litho- and bioclasts, e.g., silicified oncoids and stromatoporoids beside encrusted clasts, most probably derived from the Permian Alpine Haselgebirge. Sample Ber 60/15, Abwärtsgraben section, Steinernes Meer (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 1.4 cm. 6. Mass-flow deposit with Labyrinthina mirabilis WEYNSCHENK, 1951 (L), Salpingoporella annulata CAROZZI, 1953 (S) and Pinnatiporidium aff. untersbergensis SCHLAGINTWEIT & DRAGASTAN, 2004 (P) from the Lärchberg carbonate platform. Beside these organisms, clasts of Pötschen Dolomite and encrusted evaporites (?Alpine Haselgebirge clasts) occur. Sample Ber 60/10, Abwärtsgraben section, Steinernes Meer (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 0.5 cm. 7. Benthic foraminifer Labyrinthina mirabilis WEYNSCHENK, 1951 with unrolled adult part. Sample A 847, Mount Gerhardstein west of Lofer (Tirolic units, Salzburg Calcareous Alps). Width of photo: 0.5 cm. 8. Benthonic foraminifer Kilianina? rahonensis FOURY & VINCENT, 1967 in a mixture of mostly undeterminable clasts of exotic character. Sample Ber 105/6c, Gotzen(tal)-Alm, Steinernes Meer (Tirolic units, Berchtesgaden Calcareous Alps). Width of photo: 0.5 cm. For details on microfacies see, e.g., MISSONI et al. (2001) and GAWLICK & FRISCH (2003). 83 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

84 Journal of Alpine Geology, 50: 1-152, Wien 2009

Lateral units: to the south transition to the Lärchberg For- Fossils: some foraminifera, rare ammonites, radiolarians, mation (prograding platform), to the north transition to the filaments (details in LEISCHNER 1959a, SCHWINGENSCHLÖGL Plassen Formation (prograding platform). In areas near the 1981, EHRENDORFER 1988, EBLI 1997). platforms a transition to cherty limestones without breccia Origin, facies: slightly condensed limestones on submarine horizons is frequent (Hochreith Schichten - PLÖCHINGER 1983, highs. KRISCHE et al. 2008). Chronostratigraphic age: characteristic level in the Oxfordian Remarks: description of the history and older references in to ?Early Kimmeridgian, not exact dated due to the scarcity GAWLICK & FRISCH (2003). of dateable organisms (EHRENDORFER 1988). Biostratigraphy: not defined. Thickness: several metres, in most cases 5-20 metres, in the Micrite Ooid Formation type area around 20 metres. (Fig. 25, Fig. 45) Lithostratigraphically higher rank: none. Subdivision: no subdivision. Validity: valid (Mikritooid-Formation), first description by Underlying units (foot wall boundary): ?hiatus, below Klaus LEISCHNER (1959a), in details by EHRENDORFER (1988); defined Formation. and formalized in this paper. Overlying units (hanging wall boundary): Steinmühl For- Type area: ÖK 69 Steyr-Land, Großraming/. mation. Type section: not designated. Possible sections are the sec- Geographic distribution: characteristic for the northern part tion 450 metres southeast of the farmer Schönlehner or the of the Bavaric units. old quarry in the Dachsgraben (gorge) in Upper Austria Lateral units: uninvestigated, but most probably Ruhpol- according to EHRENDORFER (1988). ding Formation. Reference section(s): not designated. Possibly the section Remarks: similar, but younger red limestones with typical 500 m westnorthwest of the village Winkel in the Pielachtal features of the Micrite Ooid Formation occur also in the (valley) described by SCHWINGENSCHLÖGL (1981). Agatha Formation (GAWLICK & SCHLAGINTWEIT 2009) around Derivation of name: after lithology and characteristic the Kimmeridgian/Tithonian boundary. microfacies (see EHRENDORFER 1988). Synonyms: none. Lithology: whitish to reddish and partly pale limestones Agatha Formation with ooids and oncoids, bedded to massive. Characteristic (Fig. 46, Fig. 47) lithological level between Klaus Formation and Steinmühl Limestone. For microfacies characteristics see LEISCHNER Validity: valid (Agathakalk, Agatha-Formation), first descri- (1959a), EHRENDORFER (1988), SCHWINGENSCHLÖGL (1981) (he bed by MOJSISCOVICS (1868: “Acanthicuskalk“) and NEUMAYR designated the Micrite Ooid Formation as equivalent of the (1873: “Schichten mit Aspidoceras acanthicum von St. Plassen Formation) and EBLI (1997). Characteristics are the Agatha“ = Agathakalk). See discussion in GAWLICK & micrite crusts, which surround each component (for genesis SCHLAGINTWEIT (2009). Needs some (few) revision, defined see e.g., HÖTZL 1966, SCHÄFFER & STEIGER 1986 - pelagic ooids, and formalized in this paper. EHRENDORFER 1988, EBLI 1997, GAWLICK & SCHLAGINTWEIT Type area: ÖK 96 Bad Ischl, central Northern Calcareous 2009). Probably cyano-ooids (EBLI 1997). Alps (Tirolic units).

Fig. 44: Characteristic microfacies of cherty sediments of the type locality of the Gotzen Member, Gotzen road to the Gotzen(tal)-Alm (Tirolic units, Steinernes Meer, Berchtesgaden Calcareous Alps). Page 84. 1. Laminated red to violet radiolarian wacke- to packstone with high carbonate and clay content. Most radiolaria are recrystallized and occur as calcite, parts of the rock are completely chertified. Sample Ber 55/16. Width of photo: 1.4 cm. 2. Laminated clay-rich violet packstone with fine-grained micritic carbonate clasts, some quartz clasts and radiolaria. Sample Ber 55/14-2. Width of photo: 1.4 cm. 3. Magnification of 2. Beside the dominating carbonate clasts (micrite clasts, rare echinoderm fragments) angular to subrounded quartz clasts are common. Width of photo: 0.5 cm. 4. Laminated red to violet cherty limestone with graded, fine-grained turbidite layer. The turbidite consists mainly of carbonate clasts, but also quartz clasts are relatively common. Black dots represent heavy minerals. Sample Ber 55/14. Width of photo: 1.4 cm. 5. Very fine-grained radiolaria turbidite. In the lower part a radiolarian packstone, partly chertified; in the upper part a radiolarian wackestone with decreasing radiolaria content. This sediment represents the type of low-density low-velocity turbidites. Sample Ber 24/14-1. Width of photo: 1.4 cm. 6. Magnification of 5, lower part. Clearly visible is the enormous amount of recrystallized radiolarians beside very small carbonate clasts. Black dots are mostly organic material. Width of photo: 0.5 cm. 7. Laminated red to violet cherty limestone, slightly bioturbated. The lighter layers consist of chertified radiolarian packstone, whereas the darker layers consist of a cherty limestone with less radiolaria. Most radiolaria are recrystallized and occur as calcite. Sample Ber 24/14-2. Width of photo: 1.4 cm. 8. Magnification of 7, bioturbated part. The bioturbated parts show enrichment of larger clasts or radiolaria. The pores between the clasts or radiolaria are filled with organic material. Sample Ber 24/14-2. Width of photo: 0.5 cm

85 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Type section: not designated, best occurrences are in the in the type region, but the overlying red crinoid-rich type area east of the settlement St. Agatha. Agatha Lime- limestones can reach some tens of metres, e.g., in the type stone occurs there at the base of Mount Hornkogel, south area east of the settlement St. Agatha. of the creek Zlambach (NEUMAYR 1873). These occurrences Lithostratigraphically higher rank: none. at the base of Mount Hornkogel are not useful to designate Subdivision: no subdivision. as official type section, because they are partly covered by Underlying units (foot wall boundary): in the type area cal- quaternary deposits, also the contacts to the underlying careous black radiolarites (mostly covered). In other cases radiolarite and the overlying prograding limestones of the several formations of the Ruhpolding Radiolarite Group Plassen Carbonate Platform are covered. (e.g., in the southern part of the central Northern Calcareous Reference section(s): not designated. Alps). Derivation of name: after the settlement St. Agatha, north Overlying units (hanging wall boundary): in the type area of the Hallstätter See (lake) south of the municipal Bad Oberalm Formation with Barmstein Limestone layers Goisern (Upper Austria). (GAWLICK & SCHLAGINTWEIT 2009). In several cases probably Synonyms: Acanthicuskalk, see also section Steinmühl Sillenkopf Formation or the prograding Lärchberg carbonate Formation. Discussion in GAWLICK & SCHLAGINTWEIT (2009). platform (e.g., in some areas of the southern part of the Lithology: red to brown, seldom greyish nodular limestones, central Northern Calcareous Alps). Probably also Rofan partly bedded, partly massive, often rich in cephalopods. Breccia (compare section Rofan Breccia). Often brecciated and with fissures (e.g., SCHÄFFER & STEI- Geographic distribution: should be probably restricted to GER 1986). the mélange areas of the Northern Calcareous Alps (central Fossils: ammonites (e.g., NEUMAYR 1871, 1873, MEDWENITSCH Northern Calcareous Alps, southern parts of western and 1958, TOLLMANN 1960). Partly rich in crinoids, with eastern Northern Calcareous Alps), not to use in the north- belemnites, brachiopods, partly rich in protoglobigerinids ern parts of the Northern Calcareous Alps as described by and other mostly calcareous foraminifera (e.g., LEISCHNER TOLLMANN (1976a). See also section Steinmühl Formation. 1961, TOLLMANN 1976a, GAWLICK & SCHLAGINTWEIT 2009), Lateral units: no transition to other formations is known; in seldom radiolarians. the southern central Northern Calcareous most probably to Origin, facies: condensed red limestones; occur partly on the Sillenkopf Formation, the Plassen or Lärchberg Forma- top of some submarine highs or in basinal areas with low tions, in the more northern parts (Trattberg Rise) to the sediment supply. For genesis of red condensed limestones Tauglboden Formation. compare sections Adnet Formation, Klaus Formation. Remarks: according to TOLLMANN (1976a) the Agatha Lime- Chronostratigraphic age: (late Early to early Late) Kimmer- stone is intercalated with the Oberalm Formation or the idgian to earliest Tithonian according to NEUMAYR (1873) Tressenstein Limestone. According to MOJSISOVICS (1905) and GEYER (1884). Diachronous to their occurrence (see the Agatha Limestone represented the condensed basinal remarks). facies of the Plassen Formation. Recent investigations Biostratigraphy: Aspidoceras acanthicum zone of early (GAWLICK & SCHLAGINTWEIT 2009) of the Tressenstein Lime- Tithonian (zones not exactly defined) is defined as youngest stone at the type locality (Mount Tressenstein) and at zone (type area). Oldest zone not defined. Mount Hornkogel with the underlying Agatha Limestones Thickness: few metres for the typical red nodular limestones show that several coarse-grained mass flows (Barmstein

Fig. 45: Characteristic microfacies of the Micrite Ooid Formation. Page 87. 1. Grainstone, which consists mainly of micro-oncoids. Several wackestone clasts occur, peloids are also common. Cement- filled fissures are frequent. Sample PM 73 (coll. HOLNSTEINER), Bläckenboden, Höhenberg south (Bavaric units, eastern Northern Calcareous Alps). Width of photo: 1.4 cm. 2. Magnification of 1. Fissure filling in different oncoid layers. Width of photo: 0.5 cm. 3. The micritic layers were interpreted by EHRENDORFER (1988) as of microbial origin (cyanobactria) based on JENKYNS (1972). The micrite oncoids cannot be interpreted as of shallow-water origin (compare 8). For genesis of these pelagic oncoids see FLÜGEL (2004). Sample PM 73 (coll. HOLNSTEINER), Bläckenboden, Höhenberg south (Bavaric units, eastern Northern Calcareous Alps). Width of photo: 0.5 cm. 4. Poorly sorted packstone with micrite oncoids; foraminifera, echinoderm fragments and bivalves also occur. Sample S 36 (coll. DUMFARTH), Hanslgraben southeast, north of Brandlucke west of the village Kleinreifling (Weyerer Bögen, Bavaric units, eastern Northern Calcareous Alps). Width of photo: 1.4 cm. 5. Magnification of 4. Echinoderm fragments, filaments and small gastropods were used as nuclei for the formation of the oncoids. Width of photo: 0.5 cm. 6. Sample S 36, other view. Grainstone with partly aggregated micrite oncoids. In one case a Saccocoma remnant is used as nucleus. Width of photo: 0.5 cm. 7. Condensed version of the micrite oncoid facies. Several components are surrounded by Fe/Mn-crusts. Packstone to grainstone. Sample S 176 (coll. DUMFARTH), Hochzöbel southeast of Brandlucke west of the village Kleinreifling (Weyerer Bögen, Bavaric units, eastern Northern Calcareous Alps). Width of photo: 1.4 cm. 8. Magnification of 7. Beside the micrite oncoids some echinoderm fragments and filaments occur, peloids are also common. The Fe/Mn-crust are typical for starved sedimention on submarine highs and not for a shallow-water environment. Width of photo: 0.5 cm.

86 Journal of Alpine Geology, 50: 1-152, Wien 2009

87 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

88 Journal of Alpine Geology, 50: 1-152, Wien 2009

Limestone) overlie abruptly the Agatha Limestone (Mount al. 1991). Tressenstein). In other cases the Agatha Limestone gradu- ally passes into the Oberalm Formation with intercalated Barmstein Limestone layers. In other localities, e.g., in the Plassen Group area of Bad Mitterndorf, Kimmeridgian red nodular lime- = Plassen Carbonate Platform stones (Agatha Limestone) overlie radiolarites of the Ruh- polding Radiolarite Group (SCHÖLLNBERGER 1973). Here the The Plassen Group = Plassen Carbonate Platform (Fig. 47) Agatha Limestone is partly directly overlain by mass-flow was introduced by SCHLAGINTWEIT & GAWLICK (2007) for dif- deposits similar to those of the Sillenkopf Formation ferent independent Late Jurassic to Early Cretaceous (O´DOGHERTY & GAWLICK 2008), representing the prograding shallow-water carbonate platforms in the Northern Lärchberg carbonate platform, and not Tressenstein Lime- Calcareous Alps, but not formalized. In the Plassen Group stone as mentionend by SCHÖLLNBERGER (1973). Partly all different formations with Late Jurassic to Early occurs on top of the Agatha Limestone (?Aspidoceras acan- Cretaceous in situ shallow-water carbonates, their pro- thicum zone) a brownish breccia horizon (SCHÖLLNBERGER grading sequences and the adjacent hemipelagic carbonates 1973, not Gscheigraben beds as mentionend by TOLLMANN in basins in between the shallow-water areas, are included. 1960, compare TRAUTH 1950, LEISCHNER 1959a). In all known cases the Plassen Carbonate Platform (Plassen and Lärchberg Formations) directly progrades over the Ruh- Plassen Formation polding Radiolarite Group (e.g., SCHLAGINTWEIT et al. 2003, (Fig. 47, Fig. 48) GAWLICK et al. 2004, AUER et al. 2009). The basal part of the prograding Plassen Carbonate Platform (e.g., in the Bad Validity: valid (Plassen-Formation), first mentioned by HAU- Mitterndorf area - SCHÖLLNBERGER 1973) starts with proxi- ER (1850: p. 42) as “Kalkstein des Plassen“, history sum- mal turbidites with shallow-water material in a shallowing- marized in TOLLMANN (1976a), revised by SCHLAGINTWEIT et upward manner. In fact these prograding sequences, which al. (2003, 2005). should represent also the Tressenstein Limestone, belong Type area: Salzkammergut area in the central Northern to the prograding Lärchberg carbonate platform. Further Calcareous Alps. revision of these sequences is needed. All red limestones Type section: ÖK 96 Bad Ischl, Mount Plassen. Reconstruc- of different Kimmeridgian to Early Tithonian age in the ted section (compare SCHLAGINTWEIT et al. 2003, 2005). mélange areas of the Northern Calcareous Alps (western, Reference section(s): not designated, in contrast to Mount central and eastern Northern Calcareous Alps) should be Plassen all other occurrences comprise only parts of the summarized under the term Agatha Formation. All other oc- Plassen Formation. currences (e.g., in the Bavaric units - see section Steinmühl Derivation of name: after Mount Plassen west of municipal Formation) should not be named Agatha Formation, they Hallstatt in the Salzkammergut area. belong to the Steinmühl Formation (compare PLÖCHINGER et Synonyms: Nerineenkalk (PETERS 1855), Stramberger Kalke

Fig. 46: Characteristic microfacies of the Agatha Formation. Page 88. 1. Red bioclastic packstone with ammonoids, foraminifera, echinoderm fragments, filaments, radiolaria and micrite clasts of the type locality. Sample D 721, Mount Hornkogel east of the municipal Bad Goisern, village St. Agatha (?Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 2. Magnification of 1. Several clasts show Fe/Mn-crusts, hardgrounds are common. Most organisms are broken. Width of photo: 0.5 cm. 3. Magnification of 1, other view. Crinoid-rich part of the Agatha Formation with Saccocoma remnants. Width of photo: 0.5 cm. 4. Red nodular limestone, originally a mud flow with filament-rich clasts, also radiolaria- or echinoderm-rich clasts are common. The matrix consists of a clay-rich micritic limestone with some recrystallized radiolaria and rare filaments. Sample D 695, Mount Hornkogel east of the municipal Bad Goisern (?Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 5. Layered red nodular limestone. The lower layer consists of a filament- and small ammonidea-rich wackestone with some micrite clasts (partly recrystallized), the following layer consists mainly of small shells. Here the first cementation is visible in form of calcite crystals in the surrounding of the shell, later filled by red micrite (compare Scheck Member of the Adnet Formation). The upper layer is an echinoderm-rich packstone. Sample D 657, Mount Tressenstein north of the town (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 6. Micritic oncoids in a recrystallized microsparitic matrix occur as another layer in the red nodular limestones of the Agatha Formation of Mount Tressenstein, sample D 657 north of the town Bad Aussee (Tirolic units, Salzkammergut area). Width of photo: 0.5 cm. 7. Beside red nodular pack- and wackestones partly allodapic grainstone layers with echinoderm fragments and several clasts with a micritic envelope occur. Synsedimentary fissures, filled with several generations of calcite cement, are typical. Sample D 656, Mount Tressenstein north of the town Bad Aussee (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 8. Red limestone with micritic ooids (“pseudo-ooids“). Compare this facies type with the Oxfordian Micrite Ooid Forma- tion. Sample D 662, Mount Tressenstein north of the town Bad Aussee (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 89

GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Rise) and increasing subsidence (compare S (compare subsidence increasing and Rise)

B

which led to breccia formation breccia to led which

G

A

& S &

according to S to according

carbonate platform sensu stricto in the central part and the Lärchberg carbonate platform in the south. These three platforms a platforms three These south. the in platform carbonate Lärchberg the and part central the in stricto sensu platform carbonate

Fig. 47: 47: Fig. Calcareous Northern the in known are evolution own their with platforms carbonate known Three the Alps: WolfgangseePlassen the north, the in platform carbonate

) Late Late ) Tithonian(M southeast the in uplift to due situation:

) Kimmeridgian to Early Tithonian situation: this time span was characterized by relative tectonic quiescence. The platform prograded platform The quiescence. tectonic relative by characterized was span time this situation: Tithonian Early to Kimmeridgian ) (e.g., basins radiolarite adjacent the over

AWLICK

CHLAGINTWEIT

et al. 2002, 2002, al. et S

CHLAGINTWEIT

in press). Contemporaneously the Lower Lower the Contemporaneously press). in margin continental passive Austroalpine affected was Ocean Penninic South the facing by

CHLAGINTWEIT

& G &

.

AWLICK

et al. 2005, G 2005, al. et

(2007).

CHLAGINTWEIT

AWLICK

& S &

& G &

CHLAGINTWEIT

ISSONI

AWLICK

& G &

2007, G 2007,

AWLICK

2006).

AWLICK

in review) the area to the northwest was characterized by the formation of normal faults (Trattberg faults normal of formation the by characterized was northwest the to area the review) in

& S &

CHLAGINTWEIT

2009). 2009). The Wolfgangsee(G time that at drowned platform carbonate

re summarized as Plassen Carbonate Platform Carbonate Plassen as summarized re

new extensional tectonics extensional new AWLICK

90 Journal of Alpine Geology, 50: 1-152, Wien 2009

(MOJSISOVICS 1868), Sandlingkalk (STUR 1871), Plassenkalk (see FENNINGER 1967), but also in their eastern part (e.g., sensu stricto (TRAUTH 1950). According to TOLLMANN (1976a) Mount Anninger). also Falkensteinkalk (AMPFERER 1918), Rofankorallenkalk Lateral units: unknown. (KÜHN 1935) and Seekarspitz Kalk (TRAUTH 1950) (see section Remarks: for facies evolution of the Plassen Formation at Ammergau Formation + Seekarspitz Limestone). its type locality see SCHLAGINTWEIT et al. (2003), for the micro- Lithology: mainly light-grey pure limestones (e.g., HÖLLER palaeontological content and biostratigraphic framework & WALITZI 1965, MOSHAMMER & LOBITZER 2000). Reefal, fore- see SCHLAGINTWEIT et al. (2005). reef and lagoonal carbonates (details in FENNINGER & HOL- ZER 1972, SCHLAGINTWEIT et al. 2003, 2005). At Mount Plassen, the whole section was reconstructed including microfacies Tressenstein Limestone analysis combined with biostratigraphic data (e.g., GAWLICK & SCHLAGINTWEIT 2006). Validity: invalid (Tressensteinkalk), mentioned by MOJSI- Fossils: the shallow-water limestones are rich in both, macro- SOVICS (1905: p. 43) for the first time as Tressensteinkalk and microfossils. Macrofossils include mainly stromatopo- (“… auf dem Tressenstein typisch entwickelt … “), a syno- roids (e.g., LEINFELDER et al. 2005) and other calcareous spon- nym of the Barmstein Limestone (GÜMBEL 1861). Revised by ges (e.g., chaetetids, sclerosponges), corals (HERITSCH 1921, GAWLICK & SCHLAGINTWEIT (2009). See section Oberalm For- FENNINGER & HÖTZL 1965, FENNINGER 1969, 1970, FENNINGER mation + Barmstein Limestone. et al. 1971, SCHLAGINTWEIT 2004, 2005, SCHLAGINTWEIT & Type area: ÖK 96 Bad Ischl, Mount Tressenstein 2 km north GAWLICK 2006). Microfossils include calcareous algae of the town Bad Aussee, south of the Altaussee (lake). Salz- (“porostromata“, dasycladales), benthic foraminifera and kammergut area (Styria). microproblematica as well as microbial crusts (FLÜGEL 1964, Type section: ÖK 96 Bad Ischl, Mount Tressenstein. FENNINGER & HÖTZL 1967, STEIGER 1980, STEIGER & WURM Reference section(s): not designated. 1980, RASSER & FENNINGER 2002b, SCHLAGINTWEIT et al. 2003, Derivation of name: after Mount Tressenstein near the 2005, SCHLAGINTWEIT & GAWLICK 2009a, b). municipal Altaussee. Origin, facies: mainly represented by shallow-water ramp Synonyms: none. and platform carbonates comprising both, high-energetic Lithology: mass flows, breccias and calciturbidites interca- (platform margin, outer platform) and low-energetic facies lated in wackestones of the Oberalm Formation (HÖTZL 1966, (inner platform). Furthermore, both the initial shallowing SCHLAGINTWEIT & EBLI 1999, GAWLICK & SCHLAGINTWEIT 2009). upward and the final drowning sequence contain platform- See section Oberalm Formation + Barmstein Limestone. slope lithologies with poor microfossil content. For isotope Fossils: corals, stromatoporoids (FENNINGER & HÖTZL 1965), studies see RASSER & FENNINGER (2002a). Subaerial influen- dasycladalean algae and benthic foraminifera (FENNINGER ces were discussed by FENNINGER (1968). & HÖTZL 1967, SCHLAGINTWEIT & EBLI 1999, GAWLICK & Chronostratigraphic age: Late Oxfordian/Kimmeridgian to SCHLAGINTWEIT 2009). late Early Berriasian (GAWLICK & SCHLAGINTWEIT 2006, AUER Origin, facies: slope-of-toe breccias and mass flows inter- et al. 2009). calated in hemipelagic radiolaria-calpionellid wacke- to Biostratigraphy: overlying calpionellid-bearing hemipelagic packstones. The resedimented shallow-water bioclasts are limestones show a diachronous ending of the Plassen For- deriving from the Plassen carbonate platform sensu stricto. mation: Late Berriasian at Mount Plassen (oblonga subzone See section Oberalm Formation + Barmstein Limestone. - GAWLICK & SCHLAGINTWEIT 2006), Late Tithonian at Mount Chronostratigraphic age: Late Tithonian (?p.p. Early Bürgl (= Mount Bürglstein) (intermedia subzone - GAWLICK Berriasian). The Kimmeridgian age reported by FENNINGER & SCHLAGINTWEIT in press). The oldest occurrence of resedi- & HÖTZL (1965), HÖTZL (1966) and BAUSCH & POLL (1984) ments of the Plassen Formation is known from the youngest cannot be verified. Williriedellum dierschei subzone of the Zhamoidellum Biostratigraphy: first calpionellids of the Crassicollaria ovum zone (AUER et al. 2009) according to the radiolarian zone appear in the middle part of the section (GAWLICK & zonation of SUZUKI & GAWLICK (2003a), see chapter 4 in this SCHLAGINTWEIT 2009). The top probably passes into the Early paper. For the Plassen Formation at the type locality a Berriasian. biostratigraphic zonation with benthic foraminifera is Thickness: up to several 100 metres. See section Oberalm established by SCHLAGINTWEIT et al. (2005). Formation + Barmstein Limestone. Thickness: most occurrences only expose parts of the Lithostratigraphically higher rank: Plassen Group. Plassen Formation (e.g., Mounts Krahstein, Rötelstein, Subdivision: no subdivision. Rettenstein). The most complete section is preserved at the Underlying units (foot wall boundary): at the type locality type locality Mount Plassen, where the Plassen Formation condensed reddish cephalopd limestones (“Agatha Lime- shows an estimated thickness of more than 1000 metres. stone“) of ?Kimmeridgian to Early Tithonian age. Lithostratigraphically higher rank: Plassen Group. Overlying units (hanging wall boundary): Schrambach For- Subdivision: no subdivision. mation, but not at the type locality (eroded). Underlying units (foot wall boundary): Sandlingalm Forma- Geographic distribution: formerly attributed to the central tion, Sillenkopf Formation, Tauglboden Formation. and eastern Northern Calcareous Alps. See section Ober- Overlying units (hanging wall boundary): calpionellid lime- alm Formation + Barmstein Limestone. stones of the Schrambach Formation (condensed variety). Lateral units: See section Oberalm Formation + Barmstein Geographic distribution: most occurrences in the central Limestone. part of the Northern Calcareous Alps, Salzkammergut area Remarks: see for history and discussion about the nomen-

91 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

92 Journal of Alpine Geology, 50: 1-152, Wien 2009

clature GAWLICK & SCHLAGINTWEIT (2009). See also section occurs only reduced; brackish influences towards the top Oberalm Formation + Barmstein Limestone. (DARGA & SCHLAGINTWEIT 1991, DYA 1992). The uppermost part (Loferer Beds sensu HAHN 1910) represents a coarsening- and shallowing-upward sequence (marly limestone to marly, Lärchberg Formation siliciclastic limestone, marl-breccia, conglomerate) with fi- (Fig. 47, Fig. 49) nal emersion (SCHLAGINTWEIT, GAWLICK & MISSONI un- published data). The coarse-grained final clastics designa- Validity: valid (Lärchberg-Formation), first description by ted as Lofer Beds were previously interpreted as basal FERNECK (1962: p. 42) as “Lärchberg-Schichten“, comprising transgressive series. Loferer Beds and Lerchkogel Limestone sensu HAHN (1910). Chronostratigraphic age: Kimmeridgian to Tithonian (?Early Needs some revision. Berriasian). Type area: ÖK 92 Lofer, north of the municipal Lofer. Biostratigraphy: biostratigraphic data only available from Type section: ÖK 92 Lofer, section on the Loferer Kalvari- assemblages of benthic foraminifera and dasycladalean enberg (FERNECK 1962). In the type section only the upper algae (DARGA & SCHLAGINTWEIT 1991, DYA 1992, SCHLAGIN- part of the formation is exposed. TWEIT & EBLI 2000, SCHLAGINTWEIT 2005). No data available Reference section(s): Reference sections were designated from underlying or overlying units. by DYA (1992) on Mounts Lärchberghörndl, Litzelkogel, Thickness: several 100 metres. Gerhardstein and Dietrichshorn; in these sections different Lithostratigraphically higher rank: Plassen Group. Lärchberg parts of the Lärchberg Formation are exposed. carbonate platform. Derivation of name: after Mount Lärchberghörndl, in the Subdivision: the former subdivision in the “basal Lofer- northwestern vicinity of Lofer (Salzburg). Facies“ (or Lofer Member) and an upper unit, the Lärchkogel Synonyms: “?obernorische(r), oolithische(r) Dachsteinkalk Limestone, cannot be sustained any longer. Both, the basal des Lerchkogeltyps“, Loferer Beds and Lerchkogel Lime- part with its transition to the Sillenkopf Formation and the stone (HAHN 1910). uppermost part with pronounced terrigeneous influx are Lithology: brownish marly limestones, white to yellowish similar in their lithology (but with different microfossil asso- limestones, (siliciclastic) marls, breccias, conglomerates on ciations, SCHLAGINTWEIT, GAWLICK & MISSONI unpublished the Loferer Kalvarienberg. data). This similarity is probably the reason for the misinter- Fossils: stromatoporoids, sometimes forming laterally per- pretation of the Lofer Member as a transgressive suc- sistent biostromal units (DARGA & SCHLAGINTWEIT 1991, cession on top of the Hallstatt Limestones. Milleporidium remesi STEINMANN, 1903), gastropods, dicera- Underlying units (foot wall boundary): Sillenkopf Formati- tids (SANDERS et al. 2007), corals are rare, calcareous algae on in proximal facies in the type area. (dasycladales, “porostromata“), benthic foraminifera and Overlying units (hanging wall boundary): eroded. microproblematica (DARGA & SCHLAGINTWEIT 1991, DYA 1992, Geographic distribution: seven single occurrences in the SCHLAGINTWEIT & EBLI 2000, SCHLAGINTWEIT 2005). area of the municipal Lofer: Mounts Lärchberghörndl Origin, facies: typical shallowing-upward succession with (inclusive Loferer Kalvarienberg), Litzelkogel, Gerhardstein, gradual transition from the underlying Sillenkopf Formati- Dietrichshorn, Gföllhörndl, Hochkranz and Rauchberg (see on. Mainly lagoonal facies, external platform reefal facies FERNECK 1962, DYA 1992). Remnants in the Salzkammergut

Fig. 48: Characteristic microfacies of the Plassen Formation. Page 92. 1. Fine peloidal packstone with debris of echinoids and small benthic foraminifera; slope facies of Kimmeridgian age. Sample Krah 133, Mount Krahstein east of the municipal Bad Mitterndorf (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 2. Boundstone with crustose sclerosponges, cement crusts and sponges (Sestrostomella? sp.) of Kimmeridgian age. Sample Rö 220, Mount Rettenstein near the village Ramsau (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 3. Grain- to rudstone with numerous tests of Labyrinthina mirabilis WEYNSCHENK, 1951; high-energy shoal facies. Kimmeridgian. Sample PL 9/2001, Mount Plassen west of the municipal Hallstatt (Hallstatt Mélange, Salzkammergut area). Width of photo: 0.5 cm. 4. Well washed-out packstone with oncoids and prostromate alga Garwoodia bardosi DRAGASTAN, 1985; open lagoon to back-reef. Tithonian. Sample A 3172, Mount Plassen west of the municipal Hallstatt (Hallstatt Mélange, Salzkammergut area). Width of photo: 0.5 cm. 5. Intraformational (erosive) layer with large intraclasts, cement crusts and geopetal fabrics; tidal flat facies. Late Kimmeridgian or Early Tithonian. Mount Plassen west of the municipal Hallstatt (Hallstatt Mélange, Salzkammergut area). Width of photo: 0.5 cm. 6. Wackestone with dasycladales Otternstella lemmensis (BERNIER, 1971); (O) and Salpingoporella annulata CAROZZI, 1953 (S); closed lagoon of Late Tithonian age. Sample Pl 17/2001, Mount Plassen west of municipal Hallstatt (Hallstatt Mélange, Salzkammergut area). Width of photo: 0.5 cm. 7. Dasycladale Neoteutloporella socialis (PRATURLON, 1963); reefal platform margin facies of Late Tithonian age. Sample MT 356b, Mount Trisselwand east of Grundlsee (lake) (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 8. Packstone with debris of echinoids and bryozoa, Crescentiella morronensis (CRESCENTI, 1969); slope facies of Early Berriasian age. Sample Pl 54, Mount Plassen (Hallstatt Mélange, Salzkammergut area). Width of photo: 0.5 cm. For details on microfacies see, e.g., SCHLAGINTWEIT et al. (2003, 2005). 93 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

94 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 49: Characteristic microfacies of the Lärchberg Formation (Lärchberg carbonate platform). Page 94. 1. Thrombolite with geopetal fabrics and numerous cross-sections of the serpulid Terebella lapilloides MUENSTER, 1833 in GOLDFUSS 1833; middle/deeper slope facies. Sample A 89, Mount Gerhardstein southwest of the municipal Lofer (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 2. Packstone with numerous sections of the dasycladale Steinmanniporella svilajaensis SOKAC & VELIC, 1976 (compare BUCUR et al. 2009). Sample DM 751, Mount Gerhardstein southwest of the municipal Lofer (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 3. Packstone with numerous thalli of Pinnatiporidium sp. Sheltered back-reef facies? Sample A 209, Mount Litzelkogel southwest of the municipal Lofer (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 4. Wackestone with numerous sections of the dasycladale Clypeina sulcata (ALTH, 1881) GRANIER & BRUN, 1991. Sample Die 141, Mount Dietrichshorn northwest of municipal Lofer (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 5. Layered packstone with numerous pisoids. Sample Lof 10-1, Mount Lärchberghörndl/Loferer Kalvarienberg west of the municipal Lofer (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 6. Large specimen of the benthic foraminifer Anchispirocyclina lusitanica (EGGER, 1902). Sample KOWG-B, Mount Lärchberghörndl/Loferer Kalvarienberg (Konradsweg) west of the municipal Lofer (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 7. Packstone with Anchispirocyclina lusitanica (EGGER, 1902) (A) and the dasycladale Zergabriella embergeri (BOUROULLEC & DELOFFRE, 1968) (Z). Sample Die 170b, Mount Dietrichshorn south of the municipal Unken (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 8. Packstone with silicified oncoids, extraclasts and plant remains. Sample Die 170e, Mount Dietrichshorn south of the municipal Unken (Tirolic units, Salzburg Calcareous Alps). Note equivalent silicified oncoids occur resedimented within the Sillenkopf Formation (compare Fig. 43: 6). Width of photo: 1.4 cm.

(see section Agatha Formation). succession is completely different, especially the final Lateral units: Sillenkopf Formation (see sections Sillenkopf evolution during the Berriasian (drowning of the Plassen Formation and Agatha Formation). Formation sensu stricto in the north, emersion of the Remarks: the type section Loferer Kalvarienberg (FERNECK Lärchberg Formation in the south) (e.g., GAWLICK & 1962) exposes only the topmost parts and the final coarsen- SCHLAGINTWEIT 2006, MISSONI & GAWLICK in review). ing-upward sequence (= Lofer Beds sensu HAHN 1910) of the formation. Differences to the Plassen Formation are either lithological (“Plassen Limestone“ pure carbonate Oberalm Formation + Barmstein Limestone without siliciclastic input or Triassic extraclasts) and (Fig. 47, Figs. 50-51) micropalaeontological with typical dasycladalean algae only known from the Lärchberg Formation (e.g., SCHLAGINTWEIT Validity: valid (Oberalm-Formation + Barmsteinkalke), first & EBLI 2000, SCHLAGINTWEIT 2005), other dasycladalean algae description by LIPOLD (1854: p. 595). Intercalated Barmstein only known from the Plassen Formation (SCHLAGINTWEIT et Limestones first described by GÜMBEL (1861: p. 487) as al. 2005). Moreover, the sedimentary evolution of the “weisslichen, Korallen-führenden Kalk von dem Barm-

Fig. 50: Characteristic microfacies of the Oberalm Formation. Page 96. 1. Radiolaria-rich packstone with fine-grained biodetritus, calpionellids and peloids beside some spicula. Most radiolaria and spicula are recrystallized to calcite. Sample D 451, Mount Tressenstein north of the town Bad Aussee (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 2. Magnification of 1. A typical feature of the Oberalm Formation are calpionellids beside radiolarians. Width of photo: 0.25 cm. 3. Very fine-grained bioturbated radiolaria wacke- to packstone. All radiolarians are recrystallized. Sample E 52, Mount Ewige Wand northeast of the municipal Bad Goisern (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 4. Magnification of 3. The mostly recrystallized radiolarians occur in a very fine-grained matrix of biodetritus. Width of photo: 0.5 cm. 5. Wacke- to packstone with broken filaments, radiolaria and some echinoderm fragments in a fine-grained matrix of biodetritus. Sample E 33, Mount Ewige Wand northeast of the municipal Bad Goisern (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 6. Radiolaria-bearing mudstone with some stylolites. All radiolaria are recrystallized. Sample B 22, Mount west of the town Hallein (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 7. Fine-grained biodetritus packstone with an intercalation of coarser-grained allodapic material. Radiolaria are dominating beside some filaments, some large crinoid fragments and shallow-water debris. Sample B 78, Mount Barmsteine west of the town Hallein (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 8. Laminated packstone with filaments and recrystallized radiolaria beside very fine-grained biodetritus. The lower layer is enriched in radiolaria and calpionellids, the upper layer is enriched in filaments and fine-grained biodetritus from shallow- water areas. Sample D 121, Mount Höherstein northwest of the municipal Altaussee (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 95 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

96 Journal of Alpine Geology, 50: 1-152, Wien 2009

97 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Fig. 51: Characteristic microfacies of the Barmstein Limestone. Page 97. 1-2. Packstone (component in a mass-flow deposit) with remains of stromatoporoids and reworked clasts of the slope, platform margin and closed lagoonal facies. Samples B 75 and B 82, Mount Barmsteine west of the town Hallein (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 3. Fine-grained calciturbidite (packstone) with debris of echinoids. Sample E 193-1, Mount Jochwand north of the municipal Bad Goisern (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 4. Medium-grained calciturbidite (packstone). Sample E 797, Mount Ewige Wand northeast of the municipal Bad Goisern (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 5. Packstone (mass-flow deposit) with clasts of the Plassen Carbonate Platform (different facies realm from lagoonal areas to reefal areas, slope facies dominating). Sample E 219-2, Mount Jochwand northwest of the municipal Bad Goisern (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 6. Detail of a mass flow with attaching clasts of high- and low-energetic facies of the Plassen Carbonate Platform. Sample B 84, Mount Barmsteine west of the town Hallein (Tirolic units, Salzburg Calcareous Alps). Width of photo: 0.5 cm. 7. Benthonic foraminifer Pseudocyclammina lituus (YOKOYAMA, 1890). Sample E 797, Mount Ewige Wand northeast of the municipal Bad Goisern (Tirolic units, Salzkammergut area). Width of photo: 0.25 cm. 8. Large dasycladale Selliporella neocomiensis (RADOICIC, 1975 none 1963). Sample B 125, Mount Barmsteine west of the town Hallein (Salzburg Calcareous Alps). Width of photo: 0.5 cm. For details on microfacies see, e.g., FENNINGER & HOLZER (1972), STEIGER (1981, 1992), GAWLICK et al. (2005, 2007b). stein“ and “Barmsteinkalk“ (op. cit., p. 492). History in TOLL- GER 1953, TOLLMANN 1976a). For an alternative view of the MANN (1976a). Detailed investigations in STEIGER (1981). bedding see SCHÜTZ & HÜSSNER (1997). Revised and defined by GAWLICK et al. (2005). Barmstein Limestone: coarse- to fine-grained reefal debris, Type area: ÖK 94 Hallein, Salzburg Calcareous Alps and partly with older components (e.g., PLÖCHINGER 1974, 1976, Salzkammergut area. 1984, STEIGER 1981, GAWLICK et al. 2005, SCHLAGINTWEIT & Type section: ÖK 94 Hallein; for the Oberalm Formation GAWLICK 2007). Oberalm successions without intercalated quarry “Adneter Riedel“ near the village Oberalm (old quarry Barmstein Limestone and Aptychus Limestone are known beside the new road cut - compare SCHLAGER 1969), 12 km as Maiolica in other areas in the Tethyan realm (WIECZOREK southsoutheast of Salzburg for the Oberalm Formation; for 1988). the Barmstein Limestone: Kleiner and Grosser Barmstein, 1 Fossils: Hemipelagic limestones of the Oberalm Formation: km northwest of the town Hallein. calpionellids, radiolarians (FLÜGEL & MEIXNER 1972, HOLZER Reference section(s): not designated. 1980; for details and radiolarian zonation see STEIGER 1992), Derivation of name: ÖK 94 Hallein, village Oberalm near microscleres (MOSTLER & BALOGH 1994), aptychi (e.g., ZAP- Hallein for the Oberalm Formation and Mount Barmsteine FE 1963, TOLLMANN 1976a), rarely trace fossils (LOBITZER et west of Hallein for the Barmstein Limestone. al. 1994) and holothurians (MOSTLER 1996a). Barmstein Synonyms: Wurzen Limestone (“Wurzener Kalk“) of Limestone: dominating stromatoporoids (FENNINGER 1972, PLÖCHINGER & PREY (1968), Tressenstein Limestone, Retten- STEIGER 1981), rare corals, benthic foraminifera and bach Limestone (MOJSISCOVICS 1905, TRAUTH 1950, FENNINGER calcareous algae (STEIGER 1981, GAWLICK et al. 2005, 2007b, & HOLZER 1972). SCHLAGINTWEIT et al. 2004, SCHLAGINTWEIT & GAWLICK 2006). Lithology: Oberalm Formation: well-bedded grey limestones Origin, facies: hemipelagic limestones (Oberalm Formation) (bed-thickness mostly between 5-10 cm, but up to 70 cm), with mass flows of shallow-water origin (Barmstein Lime- often with dark-grey chert layers and nodules (see SCHLA- stone - GAWLICK et al. 2005, revision of the type locality).

Fig. 52: Characteristic microfacies of the Rofan Breccia + Seekarspitz Limestone in the Sonnwend Mountains (type area) (Tirolic units, western Northern Calcareous Alps). Page 99. 1. Mass-flow deposit with closely packed lithoclasts of Late Jurassic age: reddish filament packstone and “protoglobigerinid“ wacke- to packstone. Sample RF 11-1. Width of photo: 1.4 cm. 2. Mass flow with different lithoclasts, e.g., Late Triassic well-washed-out packstone with trocholinids, involutinids, Triasina hantkeni MAJZON, 1954 (left), chertified components and some undeterminable clasts. Sample RF 17. Width of photo: 1.4 cm. 3. Clast within a mass flow: Late Triassic packstone with trocholinids, involutinids. Sample RF 2-01. Width of photo: 0.5 cm. 4. Mass flow with different lithoclasts and single bioclasts of Late Jurassic age, e.g., lituolid foraminifera. Sample MRF 3. Width of photo: 1.4 cm. 5. Coarse-grained calciturbidite with Late Jurassic components (ooids) and bioclasts of shallow-water origin (nearby shallow-water platform). Sample RF 41. Width of photo: 1.4 cm. 6. Fine-grained calciturbidite (packstone); inset shows benthic foraminifer Protopeneroplis striata WEYNSCHENK, 1950, characteristic for the high-energy platform margin facies of the Plassen Carbonate Platform. Sample RF 42. Width of photo: 1.4 cm. 7. Coarse-grained calciturbidite with remains of dasycladalean algae and benthic foraminifer Labyrinthina mirabilis WEYNSCHENK, 1951 (L). Sample RF 56. Width of photo: 0.5 cm. 8. Coarse-grained calciturbidite with benthic foraminifer Lituola? baculiformis SCHLAGINTWEIT & GAWLICK, 2009b, characteristic for reefal margin facies of the Plassen Carbonate Platform. Sample RF 57 1. Width of photo: 0.25 cm. 98 Journal of Alpine Geology, 50: 1-152, Wien 2009

99 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Compare also FLÜGEL & PÖLSLER (1965), FENNINGER & HÖTZL A similar sedimentary sequence with radiolarite at the base, (1965), FENNINGER & HOLZER (1972), STEIGER (1981), Herr- following Oberalm Formation with intercalated Barmstein mann (1990) and FLÜGEL (2004). Limestones is described by SCHWINGENSCHLÖGL (1981) from Chronostratigraphic age: Late Tithonian (Crassicollaria cal- the Ultra-Helvetic Zone north of the settlement Kirchberg/ pionellid zone) to Early Berriasian (Calpionella calpionellid Pielach at the northern edge of the eastern Northern zone). For discussion see BOOROVÁ et al. (1999). Calcareous Alps. This occurrence in the Klippen Belt is Biostratigraphy: Crassicollaria calpionellid zone to Calpio- enigmatic and must be revisited. nella calpionellid zone. Thickness: up to 700 metres in the type region. Lithostratigraphically higher rank: Plassen Group. Ammergau Formation + Seekarspitz Limestone Subdivision: no subdivision. (Fig. 47, Figs. 52-54) Underlying units (foot wall boundary): Tauglboden Forma- tion. Validity: valid (Ammergau-Formation + Seekarspitz Kalk), Overlying units (hanging wall boundary): Schrambach For- first description by SCHAFHÄUTL (1846: “Ammergauer Wetz- mation. stein-Schichten“ - compare TRAUTH 1950), for history and Geographic distribution: in the central Northern Calcareous definition see TOLLMANN (1976a), but also FENNINGER & Alps, south and southeast of Salzburg (see FENNINGER 1967: HOLZER (1972), needs some revision. Seekarspitz Kalk Fig. 1, FENNINGER & HOLZER 1972, TOLLMANN 1976a), probab- introduced by TRAUTH (1950). Some modern investigations ly also in the eastern Northern Calcareous Alps. were carried out by SCHÜTZ (1979), KOCH & STENGEL- Lateral units: Plassen Formation. RUTKOWSKI (1959) and MOHTAT-AGHAI (1999). Remarks: the Oberalm Formation with the intercalated Type area: Ammergau Formation: ÖK 50 map sheet 86 Barmstein Limestone layers is restricted to the geographic Ammerwald, area around the village Ammergau (Bavaria) distribution of the Tauglboden Basin and its southern rim, for the distal part of the Ammergau Formation. Seekarspitz the collapsing Trattberg Rise (GAWLICK & SCHLAGINTWEIT Limestone: ÖK 119 Schwaz. Occur widespread in the 2009, MISSONI & GAWLICK in review). Due to tectonic events northernmost Tirolic and Bavaric units of the western and around the Early/Late Tithonian boundary also the northern eastern Northern Calcareous Alps, but described often as part of the Trattberg Rise becomes at that time part of this other formations (e.g., STEINER 1968, NAGEL et al. 1976, basin. Other similar well-bedded but older (Kimmeridgian SCHWINGENSCHLÖGEL 1981). to Early Tithonian) cherty limestones in the Salzkammergut Type section: the type section of the Ammergau Formation region (e.g., Mount Loser - BAUSCH & POLL 1984, RASSER & is located at the Ammergau area (Austrian/German border), SANDERS 2003 and LUKENEDER et al. 2003 = p.p. Saccocoma the type section of the Seekarspitz Limestone is on the Limestone; Mount Sandling - GAWLICK et al. 2007b = p.p. slope of Mount Seekarlspitze in the Rofan Mountains. Saccocoma Limestone) or in the western Northern Reference section(s): reference sections of the distal part Calcareous Alps (e.g., Rofan Mountains - WÄCHTER 1987) of the Ammergau Formation are in the area around the Te- must be partly revised and belong to other formations (e.g., gernsee (lake) (Bavaria). A desribed succession exists from Ammergau Formation in the western Northern Calcareous the Tiefenbach estuary, east of the lake Tegernsee Alps, Rofan; see section Ammergau Formation + Seekar- (SCHAFHÄUTL 1846). For Seekarspitz Limestone see WÄHNER spitz Limestone). The time and facies equivalent Aptychus & SPENGLER (1935), TRAUTH (1950) and WÄCHTER (1987). Limestone, partly also with some shallow-water resediments Derivation of name: after the Ammergau region in southern (therefore not Aptychus Limestone, compare sections Bavaria and Seekar(l)spitze in the Sonnwend (Rofan) Aptychus Limestone and Biancone), should be an probably Mountains (Tyrol). own member in the Ammergau Formation, because the Synonyms: see TOLLMANN (1976a). Very often the Aptychus underlying sediments differ completely from the type area Limestone is seen as a synonym for the Ammergau Forma- of the Oberalm Formation. tion, but the Aptychus Limestone is free of allodapic

Fig. 53: Characteristic microfacies of the Ammergau Formation + Seekarspitz Limestone overlying the Obersee Breccia in the Lunz area (Bavaric units according to TOLLMANN 1976b, but this part of the Lunzer nappe should be part of the Tirolic units; eastern Northern Calcareous Alps). Page 101. 1. Mass flow with different lithoclasts, echinoid debris and skeletal remains of a siliceous sponge. Sample A 3592-1. Width of photo: 1.4 cm. 2. Mass flow with different lithoclasts, e.g. well washed-out packstone with echinoid remains (upper part) and bioclasts, e.g., stromatoporoid skeletons. Sample A 3606-1. Width of photo: 0.5 cm. 3. Large clast of a packstone consisting of tightly packed microbial peloids (compare FLÜGEL 2004) with partly clotted fabric. Sample A 3595-1. Width of photo: 0.5 cm. 4. Mass flow (?reef-slope) with closely packed bioclasts, Crescentiella morronensis (CRESCENTI, 1969) (compare SENOWBARI- DARYAN et al. 2008), echinoid debris and Labyrinthina mirabilis WEYNSCHENK, 1951. Sample A 3609-1. Width of photo: 0.5 cm. 5. Longitudinal-tangential section of a dasycladalean alga (? Salpingoporella sp.) with micritic crust. Sample A 3606. Width of photo: 0.5 cm. 6. Tangential section of Labyrinthina mirabilis WEYNSCHENK, 1951 beside an echinoderm fragment. Sample A 3592-1. Width of photo: 0.5 cm. 100 Journal of Alpine Geology, 50: 1-152, Wien 2009

shallow-water material (e.g., TOLLMANN 1976a, 1985). In fact Fossils: often lamellaptychi from the upper part of the suc- the Aptychus Limestone represents a cleary different litho- cession (Lamellaptychus, Punctaptychus and Laevapty- logy, as well as the Biancone (MILLER 1963). The Hinterriß chus, pygopids - FUCHS 1878), rare ammonites (Phylloceras Series as well as the Gscheigraben Series should belong to and Perisphinctes), belemnites, rhynchoteuthids, laevapty- the Seekarspitz Limestone and not to the Barmstein Lime- chi, punctaptychi (TRAUTH 1938, DURAND-DELGA & stone, as supposed by HOLZER (1978). For the Seekarspitz GASIOROWSKI 1970). Calpionellids occur in the upper part of Limestone the term Rofankorallenkalk is also a synonym. the succession (see sections Aptychus Limestone, Bian- Lithology: mostly cm- to dm-bedded dark-grey to light-grey cone), and fragments of crinoids (Saccocoma) are most fre- micritic, cherty limestones with some marl intercalations (e.g., quent in microfossil samples (KRISTAN-TOLLMANN 1962a, KOCKEL et al. 1931), in the proximal part with coarse grained FENNINGER & HOLZER 1972). Radiolarians and filaments are shallow-water resediments, in the more basinal part with common. In the intercalated Seekarspitz Limestone occur dm-thick allodapic limestones. Partly with chert nodules resedimented corals (see KÜHN 1935), and in some com- and chert layers in the basinal part of the succession, here ponents of the mass flows exist benthic foraminifera: Proto- also bioturbated and more dark-grey. peneroplis striata WEYNSCHENK, 1950 and Labyrinthina

101 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

mirabilis WEYNSCHENK, 1951 (see WEYNSCHENK 1950, 1951), Geographic distribution: Bavaric units in sense of TOLL- besides other shallow-water organisms. MANN (1976b) (HOLZER 1968, TOLLMANN 1976a). Origin, facies: formerly the Ammergau Formation was Remarks: see sections Rofan Breccia, Obersee Breccia, interpreted to be deposited in water depths down to 2000- Plassen Formation, Oberalm Formation. The upper part of 4000 metres (FUCHS 1883, HAHN 1914, TOLLMANN 1976a). In the Ammergau Formation can be distinguished in lithology fact it is a basinal, hemipelagic limestone (Ammergau For- from the main, older part by its lithology. The typical Ammer- mation) with mass flows of shallow-water origin (Seekar- gau Formation occurs in the interval Kimmeridgian to early spitz Limestone) and therefore similar to the Oberalm For- Late Tithonian and contains - in the proximal parts of the mation with its intercalated Barmstein Limestone, but older. basin - shallow-water debris (compare NAGEL et al. 1976), Chronostratigraphic age: early/middle Kimmeridgian to early the upper part consist of the typical Aptychus Limestone Late Tithonian. In moment several authors give an age range or Biancone, completely free of shallow-water influence. of Kimmeridgian to Berriasian for the total Ammergau For- But also more basinward cherty limestones of the Ammer- mation. But the Aptychus Limestone or Biancone should gau Formation are practically free of shallow-water debris, separated as own formations, therefore the age range is but more dark-grey and cherty as the overlying Aptychus early/middle Kimmeridgian to early Late Tithonian. Limestone. There exist some confusion about the use of Biostratigraphy: not defined. the term Ammergau Formation (see TRAUTH 1950, ORTNER et Thickness: up to 800 metres in the inner parts of the western al. 2008). E.g., ORTNER et al. (2008) use the term Ammergau Northern Calcareous Alps (e.g., ULRICH 1960), near Achensee Formation for parts of the Tauglboden Formation. Compare (lake) 1000 metres (QUENSTEDT 1951), in the Lechtaldecke also Gscheigraben Breccia (see section Tarntal Breccia). (nappe) from 30-800 metres (FENNINGER 1972), 50-100 metres in the northernmost parts of the Northern Calcareous Alps. Can be reduced on submarine highs, e.g., in the Arrach Saccocoma Limestone quarry in Lower Austria 5.3 metres, but this succession is (Fig. 47, Fig. 55) better designated as red Calpionella Limestone. Thickness in the eastern Northern Calcareous Alps not defined, but The reddish condensed variations of the Saccocoma Lime- several tens of metres up to 100 metres. stone partly belong to the Steinmühl Formation, the grey Lithostratigraphically higher rank: Plassen Group. variety is so far not integrated in a formation. The terms Lithostratigraphic subdivision: see TOLLMANN (1976a) for a Rettenbach Limestone (e.g., LEISCHNER 1959a, b. FENNINGER possible subdivision. & HOLZER 1971, 1972, discussion in SCHÖLLNBERGER 1967, Underlying units (foot wall boundary): Ruhpolding Forma- TOLLMANN 1976a) or “Wechselfarbiger Oberalmerkalk“ tion, Rofan Breccia, Obersee Breccia. (according to PLÖCHINGER 1964) for the Saccocoma Lime- Overlying units: the Ammergau Formation sensu stricto is stone near the northern edge of the Tauglboden Basin overlain by the Aptychus Limestone or the Biancone, if describes only a very specific type of the Saccocoma Lime- both successions are included in the Ammergau Formati- stone. Very often the Saccocoma Limestone, especially the on, the overlying formation is than the Schrambach Forma- thick successions of bedded, partly cherty varieties (e.g., tion (see above). Mount Loser, Mount Sandling - FENNINGER & HOLZER 1972, Lateral units: Plassen Formation (for details see section TOLLMANN 1976a, 1985) were wrongly included into the Plassen Formation) or red condensed limestones (Steinmühl Oberalm Formation (compare TOLLMANN 1976a, LUKENEDER Formation) (see section Steinmühl Formation). et al. 2003).

Fig. 54: Characteristic microfacies of the Ammergau Formation. Page 103. 1. Very fine-grained, slightly bioturbated dark-grey wackestone. Sample TH 2a, Thiersee syncline (Bavaric units, western Northern Calcareous Alps). Width of photo: 1.4 cm. 2. Magnification of 1. Very fine-grained biodetritus from shallow-water areas dominated beside rare radiolaria and some filaments. Black material is pyrite. Width of photo: 0.5 cm. 3. Coarse-grained, well-sorted allodapic limestone layer intercalated in the fine-grained wackestones of 1. Most clasts are angular micrite, but broken foraminifera and echinoderm fragments are also common. Sample TH 1, Thiersee syncline (Bavaric units, western Northern Calcareous Alps). Width of photo: 1.4 cm. 4. Magnification of 3. The components in this grainestone show partly micritic envelopes, small foraminifera are common, filaments are rare. Width of photo: 0.5 cm. 5. Radiolaria-rich very fine-grained wacke- to packstone with some broken filaments. All radiolaria are recrystallized and occur as calcite. Sample TH 2b, Thiersee syncline (Bavaric units, western Northern Calcareous Alps). Width of photo: 1.4 cm. 6. Magnification of 5. The matrix consists of very fine-grained biodetritus, beside the recrystallized radiolarians some filaments and a recrystallized foraminifera are visible. Width of photo: 0.5 cm. 7. On top of a fine-grained packstone, rich in spicula and radiolaria, a coarser-grained and well sorted allodapic layer with graded bedding is visible. The allodapic layer consists of shallow-water debris beside echinoderm fragments. Sample MRF 16, Rofan Mountains (Tirolic units, western Northern Calcareous Alps). Width of photo: 1.4 cm. 8. Fine-grained wacke- to packstone, rich in recrystallized radiolaria, some filaments and some spicula. Partly chertified (light-grey cherty layers and nodules). Sample MRF 21, Rofan Mountains (Tirolic units, western Northern Calcareous Alps). Width of photo: 1.4 cm. 102 Journal of Alpine Geology, 50: 1-152, Wien 2009

103 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

104 Journal of Alpine Geology, 50: 1-152, Wien 2009

Grey, relatively condensed varieties were very often subsu- should also not be used for Late Berriasian red limestones med into the overlying or underlying successions (e.g., in (e.g., LUKENEDER 2004, LUKENEDER & REHÁKOVÁ 2004). The the Bavaric units and the Drau Range). To avoid too many term Tegernsee Limestone has a long tradition (since SCHAF- different lithostratigraphic names, a useful solution should HÄUTL 1846) and more or less described the characteristic be to formalize the Saccocoma Limestone Formation after features of the Steinmühl Formation in the new definition of revision. For palaeoecological questions see, e.g., KEUPP & TOLLMANN (1976a), but it is restricted to a condensed version MATYSZ-KIEWICZ (1997). Occurs widespread in the Northern of the Saccocoma Limestone (compare FLÜGEL 1967). Calcare-ous Alps and in the Drau Range (e.g., KRISTAN-TOLL- Interestingly, TOLLMANN (1976a) used the Arrach quarry for MANN 1962a). the new definition of the lithology of the Tegernsee Lime- stone, the type locality of the Steinmühl Formation. This is another reason to avoid the term Tegernsee Limestone. Steinmühl Formation Further discussion of several ideas in LAUER (1968, 1970). (Fig. 47, Fig. 56) Lithology: mostly reddish, partly nodular limestones. In most cases wackestones to packstones rich in Saccocoma, Validity: valid (Steinmühl-Formation). Needs some revision. but partly also rich in echinoderms. For a detailed descrip- The term “Steinmühlkalke“ was introduced by TRAUTH tion of the lithology see FLÜGEL (1967) and FENNINGER & (1950) for Middle to Late Jurassic red condensed limestones HOLZER (1972). in the Austroalpine domain (compare TRAUTH 1954). The Fossils: rarely ammonoids, rich in Saccocoma and echino- type locality was completely revised by FLÜGEL (1967). derms, partly with foraminifera, Globochaete, filaments and Defined by TOLLMANN (1976a). some ostracods (compare FLÜGEL 1967, HOLZER 1968, Type area: northern Bavaric units. FENNINGER & FLÜGEL 1972). Type section: ÖK 70 Waidhofen/Ybbs. Arrach quarry east Origin, facies: hemipelagic limestones, formed widespread of the small village Steinmühle east of the municipal on top of structural/morphological highs with slow sedimen- Waidhofen/Ybbs. For details see TRAUTH (1950, 1954) and tation rates. Normally with several transitions to the basinal FLÜGEL (1967). In contrast to TRAUTH (1950) and FLÜGEL facies (e.g., HUCKRIEDE 1959b, KOCH & STENGEL-RUTKOWSKI (1967) the term Steinmühl Formation is restricted to the ?Late 1959, FENNINGER & HOLZER 1972). Oxfordian to Tithonian part of the section (TRAUTH 1954). Chronostratigraphic age: ?Late Oxfordian to Late Tithonian The Middle Jurassic filament limestone belongs to the Klaus (compare FLÜGEL 1967, FENNINGER & HOLZER 1972). Formation (see section Klaus Formation). The Oxfordian Biostratigraphy: not defined. radiolarian wackestones belong to the Ruhpolding Forma- Thickness: at the type-locality 10.6 metres (FLÜGEL 1967), tion (see section Ruhpolding Formation; compare TOLL- normally between 5-20 metres, up to 100 metres (ZACHER MANN 1976a). 1966). Reference section(s): not designated. Lithostratigraphic subdivision: none. Derivation of name(s): after small village Steinmühle east of Underlying units (foot wall boundary): cherty limestones municipal Waidhofen/Ybbs (Lower Austria). of the Ruhpolding Formation (Oxfordian). Synonyms: See discussion in TRAUTH (1954). Mühlberg Overlying units (hanging wall boundary): reddish calpio- Limestone (TRAUTH 1921), see detailed description of the nellid Limestone (Late Tithonian to Berriasian - Haselberg type section in FENNINGER & HOLZER (1972). In contrast to Limestone of STOTTER 1849, description and discussion in FENNINGER & HOLZER (1972), TOLLMANN (1976a) subdivided TOLLMANN 1976a) or Biancone (Late Tithonian to Berriasian). Steinmühl Limestone and Mühlberg Limestone. Due to the Geographic distribution: Bavaric units of the Northern restriction of the definition of the term Steinmühl Formation Calcareous Alps and in the Drau Range (for discussion and both types are equivalent. The term Steinmühl Formation references see TOLLMANN 1976a, CSÁSZÁR et al. 2001).

Fig. 55: Characteristic microfacies of the Saccocoma Limestone. Page 104. 1. Pyrite-rich Saccocoma packstone with peloids and micrite clasts. Most Saccocoma remnants are completely broken, rarely occur better preserved pieces. Sample HR 88, Mount Krahstein east of the municipal Bad Mitterndorf (Tirolic units, Salzkammergut area). Width of photo: 0.5 cm. 2. Saccocoma packstone, relatively coarse-grained and rich in Saccocoma remnants. Sample D 166, Mount Sandling northwest of the municipal Altaussee (Hallstatt Mélange, Salzkammergut area). Width of photo: 1.4 cm. 3. Fine-grained Saccocoma packstone, rich in filaments and fine-grained biodetritus. Sample D 747, Mount Sandling northwest of the municipal Altaussee (Hallstatt Mélange, Salzkammergut area). Width of photo: 1.4 cm. 4. Magnification of 3. Beside Saccocoma some recrystallized radiolarians are common. Width of photo: 0.5 cm. 5. Fine-grained Saccocoma wacke- to packstone, rich in fine-grained biodetritus. Also recrystallized radiolaria and some filaments are common. Sample A 3417, Mount Loser north of the municipal Altaussee (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 6. Magnification of 5. Very well preserved Saccocoma remnants occur in a fine-grained matrix of biodetritus, mostly micrite clasts, but also some broken foraminifera. Width of photo: 0.25 cm. 7. Saccocoma-bearing wackestone with filaments, ecinoderm fragments, recrystallized radiolarians. Sample D 1045, Retten- bach valley near the town Bad Ischl (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm. 8. Magnification of 7. Clearly visible is the good preservation of Saccocoma remnants in the micritic matrix, rich in filaments and radiolaria. Width of photo: 0.5 cm.

105 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

106 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 56: Characteristic microfacies of the Steinmühl Formation. Page 106. 1. Ammonoid-rich wackestone with filaments and an aptychus. Sample A 1366-1, Peutenberg south of municipal Neubruck (Bavaric units, eastern Northern Calcareous Alps). Width of photo: 1.4 cm. 2. Wackestone with Saccocoma sp., Calpionella alpina LORENZ, 1902 and some filaments. Sample A 1366-1, Peutenberg south of the municipal Neubruck (eastern Northern Calcareous Alps). Width of photo: 0.5 cm. 3. Magnification of 1. Calpionellids beside filaments and aptychi are a common feature of the upper part of the Steinmühl Formation. Width of photo: 0.5 cm. 4. Wackestone with echinoderm fragments, filaments and some calpionellids. Sample S 37 (coll. DUMFARTH), Hanslgraben southeast, north of Brandlucke west of the village Kleinreifling (Weyerer Bögen, Bavaric units, eastern Northern Calcareous Alps). Width of photo: 1.4 cm. 5. Wackestone rich in Saccocoma, filaments and calpionellids. Also aptychi are common. Sample S 37 (coll. DUMFARTH), Hanslgraben southeast, north of Brandlucke west of the village Kleinreifling (Weyerer Bögen, Bavaric units, eastern Northern Calcareous Alps). Width of photo: 0.5 cm. 6. Wackestone with recrystallized radiolaria, an aptychus, broken filaments and some calpionellids. Sample S 150 (coll. DUMFARTH), Klaus(alm)bach west of the village Kleinreifling (Weyerer Bögen, Bavaric units, eastern Northern Calcareous Alps). Width of photo: 1.4 cm. 7. Magnification of 6. Calpionellids, mostly Calpionella alpina LORENZ, 1902, and radiolaria are the most common organisms. Width of photo: 0.5 cm. 8. Magnification of 6, other view. The calpionellids, mostly Calpionella alpina LORENZ, 1902 are very well preserved. Beside calpionellids radiolaria are dominating; echinoderm fragments are relatively rare as well as broken filaments. Width of photo: 0.25 cm. For details on microfacies see, e.g., FLÜGEL (1967) and FENNINGER & HOLZER (1972).

Lateral units: Chiemgau Series, Ruhpolding Formation and Biancone Ammergau Formation in the Bavaric units to southern (Fig. 47, Fig. 57) direction (present coordinates). Remarks: the term Steinmühl Formation with the shortest Validity: valid (Biancone), needs some revision and forma- history and the most clear definition according to the type lization in the Austroalpine units. First description in the section is preferred in contrast to all other, partly older names Southern Alps by MARASCHINI (1824), in the Northern Calca- with a long and controversially discussed history (e.g., reous Alps by KOCKEL et al. (1931) and CUSTODIS & SCHMIDT- SCHAFHÄUTL 1846, STOTTER 1849). There is confusion in the THOMÉ (1939). MILLER (1963) used the term Biancone in the nomenclature of several red condensed limestones in Middle western Northern Calcareous Alps ( Mountains) and Late Jurassic times (e.g., TRAUTH 1950, HOLZER 1968, for the upper part of the Ammergau Formation, ROSENBERG FENNINGER & HOLZER 1972, TOLLMANN 1976a, 1985), partly (1965) for the eastern Northern Calcareous Alps. MARIOTTI mixed with Hungarian names (e.g., CSÁSZÁR et al. 2001). (1972b), SCHRÖDER (1988), BLAU (1994) and BLAU & GRÜN (1995) in the Drau Range. Needs final formalization. Type area: Wetterstein Mountains, Bavaria.

Fig. 57: Characteristic microfacies of the Biancone. The Late Jurassic to Early Cretaceous Biancone consists of partly cherty, white to rose nannofossil micrite with calcite-replaced radiolarians and calpionellids. In the Northern Calcareous Alps age and microfacies are identical or similar to the Oberalm Formation or the Aptychus Limestone. Page 108. 1. Whitish wackestone with recrystallized radiolarians, small shell fragments and calpionellids. Sample B 331, Leube quarry west of Salzburg (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 2. Magnification of 1. Calpionellids, mostly Calpionella alpina LORENZ, 1902, and radiolaria are common microfossils. Width of photo: 0.25 cm. 3. Whitish wackestone with recrystallized radiolarians, similar to 1. Slighlty chertified and slightly bioturbated. Sample B 332, Leube quarry west of Salzburg (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 4. Magnification of 3. Beside the recrystallized radiolarians fragments of aptychi and some small foraminifera are visible. Width of photo: 0.25 cm. 5. Rose, slightly bioturbated radiolaria-rich wackestone to packstone with rare filament fragments and rare calpionellids (Anzenbach Series in sense of PLÖCHINGER 1955). Sample OK-L164 (coll. KRISCHE), Leube quarry west of Salzburg (Tirolic units, Salzburg Calcareous Alps). Width of photo: 1.4 cm. 6. Magnification of 5, other view. Layered part of the succession. The upper layer shows an enrichment of recrystallized radiolarians near the base of the fine-grained low-density low-velocity turbidite. Filaments occur parallel to the bedding. Width of photo: 0.5 cm. 7. Wackestone with recrystallized radiolarians, some echinoderm fragments and filaments. Sample K 998, Wildenstein waterfall (Northern Karavank Mountains). Width of photo: 1.4 cm. 8. Slightly bioturbated and partly condensed radiolaria-rich wacke- to packstone. Additional to recrystallized radiolarians and filaments peloids occur. This facies is transitional to the Oberalm Formation. Sample E 825, Mount Bürgl in the municipal Strobl (Tirolic units, Salzkammergut area). Width of photo: 1.4 cm.

107 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

108 Journal of Alpine Geology, 50: 1-152, Wien 2009

Type section: not designated. 3.2.2. Southern Karavank Mountains Reference section(s): not designated. = Koschuta and Hahnkogel units Derivation of name: after the Italian word bianco. Synonyms: parts of the Aptychus Limestone, partly upper Kahlkogel Formation level of the Ammergau Formation. Anzenbach Series (Figs. 58-59) (CORNELIUS & PLÖCHINGER 1952, PLÖCHINGER 1955; compare TOLLMANN 1976a) Calpionella-Limestone (HOLZER 1968). Validity: valid (Kahlkogel-Formation), first description by MILLER (1963: p. 63) used the term Biancone for the Northern GAWLICK et al. (2006a) and SUZUKI et al. (2008), defined in Calcareous for following reasons “… für die hellen, dich- this paper. ten, wohlgebankten Kalke, die in den nördlichen Kalk- Type area: ÖK 210 Villach-Land, Karavank Mountains, Hahn- alpen an vielen Stellen zwischen den jurassischen bunten kogel unit. Radiolariten, Kieselkalken und Mergeln einerseits und Type section: Mount Kahlkogel, along the Slovenian/Aus- den meist neokomen, grünen Mergelserien andererseits trian border south of the village Rosenbach. From Maria eingeschaltet sind.“ This definition is problematic, because Elender Sattel to the top of Mount Kahlkogel south of the it includes in parts also the Steinmühl Formation, but with village Maria Elend (Carinthia). different microfacies. Reference section(s): cannot be designated due to the Lithology: white to yellowish to rose, well bedded, micritic scarcity of datable organisms. limestones with calpionellids, partly with some cherts, partly Derivation of name: after Mount Kahlkogel. with thin marl intercalations. Synonyms: unknown. Fossils: nannoplankton, radiolarians, calpionellids, Lithology: grey to dark-grey centrimetre- to decimetre- foraminifera and other microfossils (rare) (e.g., SCHRÖDER bedded cherty limestones, very often bioturbated or lamina- 1988, BLAU 1994, LACKSCHEWITZ et al. 1991). Especially in the ted mud- to wackestones. Partly with some chert nodules younger Biancone (Early Cretaceous) the carbonate and layers. accumulation is based mainly on calcareous nannofossils Fossils: spicula and radiolarians are dominating. (e.g., BORNEMANN et al. 2003, TREMOLADA et al. 2006). Origin, facies: hemipelagic sequence in a slightly restricted Origin, facies: hemipelagic basinal limestones, partly basin/shelf area. condensed. Normally massive to bedded, with thin marly Chronostratigraphic age: Late Bathonian to Middle Oxfor- layers; the well bedded, more marly variety on top of the dian (GAWLICK et al. 2006a, SUZUKI et al. 2008). massive variety is Late Berriasian to Valanginian in age and Biostratigraphy: Eucyrtidiellum unumaense zone to Zha- should be therefore an equivalent of the Schrambach For- moidellum ovum zone (SUZUKI & GAWLICK 2003a), see chapter mation, often included in the Biancone (e.g., MILLER 1963, 4 in this paper. SCHRÖDER 1988). Thickness: around 300 metres, but unknown in detail, be- Chronostratigraphic age: Late Tithonian to Berriasian. cause the overlying formation is not preserved. Biostratigraphy: not defined. Lithostratigraphically higher rank: none. Thickness: 5 metres to some tens of metres. The micritic Subdivision: no subdivision. limestones are partly similar to the overlying limestones of Underlying units (foot wall boundary): Frauenkogel Forma- the Schrambach Formation, but with less marl intercalations. tion, partly by an unconformity, than directly on top of the Lithostratigraphically higher rank: none. Hahnkogel Formation. Subdivision: no subdivision. Overlying units (hanging wall boundary): not preserved. Underlying units (foot wall boundary): Ruhpolding Forma- Geographic distribution: only known from the type area. tion (e.g., MILLER 1963, FENNINGER & HOLZER 1972, CSÁSZÁR Lateral units: unknown. 1994). Remarks: further investigations have to show, if the Kahl- Overlying units (hanging wall boundary): Schrambach For- kogel Formation can be integrated into the Ruhpolding mation. Radiolarite Group. Geographic distribution: Tirolic and Bavaric units of the Northern Calcareous Alps, Drau Range (MILLER 1963, ROSEN- BERG 1965, SCHRÖDER 1988, BLAU & GRÜN 1995). 3.2.3. Lower Austroalpine, Central Alpine Mesozoic units Lateral units: unknown. Remarks: partly also the micritic cherty limestones (Apty- Tarntal Breccia in siliciclastically influenced equivalents chus Limestone, Ammergau Formation) on top of the radio- of the Allgäu Formation larites were included into the Biancone (MILLER 1963). Partly also the reddish basal parts of several successions are See chapter 3.1.3. included into the Biancone (BLAU 1994), but separated by SCHRÖDER (1988). According to SCHLAGER (1974) the terms Biancone, Apty- Türkenkogel Breccia in siliciclastically influenced chus Limestone, Maiolica and Oberalm Formation stands equivalents of the Allgäu Formation for light-coloured, (partly) coccolith-rich, (partly) chert bear- ing limestones, all characterized by the relative abundance See chapter 3.1.3. of aptychi and the scarcity of other megafossils.

109 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Crinoidal Limestone stone and one above. Type area: Lower Austroalpine units (e.g., Radstädter Tau- Validity: invalid (Crinoidenkalk), first description by UHLIG ern, Brenner Mesozoic, Tarntal Mountains) (details in e.g., (1908), revisited by TOLLMANN (1956). The sedimentary CLAR 1937, KÜBLER & MÜLLER 1962, TOLLMANN 1963, 1965, succession needs some revision and formalization (could HÄUSLER 1988). be a synonym of the Vils Limestone). Type section: not designated. Type area: ÖK 156 Tamsweg, Radstädter Tauern. Reference section(s): not designated. Type section: ÖK 156 Tamsweg, Mount Vordere Großwand Derivation of name: after lithology. in Salzburg (TOLLMANN 1977). Synonyms: unknown. Reference section(s): not designated. Lithology: metamophic radiolarite to quarzite with partly Derivation of name: after lithology, crinoid-rich limestone. shaly or manganese-rich intercalations in the metamorphic Synonyms: unknown. radiolarite (compare TOLLMANN 1963). Lithology: violet to grey crinoidal limestones (metamorphic). Fossils: in the type region unknown. Compare also the Fossils: crinoids, some belemnites, some bivalves (UHLIG radiolarian determination of KIESSLING (1992). 1908, TOLLMANN 1977). Origin, facies: deep-water radiolarian ooze. Origin, facies: most probably allodapic (crinoidal) lime- Chronostratigraphic age: probably ?Bathonian to Oxfordian/ stones, shed into a basinal area. Kimmeridgian (KIESSLING 1992) for the lower level. Compare Chronostratigraphic age: Middle Jurassic (e.g., TOLLMANN chapter of Ruhpolding Radiolarite Group. The onset of 1977). In the upper part probably early Late Jurassic radiolarite sedimentation in the adjacent Penninc realm is (SCHWINNER 1951). dated by BILL et al. (2001) and O´DOGHERTY et al. (2006) as Biostratigraphy: unknown. Bathonian/Callovian. The upper radiolarite level could be Thickness: 20 metres. Early Cretaceous. Lithostratigraphically higher rank: none. Biostratigraphy: unknown. Subdivision: no subdivision. Thickness: less than ten to several tens of metres, strongly Underlying units (foot wall boundary): shales, marls, and deformed. limestones with breccias of the “Kalkmarmor/-schiefer- and Lithostratigraphically higher rank: none. Tonschiefer-Komplex“, see sections Tarntal and Türken- Subdivision: no subdivision. kogel Breccia (chapter 3.1.3. in this paper). Underlying units (foot wall boundary): metamorphosed Overlying units (hanging wall boundary): radiolarite. crinoidal limestones (probably similar to the Vils Limestone), Geographic distribution: Radstädter Tauern. or Türkenkogel Breccia with a shaly matrix. Lateral units: unknown. Overlying units (hanging wall boundary): Aptychus Lime- Remarks: probably a time and facies equivalent of the Vils stone or Schwarzeck Breccia. In the Tarntal Mountains also Limestone in the Northern Calcareous Alps. polymictic breccias, which are designated as Tarntal Breccia (upper level - see there) (compare HÄUSLER 1988). Geographic distribution: in remnants all over the Austro- Radiolarite and Manganese shales alpine domain (metamorphic units). Lateral units: unknown. Validity: invalid (Radiolarit/Manganschiefer), should be Remarks: also the manganese-rich quartzites of the Plan- included as independent formation in the Ruhpolding kogel Serie are probably an equivalent (KLEINSCHMIDT 1975). Radiolarite Group, needs some revision and formalization. Until recently the classic opinion of a generally Oxfordian Two horizons are known - one below the Aptychus Lime- age of the radiolarite (e.g., TOLLMANN 1977) is used (LINNER

Fig. 58: Characteristic microfacies of the Kahlkogel Formation (Karavank Mountains, Hahnkogel unit according to KRYSTYN et al. 1994). Page 111. 1. Radiolarian wacke- to packstone, slightly bioturbated. Sample RG 147, Mount Kahlkogel south of the village Maria Elend. Width of photo: 1.4 cm. 2. Magnification from 1. Most radiolarians occur as calcite, very few are better preserved as quartz. Sample RG 147, Mount Kahlkogel south of the village Maria Elend. Width of photo: 0.5 cm. 3. Slightly bioturbated, originally laminated cherty limestone with recrystallized radiolarians. Sample K 661, Mount Kahl- kogel south of the village Maria Elend. Width of photo: 1.4 cm. 4. Laminated cherty limestone with enrichment of radiolarians in several laminae. Most radiolarians are recrystallized. Sample K 663, Mount Kahlkogel south of the village Maria Elend. Width of photo: 1.4 cm. 5. Radiolaria-rich cherty limestone to radiolarite. Partly completely chertified. Sample K 668, Mount Kahlkogel south of village Maria Elend. Width of photo: 1.4 cm. 6. Magnification of 5. Typical radiolarian wackestone of cherty limestone to radiolarite of the Ruhpolding Radiolarite Group (compare these formations). Sample K 668, Mount Kahlkogel south of the village Maria Elend. Width of photo: 0.25 cm. 7. Laminated cherty limestone. Wackestone with radiolarians. The basal part of the upper lamina is completely chertified. Sample K 670, Mount Kahlkogel south of the village Maria Elend. Width of photo: 1.4 cm. 8. Marly radiolarian wacke- to packstone. Most radiolarians occur as calcite. Sample K 670, Mount Kahlkogel south of the village Maria Elend. Width of photo: 0.25 cm. 110 Journal of Alpine Geology, 50: 1-152, Wien 2009

111 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Fig. 59: Selected radiolarians from the Kahlkogel Formation of the Hahnkogel unit in the Karavank Mountains south of the villages Rosenbach and Maria Elend along the Austrian/Slovenian border. 1. Bernoullius cristatus BAUMGARTNER, 1984 (sample RG 147). 2. Hsuum cf. brevicostatum (OZVOLDOVA, 1975) (sample RG 147). 3. Parvicingula cf. dhimenaensis BAUMGARTNER, 1984 (sample RG 147). 4. Triversus cf. hungaricus (KOZUR, 1985) (sample K 628). 5. Unuma gordus HULL, 1997 (sample K 661). 6. Quarticella cf. ovalis TAKEMURA, 1986 (sample RG 147). 7. Williriedellum dierschei SUZUKI & GAWLICK, 2004 in GAWLICK et al. 2004 (sample RG 147). 8. Williriedellum glomerulus (CHIARI, MARCUCCI & PRELA, 2002) (sample RG 147). 9. Stylocapsa oblongula KOCHER, 1981; (sample RG 147). 10. Gongylothorax cf. favosus DUMITRICA, 1970 (sample RG 147). 11. Gongylothorax sp. C sensu SUZUKI & GAWLICK, 2003b (sample RG 147). 12. Theocapsomma medvednicensis GORICAN, 1999 in HALAMIC et al. 1999 (sample RG 147). 13. Striatojaponocapsa conexa (MATSUOKA, 1983) (sample RG 147). 14. Tricolocapsa undulata (HEITZER, 1930) (sample RG 147). 15. Eucyrtidiellum unumaense (YAO, 1979) (sample RG 147). 16. Eucyrtidiellum cf. ptyctum (RIEDEL & SANFILIPPO, 1974) (sample MK 44).

112 Journal of Alpine Geology, 50: 1-152, Wien 2009

& HEJL 2009). Modern radiolarian data exist from the adjacent Kimmeridgian to Early Tithonian part of the Ammergau For- Penninic/Piemont/Ligurian oceanic realm as well as from mation (e.g., ULRICH 1960). Needs some revision and the Tethyan realm, pointing out that radiolarite sedimen- formalization. Most probably the Aptychus Limestone is a tation in general started in Bajocian/Bathonian and partly synonym of the Biancone (MARASCHINI 1824). See also in Callovian times (e.g., BAUMGARTNER et al. 1995b, BILL et discussion in MILLER (1963). al. 2001, SUZUKI & GAWLICK 2003b, O´DOGHERTY et al. 2006). Type area: Allgäu Calcareous Alps in southern Bavaria. Type section: not designated. Reference section(s): not designated. Schwarzeck Breccia and shales Derivation of name: after aptychi. (Fig. 47) Synonyms: Falkniskalk in the Rätikon area. Lithology: partly well bedded (dm-bedded), mostly white Validity: invalid (Schwarzeckbrekzie und -schiefer), first to grey limestones with some marly intercalations, partly description by CLAR (1937), revised by TOLLMANN (1963) with chert nodules and layers, partly also yellowish to and HÄUSLER (1988), needs some revision and formalization. reddish. Very similar to the Oberalm Formation, but without See also SCHWINNER (1951). Compare upper level of Lischana shallow-water debris. Only the underlying Ammergau For- Breccia (MADER 1987). mation show in some parts (especially the lower parts) dis- Type area: ÖK 156 Tamsweg, Radstädter Tauern. tal allodapic limestones with shallow-water debris from Type section: not designated. adjacent platforms (see section Ammergau Formation + See- Reference section(s): not designated. karspitz Limestone). Partly with mass flows, e.g., Schwarz- Derivation of name: after Mount Schwarzeck in the Rad- eck Breccia and Tarntal Breccia (upper level) in the Lower städter Tauern (Salzburg). Austroalpine realm (see chapter 3.1.3. in this paper) Synonyms: unknown. Fossils: partly calpionellids, radiolarians, rare ammonites Lithology: mass-flow deposit with different Triassic com- (details in TOLLMANN 1976a). ponents of the reworked underground (Hochfeind facies - Origin, facies: hemipelagic limestones, basinal sequence see TOLLMANN 1977) and crystalline components in a shaly without shallow-water debris. matrix (for details see TOLLMANN 1963, HÄUSLER 1987, 1988). Chronostratigraphic age: should be Late Tithonian to Middle For the similar Lischana Breccia, upper level, see MADER Berriasian, partly designated as Kimmeridgian to Barremian (1987). (see also PILLER et al. 2004), here are equivalents of the Fossils: unknown. Schrambach Formation included. According to v. RICHTHOFEN Origin, facies: according to our interpretation mass-flow (1861) the position of the Aptychus Limestone should be deposits transported to the newly formed basins in the Late between the upper Allgäu Formation (= today Chiemgau Jurassic due to the opening of the North Penninic (Valais) Series) and the overlying marly Aptychi-beds (= Schram- Ocean (compare FROITZHEIM et al. 2008). For discussion see bach Formation). TOLLMANN (1977) and HÄUSLER (1988), who interpreted this Biostratigraphy: not exactly to define due to different event als early nappe thrusting phase in the Austroalpine opinions on the age range of the Aptychus Limestone. The (see also LINNER & HEJL 2009). age range should be equivalent to the Oberalm Formation Chronostratigraphic age: Late Jurassic, possibly Kim- or Biancone. See sections of Ammergau Formation and meridgian but most probably Tithonian to Berriasian. Biancone. Biostratigraphy: unknown. Thickness: up to several hundreds of metres according to Thickness: several tens of metres up to 100 metres. TOLLMANN (1976a), in the Achensee region up to 1000 metres Lithostratigraphically higher rank: none. (QUENSTEDT 1951), but in this region also the underlying Subdivision: no subdivision. Ammergau Formation is included (see section Ammergau Underlying units (footwall boundary): radiolarite. Formation + Seekarspitz Limestone). Overlying units (hanging wall boundary): Aptychus Lime- Lithostratigraphically higher rank: none. stone. Subdivision: no subdivision. Geographic distribution: Radstädter Tauern. Underlying units (foot wall boundary): true Ammergau For- Lateral units: unknown. mation or some formations of the Ruhpolding Radiolarite Remarks: Compare the upper levels of the Lischana Breccia Group (see TOLLMANN 1976a). Geier Series. Partly also with in the Engadin Dolomites (DÖSSEGGER et al. 1982, MADER an unconformity on Triassic formations (e.g., Hauptdolomit 1982). See further comments in chapter 3.1.3. in this paper. - SPENGLER 1951). Compare also Gscheigraben Breccia (see section Tarntal Overlying units (hanging wall boundary): Schrambach For- Breccia). mation. The Schrambach Formation is partly included in the Aptychus Limestone. Geographic distribution: Bavaric units and Drau Range, Aptychus Limestone Lower Austroalpine Mesozoic units. (Fig. 47) Lateral units: with transition to the Biancone, partly as sy- nonym. A transition to the Oberalm Formation with some Validity: invalid (Aptychenkalk), first description by v. shallow-water intercalations can be expected, but is un- LILIENBACH (1830). To include the Aptychus Limestone into known. the Ammergau Formation is problematic and not useful. Remarks: the true Aptychus Limestone should be equivalent They are different in lithology in comparison to the to the age range of the Oberalm Formation (Late Tithonian

113

GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

(1995a).

B

comparison see the radiolarian zonations of zonations radiolarian the see comparison

is according to A to according is

boundary Middle/Late Oxfordian or even higher even or Oxfordian Middle/Late boundary

amphitreptera

of the the of

Williriedellumdierschei

this paper. this the of limit upper the of shift The

S

of the Northern Calcareous Calcareous Northern the of to according Alps

Fig. 60: Modified zonation for the radiolarians the for zonation Modified 60: Fig.

UZUKI

ECCARO

Eucyrtidiellum unumaense Eucyrtidiellum

& G &

(2004, 2006) and and 2006) (2004, B

AWLICK

interval zone at least up to the to up least at zone interval

(2003a), S (2003a),

UER

subzone/the lower limit lower subzone/the

et al. (2009). For (2009). al. et

AUMGARTNER

TEIGER

- -

Podocapsa

(1992) and (1992) et al. et

114 Journal of Alpine Geology, 50: 1-152, Wien 2009 to Middle Berriasian), but exact biostratigraphic investi- Derivation of name: after Mount Geier south of the Tarntal gations are missing. Today the term Aptychus Limestone is (valley). often used for the complete limestone-marl succession on Synonyms: unknown. top of the Ruhpolding Formation, none Ammergau Forma- Lithology: a metamorphosed series of shales, arkosic tion (e.g., TOLLMANN 1976a). In fact, a subdivision of the sandstones to quartzites, some marls and greywackes. At Aptychus Limestone into the lower Ammergau Formation the base some 3 metres thick breccias (ENZENBERG 1967). and an upper formation, e.g., Biancone or Aptychi Formati- Components: different dolomites and limestones (Triassic, on, would be necessary (see also MILLER 1963). The term ?Jurassic), quartzites. Aptychus Limestone should not be deleted because it Fossils: unknown due to the metamorphic overprint. represents a widespread term in the whole Mediterranean Origin, facies: mass-flow deposits and turbidites in a hemi- region, its type area are the Northern Calcareous Alps resp. pelagic, cherty matrix (probably metamorphosed cherty the Austroalpine domain. To formalize a new formation with limestones to radiolarites) (ENZENBERG 1967). a completely new name for the term Aptychus Limestone or Chronostratigraphic age: Jurassic, most probably Late to include them into the Ammergau Formation is not wise in Jurassic. the light of the international use of this term. Also to include Biostratigraphy: unknown. the Aptychus Limestone into the Oberalm Formation does Thickness: more than 20 metres (ENZENBERG 1967). According not seem to be useful, because the Oberalm Formation is to TOLLMANN (1977) around ?10 metres. regionally restricted. Better to designate a type section and Lithostratigraphically higher rank: none. to formalize an Aptychus Formation. Subdivision: no subdivision. In the Engadin Dolomites the Russenna-Aptychenkalk-For- Underlying units (foot wall boundary): tectonic boundary. mation was formalized by DÖSSEGGER et al. (1982), but this Overlying units (hanging wall boundary): tectonic boun- succession contains mass-flow deposits and turbidites dary. (Lischana Breccia) and is therefore different to the real Geographic distribution: only known from the type locality. Aptychus Limestone. A series similar to the Russenna- Lateral units: unknown. Aptychenkalk-Formation is the Jes Formation (Falknis Kalk) Remarks: The Geier Serie seems to be a younger synonym of GRUNER (1981) (compare OBERHAUSER 1983, FUCHS & OBER- of the Schwarzeck Breccia and shales in a more distal HAUSER 1990). Compare also Gscheigraben Breccia (see position. All the different Late Jurassic to Early Cretaceous section Tarntal Breccia). breccias in this palaeogeographic position with an enormous amount of names (see also TOLLMANN 1977) must be revised and may be summarized in one or only few formations Geier Series (compare chapter 3.1.3. in this paper). The Geier Serie seems (Fig. 47) to be part of the Late Jurassic breccia event in the Lower Austroalpine units in context to the opening of the North Validity: invalid (Kalkschiefer, Quarzitbrekzie), first Penninic (Valais) Ocean (see HSÜ & BRIEGEL 1991). description by ENZENBERG (1967). See also TOLLMANN (1977) and HÄUSLER (1988), needs some revision and formalization. Type area: ÖK 119 Innsbruck-Land. Tarntal. Type section: ÖK 119 Innsbruck-Land, south of Mount 4. Radiolarian biostratigraphy and zonation Geier (ENZENBERG 1967). Reference section(s): not designated. The age and genesis of the Jurassic radiolarites in the

Fig. 61: Modified reprint of the original plate of the radiolarian zonation of SUZUKI & GAWLICK (2003a) for the Northern Calcareous Alps. Only the radiolarians of the zones and subzones established by SUZUKI & GAWLICK (2003a) are shown in this plate, for the radiolarians of Middle and Late Tithonian see STEIGER (1992) and Fig. 74, Fig. 75. Page 116. 1. Trexus dodgensis WHALEN & CARTER, 1998. Wasserfallalm (Berchtesgaden Calcareous Alps). 2. Gorgansium alpinum KOZUR & MOSTLER, 1990. Hatschek quarry (Salzkammergut area). 3. Bagotum sp. A sensu SUZUKI & GAWLICK, 2003b. Bad Dürrnberg (Salzburg Calcareous Alps). 4. Bagotum erraticum PESSAGNO & WHALEN, 1982. Bad Dürrnberg (Salzburg Calcareous Alps). 5. Hsuum exiguum YEH & CHENG, 1996. Salt-mine Berchtesgaden (Berchtesgaden Calcareous Alps). 6. Eucyrtidiellum cf. disparile NAGAI & MIZUTANI, 1990. Königsbach valley (Berchtesgaden Calcareous Alps). 7. Stichocapsa biconica MATSUOKA, 1991. Königsbach valley (Berchtesgaden Calcareous Alps). 8. Hexasaturnalis hexagonus (YAO, 1972). Salt-mine Berchtesgaden (Berchtesgaden Calcareous Alps). 9. Eucyrtidiellum unumaense (YAO, 1979). Klingerbach valley (Berchtesgaden Calcareous Alps). 10. Williriedellum dierschei SUZUKI & GAWLICK, 2004 in GAWLICK et al. 2004. Unken (Salzburg Calcareous Alps). 11. Zhamoidellum ovum DUMITRICA, 1970. Unken (Salzburg Calcareous Alps). 12. Protunuma lanosus OZVOLDOVA, 1996 in SYKORA & OZVOLDOVA 1996. Prielgraben valley (Salzkammergut area). 13. Gongylothorax favosus DUMITRICA, 1970. Landneralm west of Hallstatt (Salzkammergut area). 14. Stichomitra annibill KOCHER, 1931. Northeast of Hallstatt (Salzkammergut area). 15. Protunuma multicostatus (HEITZER, 1930). Southeast of Hallstatt (Salzkammergut area). 16. Podocapsa amphitreptera FOREMAN, 1973. Heutal valley west of Unken (Salzburg Calcareous Alps). 17. Cinguloturris cylindra KEMKIN & RUDENKO, 1993. Kesselstrasse east of Kuchl (Salzburg Calcareous Alps).

115 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

116 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 62: Characteristic radiolarian taxa of the Gorgansium alpinum subzone (Hettangian) of the Trexus dodgensis zone from the Kendlbach Formation in the Salzkammergut area (Hatschek quarry, Ebensee). 1. Gorgansium alpinum KOZUR & MOSTLER, 1990; sample H 28. 2. Stauracanthocircus cf. asymme- tricus KOZUR & MOSTLER, 1990; sample H 28. 3. Sphaerostylus kluensis (PESSA- GNO & BLOME, 1980); sample H 28. 4. Facus graylockensis PESSAGNO, WHALEN & YEH, 1986; sample H 28. 5. Poulpus oculatus DE WEVER, 1982; sample H 28. 6. Ares armatus DE WEVER, 1982; sample H 28. 7. Loupanus sp.; sample H 28. 8. Canoptum triassicum YAO, 1982; sample H 29.

Tethyan realm is described in detail, e.g., by BOSELLINI & revised radiolarian zonation (e.g., BECCARO 2004, 2006). WINTERER (1975), JENKYNS & WINTERER (1982), BAUMGARTNER The radiolarian zonation for the Jurassic of the Northern (1987) and BERNOULLI & JENKYNS (2009). Radiolarian Calcareous Alps consists of the eight zones (Fig. 60, compare zonations for Jurassic Tethyan radiolarites of BAUMGARTNER STEIGER 1992, SUZUKI & GAWLICK 2003a), i. e., Trexus (1984, 1987), BAUMGARTNER et al. (1995a, b), and DE WEVER dodgensis zone (Hettangian to Sinemurian), Hsuum exiguum et al. (2001) were the base for the first radiolarian zonation zone (Toarcian to Aalenian), Eucyrtidiellum unumaense zone of the Austroalpine domain resp. the Northern Calcareous (Bajocian to Bathonian), Zhamoidellum ovum zone Alps (SUZUKI & GAWLICK 2003a). Since the year 2003 a lot of (Callovian to Oxfordian), Podocapsa amphitreptera zone new studies on the stratigraphic ranges resulted in the (Kimmeridgian), Cinguloturris cylindra zone (Early

Fig. 63: Characteristic radiolarian taxa of the Bagotum sp. A subzone of the Trexus dodgensis zone (Hettangian/Sinemurian boun- dary) from the Dürrnberg Formati- on in the Berchtesgaden and Salz- burg Calcareous Alps. 1. Atalanta emmela CORDEY & CARTER, 1996; sample B 220. 2. Bagotum sp. A sensu SUZUKI & GAWLICK, 2003b; sample B 221. 3. Paroertlispongus sp. A; sample Ber 54/2. 4. Trexus dodgensis WHALEN & CARTER, 1998; sample Ber 54/3. 5. Droltus hecatensis PESSAGNO & WHALEN, 1982; sample Ber 54/3. 6. Bipedis fannini CARTER, 1988 in CARTER et al. 1988; sample B 221. 7. Palaeosaturnalis liassicus KOZUR & MOSTLER, 1990; sample B 220. 8. Charlottea johnsoni WHALEN & CARTER, 1998; sample Ber 54/3.

117 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Fig. 64: Characteristic radiolarian taxa of the Bagotum erraticum subzone of the Trexus dodgensis zone (Sinemurian) from the Dürrn- berg Formation in the Salzburg Calcareous Alps. 1. Bagotum erraticum PESSAGNO & WHALEN, 1982; sample Ber 30/ 1b. 2. Jacus anatiformis DE WEVER, 1982; sample Ber 30/1a. 3. Praeconocaryomma media PESSAGNO & POISSON, 1981; sample Ber 30/1c. 4. Syringocapsa coliformis HORI, 1988; sample Ber 30/1b. 5. Paronaella cf. grahamensis CARTER, 1988 in CARTER et al. 1988; sample Ber 30/1a. 6. Palaeosaturnalis schaafi KOZUR & MOSTLER, 1990; sample Ber 30/1c. 7. Syringocapsa inflata (YEH, 1987); sample Ber 30/1b. 8. Thurstonia minutaglobus WHALEN & CARTER, 1998; sample Ber 30/1b. 9. Stichocapsa obesa (YEH, 1987); sample Ber 30/1b.

Fig. 65: Characteristic radiolarian taxa of the Eucyrtidiellum cf. dispa- rile subzone (Early Toacian) of the Hsuum exiguum zone from the Bir- kenfeld Formation (compare MISSO- NI & GAWLICK in review) in the Berchtesgaden Calcareous Alps. 1. Parvicingula gigantocornis KISHIDA & HISADA, 1985; sample Ber 73/4. 2. Hsuum minoratum SASHIDA, 1988; sample Ber 52/6. 3. Trillus elkhornensis PESSAGNO & BLOME, 1980; sample Ber 52/6. 4. Bernoullius rectispinus KITO et al., 1990; sample Ber 52/9. 5. Parvicingula decora PESSAGNO & WHALEN, 1982; sample Ber 52/6. 6. Eucyrtidiellum cf. disparile NA- GAI & MIZUTANI, 1990; sample Ber 52/6. 7. Stichocapsa biconica MATSUO- KA, 1991; sample Ber 52/10. 8. Hsuum inexploratum BLOME, 1984; sample Ber 52/10. 9. Praewilliriedellum spinosum KOZUR, 1984; sample Ber 52/10.

118 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 66: Characteristic radiolarian taxa of the Hexasaturnalis hexa- gonus subzone (Late Toarcian- Aalenian) of the Hsuum exiguum zone from the Birkenfeld Formati- on (salt-mine Berchtesgaden, compare MISSONI & GAWLICK in re- view) in the Berchtesgaden Calca- reous Alps. 1. Tetraditryma praeplena BAUM- GARTNER, 1984; sample Ber 73/3d. 2. Perseus hachimanensis TAKE- MURA & NAKASEKO, 1983; sample Ber 73/3d. 3. Ares sp. A sensu BAUMGARTNER et al., 1995b; sample Ber 73/3. 4. Hexasaturnalis hexagonus (YAO, 1972); sample Ber 73/6b. 5. Linaresia rifensis (EL KADIRI, 1992); sample Ber 73/3. 6. Zartus imlayi PESSAGNO & BLOME, 1980; sample Ber 73/3c. 7. Parasaturnalis diplocyclis (YAO, 1972); sample Ber 73/3c. 8. Hsuum exiguum YEH & CHENG, 1996; sample Ber 73/6b. 9. Xiphostylus superbus PESSA- GNO & YANG, 1989; sample Ber 73/ 1.

Tithonian), Triactoma blakei zone (“Middle“ Tithonian), 4.1. Definition of the radiolarian zones and subzones and Syringocapsa lucifer zone (Late Tithonian). The uppermost two zones are documented in detail by STEIGER Trexus dodgensis zone (Hettangian to Sinemurian) (1992). The Triactoma blakei zone (middle Tithonian) (Figs. 62-64) corresponds to the Collicyrtidium rubetum zone and the Syringocapsa lucifer zone corresponds to the Mirifusus The base of this zone is defined by the first appearance dianae globusus zone in this paper. horizon of the species Trexus dodgensis WHALEN & CARTER, The Trexus dodgensis zone is subdivided into three 1998. The upper limit of this zone is not exactly determinable subzones: Gorgansium alpinum subzone (Hettangian), but may lie within the Sinemurian. Bagotum sp. A subzone (Hettangian/Sinemurian boundary) The Trexus dodgensis zone is divided into three subzones, and Bagotum erraticum subzone (Sinemurian). i. e., the Gorgansium alpinum, Bagotum sp. A and Bagotum The Hsuum exiguum zone is further subdivided into two erraticum subzones. The Relanus hettangicus zone, subzones: Eucyrtidiellum cf. disparile subzone (Early established in the Kirchstein Limestone (see section Toarcian) and Hexasaturnalis hexagonus subzone (Late Kirchstein Limestone) by KOZUR & MOSTLER (1990), probably Toarcium to Aalenium). corresponds to the Gorgansium alpinum and Bagotum sp. The Zhamoidellum ovum zone is subdivided into four A subzones. subzones/interval zone: Protunuma lanosus subzone (Early to Middle Callovian), Williriedellum carpathicum subzone (Late Callovian), Williriedellum dierschei subzone (Early Gorgansium alpinum subzone (Hettangian) to Middle Oxfordian), and Eucyrtidiellum unumaense- (Fig. 62) Podocapsa amphitreptera interval zone (Late Oxfordian). In total, the Jurassic of the Northern Calcareous Alps can The base of this subzone is defined by the first appearance be divided into fourteen radiolarian zones. of the species Gorgansium alpinum KOZUR & MOSTLER, 1990. The upper limit is identical with the Bagotum sp. A subzone. The characteristic species are shown in Figs. 61-75.

119 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Fig. 67: Characteristic radiolarian taxa of the Eucyrtidiellum unumaense zone (Bajocian-Bathonian) from the ?Sand- lingalm Formation in the Berchtesgaden Calcareous Alps. 1. Eucyrtidiellum unumaense (YAO, 1979); sample Ber 15/1a. 2. Tricolocapsa fusiformis YAO, 1979; sample Ber 90/1. 3. Praezhamoidellum yaoi KOZUR, 1984; sample Ber 90/1. 4. Striatojaponocapsa plicarum (YAO, 1979); sample Ber 90/1. 5. Tricolocapsa sp. S sensu BAUM- GARTNER et al., 1995b; sample Ber 90/1. 6. Dictyomitrella kamoensis MIZUTANI & KIDO, 1983; sample Ber 90/1. 7. Cyrtocapsa mastoidea YAO, 1979; sample Ber 15/1a. 8. Podobursa nodosa (CHIARI, MARCUCCI & PRELA, 2002); sample Ber 90/1. 9. Unuma cf. echinatus ICHIKAWA & YAO, 1976; sample Ber 90/1.

Bagotum sp. A subzone (Hettangian/Sinemurian boundary) Bagotum erraticum subzone (Sinemurian) (Fig. 63) (Fig. 64)

The stratigraphic range of this subzone is identical with the The base of this subzone is defined by the first appearance stratigraphic distribution of the species Bagotum sp. A horizon of the species Bagotum erraticum PESSAGNO & sensu SUZUKI & GAWLICK, 2003b. The stratigraphic WHALEN, 1982. The upper limit is not exactly determinable, boundaries between the Gorgansium alpinum and Bagotum but it may lie within the Sinumurian. erraticum subzones have not hitherto been confirmed in the field, due to missing of continuos sections. Because the genus Bagotum does not occur in the lowermost Early Hsuum exiguum zone (Toarcian-Aalenian) Jurassic (Hettangian) (KOZUR & MOSTLER 1990) and the (Fig. 65-66) species Bagotum sp. A sensu SUZUKI & GAWLICK, 2003b seems to be as a precursor species of the genus Bagotum, The base of this zone is defined by the first appearance the Bagotum sp. A subzone can be laid between the horizon of the species Hsuum exiguum YEH & CHENG, 1996. Gorgansium alpinum and Bagotum erraticum subzones. The upper limit is identical with the base of the Eucyrti-

Fig. 69: Characteristic radiolarian taxa of the Williriedellum carpathicum subzone (Late Callovian) of the Zhamoidellum ovum zone from the Strubberg Formation in the Salzkammergut area, newly established in this paper. Page 121. 1. Williriedellum marcucciae CORTESE, 1993; sample MR 175. 2. Williriedellum carpathicum DUMITRICA, 1970; sample MR 175. 3. Theocapsomma bicornis BAUMGARTNER, 1995 in BAUMGARTNER et al. 1995b; sample MR 149. 4. Theocapsomma cordis KOCHER, 1981; sample MR 149. 5. Stichocapsa robusta MATSUOKA, 1984; sample MR 149. 6. Xitus magnus BAUMGARTNER, 1995 in BAUMGARTNER et al. 1995b; sample MR 149. 7. Unuma gordus HULL, 1997; sample MR 175. 8. Eucyrtidiellum unumaense dentatum BAUMGARTNER, 1995 in BAUMGARTNER et al. 1995b; sample MR 175. 9. Tritrabs simplex KITO & DE WEVER, 1992; sample MR 175. 10. Parahsuum sp. S sensu MATSUOKA, 1986; sample MR 175. 11. Pseudodictyomitra venusta (CHIARI, CORTESE, MARCUCCI & NOZOLLI, 1997); sample MR 175. 12. Cinguloturris carpathica DUMITRICA, 1970; sample MR 175.

120 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 68: Characteristic radiolarian taxa of the Protunuma lanosus subzone (Early to Middle Callovian) of the Zhamoi- dellum ovum zone from different for- mations of the Ruhpolding Radiolarite Group in the Salzkammergut area and the Salzburg Calcareous Alps. 1. Zhamoidellum ovum DUMITRICA, 1970; sample BNU. 2. Tricolocapsa tetragona MATSUOKA, 1983; sample BT 10. 3. Gongylothorax favosus oviformis SUZUKI & GAWLICK, 2009; sample BNU. 4. Striatojaponocapsa conexa (MATSUO- KA, 1983); sample BT 1. 5. Stichocapsa naradaniensis MATSUO- KA, 1984; sample BT 1. 6. Helvetocapsa matsuokai (SASHIDA, 1999) in SASHIDA et al. 1999; sample BNU. 7. Tetracapsa himedarum (AITA, 1987); sample BT 4. 8. Tricolocapsa aff. fusiformis YAO, 1979; sample BT 5. 9. Protunuma lanosus OZVOLDOVA, 1996; sample E 52. 10. Tricolocapsa undulata (HEITZER, 1930); sample E 25-2. 11. Archaeodictyomitra minoensis (MIZU- TANI, 1981); sample BT 1.

121 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Fig. 70: Characteristic radiolarian taxa of the Williriedellum dierschei subzone (Early to Middle Oxford- ian) of the Zhamoidellum ovum zone from different formations of the Ruhpolding Radiolarite Group in the Salzkammergut area and the Berchtesgaden Calcareous Alps. 1. Williriedellum dierschei SUZUKI & GAWLICK, 2004 in GAWLICK et al. 2004; sample MR 125. 2. Stylocapsa spiralis MATSUOKA, 1982; sample Ber 23/1. 3. Stylocapsa oblongula KOCHER, 1981; sample Rö 262. 4. Loopus doliolum DUMITRICA, 1997 in DUMITRICA et al. 1997; sample Rö 46. 5. Eucyrtidiellum unumaense (YAO, 1979); sample Ber 23/1. 6. Eucyrtidiellum nodosum WA- KITA, 1988; sample MR 125. 7. Eucyrtidiellum ptyctum (RIEDEL & SANFILIPPO, 1974); sample EW 132. 8. Archaeodictyomitra mirabilis AITA, 1987; sample EW 132. 9. Tetracapsa sp.; sample MR 125. 10. Theocapsomma costata CHIARI, MARCUCCI & PRELA, 2002; sample MR 125. 11. Stylocapsa catenarum MATSUO- KA, 1982; sample MR 5b. 12. Protunuma multicostatus (HEI- TZER, 1930); sample Rö 46.

diellum unumaense zone. horizon of the species Hexasaturnalis hexagonus (YAO, The Hsuum exiguum zone is subdivided into two subzones, 1972). The upper limit is identical with the base of the i. e., the Eucyrtidiellum cf. disparile and the Hexasaturnalis Eucyrtidiellum unumaense zone. hexagonus subzones.

Eucyrtidiellum unumaense zone (Bajocian-Bathonian) Eucyrtidiellum cf. disparile subzone (Early Toacian) (Fig. 67) (Fig. 65) The base of this zone is defined by the first appearance The fauna of this zone is characterized by the occurrence of horizon of the species Eucyrtidiellum unumaense (YAO, the species Eucyrtidiellum cf. disparile NAGAI & MIZUTANI, 1979). The upper limit is identical with the base of the 1990. Since it contains sometimes the species Stichocapsa Zhamoidellum ovum zone. biconica MATSUOKA, 1991, it is comparable with the fauna from manganese nodules in the Nanjo Massif (Mino Terrane) of Southwest Japan, which is correlated to the Early Toarcian Zhamoidellum ovum zone (Callovian to Oxfordian) only by means of radiolarians (YAO 1997). (Figs. 68-71)

The base of this zone is defined by the first appearance Hexasaturnalis hexagonus subzone (Late Toarcian- horizon of the species Zhamoidellum ovum DUMITRICA, 1970. Aalenian) The upper limit is identical with the base of the Podocapsa (Fig. 66) amphitreptera zone. The Zhamoidellum ovum zone is subdivided into three The base of this subzone is defined by the first appearance subzones and one interval zone, i. e., the Protunuma

122 Journal of Alpine Geology, 50: 1-152, Wien 2009

Fig. 71: Characteristic radiolarian taxa of the Eucyrtidiellum unumaense-Podocapsa amphitreptera interval zone (Late Oxfordian) from the Gotzen Member in the Salzkammergut area. 1. Gongylothorax favosus favosus DUMITRICA, 1970; sample EW 204. 2. Eucyrtidiellum ptyctum (RIEDEL & SANFILIPPO, 1974); sample EW 204. 3. Hsuum brevicostatum (OZVOLDOVA, 1975); sample EW 284a. 4. Wrangellium aff. hsuei PESSAGNO, 1977a, b; sample EW 284a. 5. Cinguloturris primorika KEMKIN & TAKETANI, 2004; sample EW 284a. 6. Stichomitra annibill KOCHER, 1981; sample EW 284a. 7. Stichomitra annibill KOCHER, 1981; outer ornamentation is developed; sample EW 284b. 8. Cyrtocapsa sp.; sample EW 284b. 9. Archaeospongoprunum imlayi PESSAGNO, 1977a, b; sample EW 284b. 10. Sphaerostylus lanceola (PARONA, 1890); sample EW 204. lanosus, the Williriedellum carpathicum, the Williriedellum Williriedellum dierschei subzone (Early to Middle dierschei subzones and the Eucyrtidiellum unumaense- Oxfordian) Podocapsa amphitreptera interval zone. (Fig. 70)

This subzone is the partial-range zone of the species Protunuma lanosus subzone (Early to Middle Callovian) Williriedellum dierschei SUZUKI & GAWLICK, 2004 in GAWLICK (Fig. 68) et al. 2004. SUZUKI & GAWLICK (2003a) defined the base of this subzone as the extinction horizon of the species This subzone is characterized by the appearance of the Protunuma lanosus OZVOLDOVA, 1996. We have recently re- species Protunuma lanosus OZVOLDOVA, 1996. The Late examined the radiolarian fauna of this subzone, and Bathonian or Early Callovian ammonites were reported by concluded that the species Protunuma lanosus OZVOLDOVA, SPENGLER (1919) from the Klaus Limestone fissure filling 1996 occurs very rare also in the Williriedellum dierschei resp. breccias (compare section Klaus Formation), which subzone. In the Knallalm-Neualm area AUER et al. (2007) directly underlies the red siliceous limestones and radio- reported a radiolarian fauna around the base of this subzone, larites of the Klauskogelbach section attributed to the which is characterised by the occurrence of the species Protunuma lanosus subzone. Stylocapsa catenarum MATSUOKA, 1982 and the species Stylocapsa spiralis MATSUOKA, 1982. In the type section of this subzone, the Fludergraben section, MANDL (1982) Williriedellum carpathicum subzone (Late Callovian) reported ammonites of latest Middle Jurassic age from the (Fig. 69) underlying Klaus Formation with a sedimentary contact to the radiolarites. MANDL (1982) therefore suggested that the The base of this subzone is defined by the first appearance base of the radiolarites is of latest Callovian or earliest horizon of the species Williriedellum carpathicum Oxfordian age. DUMITRICA, 1970. The upper limit of this subzone is identical The upper limit of this subzone is defined by the extinction with the base of the Williriedellum dierschei subzone. horizon of the species Eucyrtidiellum unumaense, which can be laid around the Middle/Upper Oxfordian boundary (BECCARO 2004, AUER et al. 2009). 123 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Fig. 72: Characteristic radiolarian taxa of the Podocapsa amphitreptera zone (Kimmeridgian) from different formations of the Ruhpolding Radiolarite Group in the Salzkammergut area, the Salzburg and the Berchtesgaden Calcareous Alps. 1. Podocapsa amphitreptera FOREMAN, 1973; sample VD-K 6. 2. Podobursa triacantha triacantha (FISCHLI, 1916); sample Ber 74/13. 3. Pseudoeucyrtis reticularis MATSUOKA & YAO, 1985; sample Ber 31/3a. 4. Emiluvia chica FOREMAN, 1973; sample T 43-2. 5. Tetracapsa zinckenii RÜST, 1885; sample Ber 31/3c. 6. Spongocapsula perampla (RÜST, 1885); sample Ber 31/3c. 7. Wrangellium okamurai (MIZUTANI, 1981); sample Ber 31/3c. 8. Ristola altissima (RÜST, 1885); sample Ber 31/3c. 9. Archaeodictyomitra apiarium (RÜST, 1885); sample Ber 74/13. 10. Hsuum cuestaense PESSAGNO, 1977a, b; T 43-2. 11. Archaeodictyomitra minoensis (MIZUTANI, 1981); sample Ber 31/3c.

Fig. 73: Characteristic radio- larian taxa of the Cinguloturris cylindra zone (Early Tithonian) from the metabentonite hori- zons of the type section of the Tauglboden Formation in the Salzburg Calcareous Alps. All radiolarians from the samples Taugl 1 and Taugl 2. 1. Cinguloturris cylindra KEM- KIN & RUDENKO, 1993. 2. Ristola altissima (RÜST, 1885). 3. Archaeodictyomitra minoen- sis (MIZUTANI, 1981). 4. Pseudoeucyrtis reticularis MATSUOKA & YAO, 1985. 5. Spongocapsula perampla (RÜST, 1885). 6. Xitus cf. spicularius (ALIEV, 1965). 7. Zhamoidellum ovum DUMI- TRICA, 1970. 8. Tricolocapsa undulata (HEI- TZER, 1930). 9. Sphaerostylus lanceola (PARONA, 1890). 10. Archaeospongoprunum patricki JUD, 1994. 11. Mirifusus dianae (KARRER, 1867).

124 Journal of Alpine Geology, 50: 1-152, Wien 2009

Eucyrtidiellum unumaense-Podocapsa amphitreptera of the species Eucyrtidiellum unumaense. This horizon is interval zone (Late Oxfordian) nearly the same as the extinction horizon of the species (Fig. 71) Williriedellum marcucciae CORTESE, 1993. Because BECCARO (2004) reported these two species from the transversarium The base of this interval zone is laid at the extinction horizon ammonite zone (Middle Oxfordian) of the Rosso Ammonitico

Fig. 74: Characteristic radiolarian taxa of the Collicyrtidium rubetum zone (Middle Tithonian). Each radiolarian photo is cited from plates of STEI- GER (1992), modified. 1. Collicyrtidium rubetum STEIGER, 1992; base of the Oberalm Formation of Mount Trattberg (STEI- GER 1992). 2. Hiscocapsa globosa (RÜST, 1885); according to STEIGER (1992) this radiolaria comes from the matrix of the Barmstein Limestone bed 1 of Mount Trattberg. 3. Tetracapsa accincta (STEIGER, 1992); base of the Oberalm Formation of Mount Trattberg (STEI- GER 1992). 4. Deviatus hipposidericus (FOREMAN, 1975). According to STEIGER (1992 - Fig. 8, sample Ga 27) this form should derive from the Berriasian. In fact these horizon belongs to the Late Tithonian resp. the Tithonian/Berriasian boundary according to ammonite findings (KRISCHE, BUJTOR, GAWLICK, CSÁSZÁR unpublished data). 5. Podobursa cf. tetracola FOREMAN, 1973; section Kaltenhausen west of Hallein, east of Mount Barmsteine (STEIGER 1992). 6. Obesacapsula morroensis (PESSAGNO, 1977a, b); base of the Oberalm Formation of Mount Trattberg (STEIGER 1992).

Fig. 75: Characteristic radiolarian taxa of the Mirifusus dianae globosus zone (Late Tithon- ian). Each radiolarian photo is cited from plates of STEIGER (1992), modified. 1. Acanthocircus squinaboli DONOFRIO & MOSTLER, 1978; Oberalm Formation of Leube quarry (STEIGER 1992). 2. Angulobracchia sp. 3. Mirifusus dianae globusus STEIGER, 1992; Oberalm Formation of Mount Trattberg (STEIGER 1992). 4. Diactoma curvata STEIGER, 1992; Oberalm For- mation of Leube quarry west of Salzburg (STEI- GER 1992). 5. Archaeodictyomitra sliteri PESSAGNO, 1977a, b; Oberalm Formation of Mount Trattberg (STEI- GER 1992) 6. Orbiculiforma lowreyensis PESSAGNO, 1977a, b; Oberalm Formation of Leube quarry (STEIGER 1992).

125 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Formation, northwest Sicily, the base of Eucyrtidiellum zone. unumaense-Podocapsa amphitreptera interval zone can be This zone is defined by the stratigraphic range of the sub- laid around the Middle/Late Oxfordian boundary. The upper species Mirifusus dianae globosus (STEIGER, 1992). STEI- limit is identical with the base of the Podocapsa amphi- GER (1992) examined the range of the subspecies from Late treptera zone. Tithonian to the boundary between Jurassic and Creta- ceous.

Podocapsa amphitreptera zone (Kimmeridgian) (Fig. 72) Acknowledgements The base of this zone is defined by the first appearance horizon of the species Podocapsa amphitreptera FOREMAN, We are thankful for critical discussions on several problems 1973. The upper limit is identical with the base of the of the Jurassic stratigraphy, tectonics and palaeogeography Cinguloturris cylindra zone. to: e.g., Roman Aubrecht (Bratislava), Matthias Auer (Glas- In the Sierra de Ricote section in Spain, BAUMGARTNER (1987) gow), Daniel Bernoulli (Basel), Florian Böhm (Kiel), Geza laid the first appearance of the species Podocapsa amphi- Császár (Budapest), Volker Diersche (Sulzfeld/Main), Oskar treptera FOREMAN, 1973 on the horizon, which is located Ebli (Munich), Nikolaus Froitzheim (Bonn), Bernhard Fügen- several meters beneath the lowermost Kimmeridgian schuh (Innsbruck), Spela Gorican (Ljubljana), Hans-Jürgen ammonite horizon. Therefore the base of the Podocapsa Gursky (Clausthal-Zellerfeld), János Haas (Budapest), Lirim amphitreptera zone should be located around the Hoxha (Tirana), Sándor Kovács (Budapest), Agustin Oxfordian/Kimmeridgian boundary. Martin-Algarra (Granada), Csaba Pero (Budapest), Dusan Plasienka (Bratislava), Luis O´Dogherty (Cadiz), Michael Rasser (Stuttgart), Stefan Schmid (Basel), Josip Tisljar Cinguloturris cylindra zone (Early Tithonian) (Zagreb), Ivo Velic (Zagreb), Igor Vlahovic (Zagreb), (Fig. 73) Andreas Wetzel (Basel), Heinrich Zankl (Marburg/Lahn). Matthias Auer (Glasgow) and Oskar Ebli (Munich) provided The base of this zone is defined by the first appearance several thin sections. Matthias Auer (Glasgow) provided horizon of the species Cinguloturris cylindra KEMKIN & also several radiolarian samples. Per Jeisecke (Tübingen) RUDENKO, 1993. The upper limit is located on the extinction prepared several thin sections of the radiolarites of the horizon of the species Zhamoidellum ovum DUMITRICA, 1970. Ruhpolding Radiolarite Group. The results of FWF-projects ZÜGEL (1997) described the species Cinguloturris cylindra P 14131 TEC, P 15060 TEC and P 16812-B06 as well as the KEMKIN & RUDENKO, 1993 from the Mörnsheim Formation FFG-project 810082/9814 (with the Stadtwerke Klagenfurt near Solnhofen, southern Germany, which is correlated with AG, Geschäftsfeld Wasser) form partly the base of this work Malm Zeta (FESEFELDT 1962). (HJG, SM, FS, MA, HS). Financial support from a DAAD scholarship (SM) and a lot of WTZ-projects (HJG, SM) is gratefully acknowledged. Thanks to the Südsalz GmbH for Collicyrtidium rubetum zone (Early to Middle Tithonian) the permission to investigate the salt-mine Berchtesgaden. (Fig. 74) Stefan Kellerbauer (Freilassing) guided us in the mine. Thanks to the Salinen Austria AG for the permission to The Collicyrtidium rubetum zone was established by STEI- investigate the salt-mines Bad Dürrnberg, Altaussee, Hall- GER (1992) as a subzone in the Triactoma blakei zone. statt and Bad Ischl.Thanks to the Landratsamt Bad Reichen- Because Triactoma blakei has a long range from Middle hall and J. Seidenschwarz (Nationalpark Berchtesgaden) for Jurassic to latest Jurassic (e.g., BAUMGARTNER et al. 1995b), the permissions to work in the National Park Berchtesgaden. it is not suitable for an index species of a Tithonian zone. Therefore, we use the species Collicyrtidium rubetum STEI- GER, 1992 as a zonal index species. This zone is characterised by the occurrence of the species References Collicyrtidium rubetum STEIGER, 1992. The upper limit is the same as the base of the Mirifusus dianae globosus ABERER, F. (1951): Beiträge zur Stratigraphie und Tektonik der zone. Randzonen der nördlichen Kalkalpen zwischen Neustift und Konradsheim. - Mitteilungen der Geologischen Gesellschaft in Wien, 39-41: 1-73, Wien. ACHTNICH, T. (1982): Die Jurabreccien der Eisenspitze. - Geolo- Mirifusus dianae globosus zone (Late Tithonian) gisch-Paläontologische Mitteilungen Innsbruck, 12: 41-70, (Fig. 75) Innsbruck. AITA, Y. (1987): Middle Jurassic to Lower Cretaceous radiolarian Mirifusus mediodilatatus globosus zone was established biostratigraphy of Shikoku with reference to selected sections by STEIGER (1992) as a subzone in the Syringocapsa lucifer in Lombardy Basin and Silicy. - Scientific Reports Tohoku Univiversity, Series 2: Geology, 58: 1-91, Sendai. zone. The species Mirifusus mediodilatatus (RÜST, 1885) is ALIEV, Y. (1965): Radiolarians of the Lower Cretaceous deposits regarded as a younger synonym of the species Mirifusus of northeastern Azerbeidzhan and their stratigraphic significance. dianae (KARRER, 1867) (DUMITRICA & DE WEVER, 1991), so - Izdat. Akadedemia Azerbeidzhan SSR, 3: 3-124, Baku. that here we change the name to Mirifusus dianae globosus ALTH, A. v. (1881): Die Versteinerungen des Nizniower Kalkstei-

126 Journal of Alpine Geology, 50: 1-152, Wien 2009

nes. - Beiträge zur Paläontologie Geologie Österreich-Ungarns Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: und des Orients, I: 183-332, Wien. Occurrences, Systematics, Biochronology. - Memoires de Geo- AMMON, L. v. (1893): Die Gastropoden des Hochfellnkalkes und logie, 23: 37-685, Lausanne. über Gastropoden-Reste aus Ablagerungen von Adnet, vom BAUSCH, W.M. & POLL, K.G. (1984): Das Profil Loser/Altaussee Monte Nota und den Raibler Schichten. - Geographische Jahres- - Bindeglied zwischen alpinem und süddutschem Malm. - Geo- hefte, 5: 161-188. logische Rundschau, 73: 351-369, Stuttgart. AMPFERER, O. (1918): Geologische Untersuchungen über die exo- BECCARO, P. (2004): Upper Jurassic radiolarians from Inici Mount tischen Gerölle und die Tektonik niederösterreichischer area (north-western Sicily, Italy): biochronology and calibration Gosauablagerungen. - Denkschriften der Österreichischen Aka- by ammonites. - Rivista Italiana Paleontologia Stratigrafia, 110/ demie der Wissenschaften. Mathematisch-Naturwissenschaft- 1: 289-301, Milano. liche Klasse, 96, (Österreichische Akademie Wissenschaften) BECCARO, P. (2006): Radiolarian correlation of Jurassic siliceous Wien. successions of the Rosso Ammonitico Formation in the Southern AMPFERER, O. (1921): Über die Breccien der Eisenspitze bei Flirsch Alps and Western Sicily (Italy). - Eclogae geologicae Helvetiae, im Stanzertal. - Jahrbuch Geologische Staats-Anstalt, 70: 1-10, 99 (2006), Supplement 1: S21-S33, Basel. Wien. BEMMELEN, R.W. v. & MEULENKAMP, J.E. (1965): Beiträge zur Ge- AMPFERER, O. (1943): Die Eisenspitzbreccien auf dem überkipp- ologie des Drauzuges (Kärnten, Österreich). (Dritter und letzter ten Südrand der Lechtaldecke. - Sitzungsberichte der Österreich- Teil). Die Lienzer Dolomiten und ihre geodynamische Bedeu- ischen Akademie der Wissenschaften. Mathematisch-Naturwis- tung für die Ostalpen. - Jahrbuch der Geologischen Bundesan- senschaftliche Klasse: Abteilung 1, 152: 67-84, (Österreichische stalt, 108: 213-268, Wien. Akademie Wissenschaften) Wien. BERAN, A., FAUPL, P. & HAMILTON, W. (1981): Anchizonale Meta- ANTONIADIS, P.A. (1975): Zur Paläogeographie des Lias in den morphose am Nordrand des Tennengebirges (Nördliche Kalk- mittleren Chiemgauer Alpen. - 1-167, PhD.-Thesis Universität alpen, Salzburg). - Anzeiger der Österreichischen Akademie der München, München. Wissenschaften. Mathematisch-naturwissenschaftliche Klasse, ANTONIADIS, P.A. (1984): Ein Beitrag zur Biostratigraphie des 118: 63-66, (Österreichische Akademie Wissenschaften) Wien. Lias im nördlichen Ostalpin (zwischen Tiroler Ache und Weißer BERAN, A., FAUPL, P. & HAMILTON, W. (1983): Die Manganschiefer ). - Documentae naturae, 20: 1-21, München. der Strubbergschichten (Nördliche Kalkalpen, Salzburg) - eine AUER, M., GAWLICK, H.-J. & SUZUKI, H. (2006): Die Unter-Oxford diagenetisch geprägte Mangankarbonatvererzung. - Tschermaks Radiolarit-Megabrekzie am Nordrand des Dachstein Blockes mineralogische petrographische Mitteilungen, 31: 175-192, Wien. (Nördliche Kalkalpen, Österreich): Radiolarienfaunen, Mikro- BERNIER, P. (1971): Deux nouvelles algues Dasycladacées du fazies des Komponentenbestandes und tektonische Bedeutung. Jurassique Supérieur du Jura Méridional. - Géobios, 4/3: 173- - Jahrbuch der Geologischen Bundesanstalt, 146: 33-51, Wien. 184, Lyon. AUER, M., GAWLICK, H.-J., SUZUKI, H. & SCHLAGINTWEIT, F. (2009): BERNOULLI, D. (1964): Zur Geologie des Monte Generoso (Lom- Spatial and temporal development of siliceous basin and shallow- bardische Alpen). - Beiträge zur geologischen Karte der Schweiz, water carbonte sedimentation in Oxfordian Northern Calcareous Neue Folge, 118: 1-134, Bern. Alps. - Facies, 55: 63-87, Berlin Heidelberg. BERNOULLI, D. (1971): Redeposited pelagic sediments in the AUER, M., SUZUKI, H., SCHLAGINTWEIT, F. & GAWLICK, H.-J. (2007): Jurassic of the central Mediterranean area. - (In: VÉGH- The late Middle to Late Jurassic Sedimentary Rocks of the NEUBRANDT, E. (ed.): Colloque du Jurassique méditerranéen), Knallalm-Neualm area north of Gosau (northwestern Dachstein Magyar Allami Foldtani Intezet Evkonyve (Annales Hungarian Block, central Northern Calcareous Alps). - Journal of Alpine Geological Institute), 54/2: 71-90, Budapest. Geology, 48: 117-140, Wien. BERNOULLI, D., BERTOTTI, G. & FROITZHEIM, N. (1990): Mesozoic BAILEY, T.R., ROSENTHAL, Y., MCARTHUR, J.M., SCHOOTBRUGGE, B. faults and associated sediments in the Austroalpine-South Alpi- v.d. & THIRLWALL, M.F. (2003): Paleoceanographic changes of ne passive continental margin. - Memoir Societa Geologia Italiana, Late Pliensbachian-Early Toarcian intervall: a possible link to 45: 25-38, Modena. the genesis of an Oceanic Anoxic event. - Earth and Planetary BERNOULLI, D. & JENKYNS, H.C. (1970): A Jurassic Basin: The Science Letters, 212: 307-320, Amsterdam. Glasenbach Gorge, Salzburg, Austria. - Verhandlungen der Geo- BAUER, F.K., CERNY, I., EXNER, C., HOLZER, H.L., HUSEN, D.V., logischen Bundesanstalt, 1970: 504-531, Wien. LOESCHKE, J., SUETTE, G. & TESSENSOHN, F. (1983): Erläuterungen BERNOULLI, D. & JENKYNS, H.C. (1974): Alpine, Mediterranean, zur Geologischen Karte der Karawanken, 1:25000, Ostteil. - 1- and central Atlantic Mesozoic facies in relation to the early 86, (Geologische Bundesanstalt) Wien. evolution of the Tethys. - SEPM Special Publications, 19: 129- BAUMGARTNER, P.O. (1984): A Middle Jurassic-Early Cretaceous 160, Tulsa. low-latitude radiolarian zonation based on Unitary Associations BERNOULLI, D. & JENKYNS, H. (2009): Ancient oceans and continen- and age of Tethyan radiolarites. - Eclogae geologicae Helvetiae, tal margins of the Alpine-Mediterranean Tethys: deciphering 77: 729-837, Basel. clues from Mesozoic pelagic sediments and ophiolites. - BAUMGARTNER, P.O. (1987): Age and genesis of Tethyan Jurassic Sedimentology, 56:149-190, (Blackwell) Oxford. Radiolarites. - Eclogae geologicae Helvetiae, 80: 831-879, Basel. BERNOULLI, D., MANATSCHAL, G., DESMURS, L. & MÜNTERER, O. BAUMGARTNER, P.O., BARTOLINI, A., CARTER, E.S., CONTI, M., (2003): Where did Gustav Steinmann see the Trinity? Back to CORTESE, G., DANELIAN, T., DE WEVER, P., DUMITRICA, P., the roots of an Alpine ophiolite concept. - (In: DILEK, Y. & DUMITRICA-JUD, R., GORICAN, S., GUEX, J., HULL, D.M., KITO, NEWCOMBE, S. (Eds.): Ophiolite Concept and the Evolution of N., MARCUCCI, M., MATSUOKA, A., MURCHEY, B., O´DOGHERTY, Geological Thought), Geological Society America Special Publi- L., SAVARY, J., VISHNEVSKAYA, V., WIDZ, D. & YAO, A. (1995a): cations, vol 373: 93-110, Washington. Middle Jurassic to Early Cretaceous Radiolaria Biochronology BERTLE, H. (1973): Zur Geologie des Fensters von Gargellen of Tethys based on Unitary Associations. - Memoires de Geo- (Vorarlberg) und seines Kristallinen Rahmens - Österreich. - logie, 23: 1013-1048, Lausanne. Mitteilungen der Gesellschaft Geologie- und Bergbaustudenten BAUMGARTNER, P.O., O´DOGHERTY, L., GORICAN, S., DUMITRICA-JUD, in Österreich, 22: 1-60, Wien. R., DUMITRICA, P., PILLEVUIT, A., URQUHART, E., MATSUOKA, A., BESLER, W. (1959): Die Jura-Fleckenmergel des Tannheimer Tales DANELIAN, T., BARTOLINI, A., CARTER, E.S., DE WEVER, P., KITO, (Außerfern, Tirol). - Jahrbuch der Geologischen Bundesanstalt, N., MARCUCCI, M. & STEIGER, T. (1995b): Radiolarian catalogue 1959: 407-460, Wien. and systematics of Middle Jurassic to Early Cretaceous Tethyan BILL, M., BUSSY, F., COSCA, M., MASSON, H. & HUNZIKER, J. (1997): genera and species. - In: BAUMGARTNER, P.O., O´DOGHERTY, L., High-precision U-Pb and 40Ar/39Ar dating of an Alpine ophiolithe GORICAN, S., URQUHART, E., PILLEVUIT, A. & DE WEVER, P. (Eds.): (Gets nappe, French Alps). - Eclogae geologicae Helvetiae, 90:

127 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

43-54, Basel. onen, 16: 231-268, (Österreichische Akademie Wissenschaften) BILL, M., O´DOGHERTY, L., GUEX, J., BAUMGARTNER, P. & MASSON, Wien. H. (2001): Radiolarite ages in Alpine-Mediterranean ophiolites: BÖHM, F., BRACHERT, T.C. & ROTHE, M. (1997): Ein Kristallingeröll Constraints on the oceanic spreading and the Tethys-Atlantic im pelagischen Lias von Adnet (Nördliche Kalkalpen, Salzburg). connection. - Geological Society America Bulletin, 113:129-143, - Geologische Blätter NO-Bayern, 47: 289-302, Erlangen. Washington. BÖHM, F. & BRACHERT, T.C. (1993): Deep-water Stromatolites and BLAU, J. (1987a): Neue Foraminiferen aus dem Lias der Lienzer Frutexites Maslov from the Early and Middle Jurassic of S- Dolomiten. Teil I: Die Foraminiferenfauna einer roten Spalten- Germany and Austria. - Facies, 28: 145-168, Erlangen. füllung in Oberrhätkalken. - Jahrbuch der Geologischen Bun- BÖHM, F., DOMMERGUES, J.L. & MEISTER, C. (1995): Breccias of the desanstalt, 129/3+4: 495-523, Wien. Adnet Formation: indicators of a Mid-Liassic event in the BLAU, J. (1987b): Neue Foraminiferen aus dem Lias der Lienzer Northern Calcareous Alps (Salzburg/Austria). - Geologische Dolomiten. Teil II: Foraminiferen (Involutinina, Spirillinina) aus Rundschau, 84: 272-286, Berlin Heidelberg. der Lavanter Breccie (Lienzer Dolomiten) und den Nördlichen BÖHM, F., EBLI, O., KRYSTYN, L., LOBITZER, H., RAKUS, M. & SIBLIK, Kalkalpen. - Jahrbuch der Geologischen Bundesanstalt, 130/1: M. (1999): Fauna, Sedimentology and Stratigraphy of the 5-23, Wien. Hettangian-Sinemurian (Lower Jurassic) of Adnet (Salzburg, BLAU, J. (1994): Exkursionsführer. - Jahrestagung 1994 in Lavant Österreich). - Abhandlungen der Geologischen Bundesanstalt, (Lienzer Dolomiten). (21.-24. September 1994). - 1-38, (DUWG 56/2: 143-271, Wien. - Stratigraphische Kommission Subkommission für Jura- BÖSE, E. (1893): Die Fauna der liassischen Brachiopodenschichten stratigraphie) Gießen Lavant. bei Hindelang (Allgäu). - Jahrbuch der kaiserlich-königlichen BLAU, J. (1998): Monographie der Ammoniten des Obersine- Geologischen Reichsanstalt, 42: 717-722, Wien. muriums (Lotharingium, Lias) der Lienzer Dolomiten (Öster- BÖSE, E. (1894): Über liasische und mitteljurassische Flecken- reich): Biostratigraphie, Systematik und Paläobiogeographie. - mergel in den bayerischen Alpen. - Zeitschrift der Deutschen Revue de Paléobiologie, 17(1): 177-285, Genève. geologischen Gesellschaft, XLVI: 703-767, Tafel LVI, Berlin. BLAU, J. & GRÜN, B. (1994): Mikrofazies und Foraminiferen- BÖSE, E. (1898): 3. Beiträge zur Kenntnis der alpinen Trias. Die faunen im unteren Lias (Kendlbachschichten, Enzesfelder Kalk) Berchtesgadener Trias und ihr Verhältnis zu den übrigen Trias- der Osterhorngruppe (Salzburg, Österreich). - Giessener Geo- bezirken in den nördlichen Kalkalpen. - Zeitschrift der Deut- logische Schriften, 51: 63-83, Gießen. schen Geologischen Gesellschaft, 50: 468-586, Berlin. BLAU, J. & GRÜN, B. (1995): Jura und Kreide in der Amlacher BONIS, N.R., KÜRSCHNER, W.M. & KRYSTYN, L. (2009): A detailed Wiesen-Mulde (Nördliche Lienzer Dolomiten). - Arbeitstagung palynological study of the Triassic-Jurassic transition in key der Geologischen Bundesanstalt 1995, Geologie von Osttirol, sections of the Eiberg Basin (Northern Calcareous Alps, Austria). 43-66, Wien. - Review of Palaeobotany and , 156: 376-400, (Else- BLAU, J. & GRÜN, B. (1996): Sedimentologische Beobachtungen vier) Amsterdam. im Rot-Grau-Schnöll-Bruch (Hettangium/Sinemurium) von BOOROVÁ, D., LOBITZER, H., SKUPIEN, P. & VAŠÍCEK, Z. (1999): Adnet (Österreich). - Giessener Geologische Schriften, 56: 95- Biostratigraphy and facies of Upper Jurassic-Lower Cretaceous 106, Gießen. pelagic carbonate sediments (Oberalm-, Schrambach- and Ross- BLAU, J. & GRÜN, B. (1997): Neue Involutinen (Foraminiferen) feld-Formation) in the Northern Calcareous Alps, South of Salz- aus dem marmorea-Hartgrund (Hettangium/Sinemurium, Lias) burg. - Abhandlungen der Geologischen Bundesanstalt, 56/2: von Adnet (Österreich). - Neues Jahrbuch Geologie Paläontolo- 273-318, Wien. gie, Abhandlungen, 204: 247-262, Stuttgart. BORNEMANN, A., ASCHWER, U. & MUTTERLOSE, J. (2003): The impact BLAU, J. & MEISTER, C. (1991): Liassic (Pliensbachian) Ammonites of calcareous nannofossils on the pelagic carbonate accumulation from the Lienz Dolomites (Eastern Tyrol, Austria). - Jahrbuch across the Jurassic-Cretaceous boundary. - Palaeogeography, der Geologischen Bundesanstalt, 134: 171-204, Wien. Palaeoclimatology, Palaeoecology, 199: 187-228, Amsterdam. BLAU, J. & SCHMIDT, T. (1988): Tektonisch kontrollierte Sedimen- BOUROULLEC, J. & DELOFFRE, R. (1968): Les Algues du Néocomien tation im Unterlias der Lienzer Dolomiten (Österreich, Osttirol, d´Aquitaine. - Bulletin du Centre de Recherches Pau - SNPA, Kärnten). - Mitteilungen der Gesellschaft Geologie- und Bergbau- 4(1): 79-127, Pau. studenten in Österreich, 34/35: 185-207, Wien. BOSELLINI, A. & WINTERER, E.L. (1975): Pelagic limestone and BLAU, J. & SCHMIDT, T. (1990): Weitere Beobachtungen in den radiolarite of the Tethyan Mesozoic. - Geology, 3: 279-282, Liasfleckenmergeln der Stadelwiese (östliche Lienzer Dolomi- Boulder. ten, Kärnten) - Eine Erwiderung auf den »Bericht 1988 über BRANDNER, R. & SPERLING, M. (1995): Zur „Terrane“-Geschichte geologische Aufnahmen auf den Blättern 179 Lienz, 180 Wink- der Lienzer Dolomiten (Drauzug) aus stratigraphischer und struk- lern und 196 Obertilliach« von A. WARCH. - Mitteilungen der tureller Sicht. - Arbeitstagung der Geologischen Bundesanstalt Gesellschaft Geologie- und Bergbaustudenten in Österreich, 36: Lienz, 1995: 23-35, Wien. 169-177, Wien. BRAUN, R. (1998): Die Geologie des Hohen Gölls. Torrener-Joch- BLOME, C.D. (1984): Middle Jurassic (Callovian) radiolarians from Zone/Jenner/Hoher Göll eine durch Kontinent/Kontinent-Kol- carbonate concretions, Alaska and Oregon. - Micropaleontology, lision ausgelöste Gleitdecke in den Tauglbodenschichten (mitt- 30: 343-389, New York. lerer Oberjura) der Berchtesgadener Alpen. Nationalpark Berch- BODEN, K. (1915): Geologische Aufnahme der Tegernseer Berge tesgaden, Forschungsbericht 40. - 1-192, (Plenk) Berchtesgaden. im W der Weißach. - Geognostische Jahreshefte, 27, München. BRODIE, P.B. (1853): Remarks on the Lias of Fretherne, near BÖHM, J. (1910): Der Hochfelln. - Zeitschrift der deutschen Geo- Newnham, and Purton, near Sharpness, with an account of new logischen Gesellschaft, 75: 717-722, Berlin. foraminifera, discovered there. - Annals and Magazine of Natu- BÖHM, F. (1986): Der Grimming: Geschichte einer Karbonat- ral History, series 2, 12: 272-276, London. plattform von der Obertrias bis zum Dogger (Nördliche Kalk- BUCUR, I., GRANIER, B. & SCHLAGINTWEIT, F. (2009): Steinmanni- alpen, Steiermark). - Facies, 15: 195-232, Erlangen. porella, a new dasycladale genus name for „Linoporella“ with BÖHM, F. (1992): Mikrofazies und Ablagerungsmilieu des Lias two orders of laterals. - Facies, (Springer) Berlin Heidelberg. und Dogger der Nordöstlichen Kalkalpen. - Erlanger Geologi- DOI 10.1007/s10347-009-0206-4 sche Abhandlungen, 121: 55-217, Erlangen. BUSER, S. (1979): Jurassic beds in Slovenia. - (In: DROBNE, K. BÖHM, F. (2003): Lithostratigraphy of the Adnet Group (Lower (Ed.): Guidebook 16th European Micropaleontological Collo- to Middle Jurassic, Salzburg, Austria). - (In: PILLER, W.E. (Ed.): quium), 27-36, Ljubljana. Stratigraphia Austriaca. Österreichische Akademie der Wissen- CAROZZI, A. (1953): Découverte du genre Salpingoporella dans le schaften), Schriftenreihe der Erdwissenschaftlichen Kommissi- Jurassique supérieur du Grand-Salève. - Archives des Sciences,

128 Journal of Alpine Geology, 50: 1-152, Wien 2009

6/6: 382-386, Genf. Apennino Centrale: Correlazioni. - Geologia Romana, 8: 15-40, CARTER, E.S., CAMERON, B.E.B. & SMITH, P.L. (1988): Lower and Rom. Middle Jurassic radiolarian biostratigraphy and systematic CSÁSZÁR, G. (1994): Some Notes Concerning the Correlation of paleontology, Queen Charlotte Islands, British Columbia. - the Jurassic and Lower Cretaceous Successions of the Northern Geological Survey of Canada, Bulletin, 386: 1-109, Ottawa Karavanke and the Transdanubian Central Range. - (In: SCHÖN- Calgary Vancouver. LAUB, H.P., GAAL, G., LOBITZER, H., CSÁSZÁR, G. & DAURER, A. CARTER, E.S., WHALEN, P.A. & GUEX, J. (1998). Biochronology (Eds.): Jubiläumsschrift 20 Jahre Geologische Zusammenarbeit and paleontology of Lower Jurassic (Hettangian and Sinemurian) Österreich - Ungarn, Teil 2), 403-408, (Geologische Bundesan- radiolarians, Queen Charlotte Islands, British Columbia. - stalt) Wien. Geological Survey Canada Bulletin, 496: 1-86, Ottawa Calgary CSÁSZÁR, G., FÖZY, I. & VÖRÖS, A. (2001): Preliminary results on Vancouver. Jurassic and Lower Cretaceous formations in the Karavanke CHANNELL, J.E.T., BRANDNER, R., SPIELER, A. & SMATHERS, N.P. Mountains and Lienz Dolomites. - Acta Geologica Hungarica, (1990): Mesozoic paleogeography of the Northern Calcareous 44: 439-462, Budapest. Alps - evidence from paleomagnetism and facies analysis. - CUSTODIS, A. & SCHMIDT-THOMÉ, P. (1939): Geologie der bayrischen Geology, 18: 828-831, Boulder. Berge zwischen Hindelang und Pfronten im Allgäu. - Neues Jahr- CHANNELL, J.E.T., BRANDNER, R., SPIELER, A. & STONER, J.S. (1992): buch Mineralogie Geologie Paläontologie, Beilagenband 80, Ab- Paleomagnetism and paleogeography of the Northern Calcareous teilung B: 307-463, Stuttgart. Alps (Austria). - Tectonics, 11: 792-810, Washington. DACQUÉ, E. (1912): Geologische Aufnahme des Gebietes um den CHANNELL J.E.T. & KOZUR H.W. (1997): How many oceans? Schliersee und Spitzingssee in den oberbayerischen Alpen. - Meliata, Vardar, and Pindos oceans in the Mesozoic Alpine Landeskundliche Forschungshefte Geographische Gesellschaft paleogeography. - Geology, 25:183-186, Boulder. München, 15: 211-279, (Mitteilungen Geographische Gesell- CHIARI, M., CORTESE, G., MARCUCCI, M. & NOZZOLI, N. (1997): schaft München, 7) München. Radiolarian biostratigraphy in the sedimentary cover of the DAL PIAZ, G.V. (1999): The Austroalpine-Piemont nappe stack ophiolites of south-western Tuscany, Central Italy. - Eclogae and the puzzle of Alpine Tethys. - Memoir Societa Geologia geologicae Helvetiae, 90: 55-77, Basel. Italiana, 51: 155-176, Padova. CHIARI, M., MARCUCCI, M. & PRELA, M. (2002): New species of DARGA, R. & SCHLAGINTWEIT, F. (1991): Mikrofazies, Paläontolo- Jurassic radiolarians in the sedimentary cover of ophiolites in gie und Stratigraphie der Lerchkogelkalke (Tithon-Berrias) des the Mirdita area, Albania. - Micropaleontology, 48 (Suppl. 1): Dietrichshorns (Salzburger Land, Nördliche Kalkalpen). - Jahr- 61-87, New York. buch der Geologischen Bundesanstalt, 134/2: 205-226, Wien. CLAR, E. (1937): Über Schichtfolge und Bau der südlichen Rad- DECONINCK, J.F. & BERNOULLI, D. (1991): Clay mineral assemblages städter Tauern (Hochfeindgebiet). - Sitzungsberichte der Öster- of Mesozoic pelagic and flysch sediments of the Lombardian reichischen Akademie der Wissenschaften. Mathematisch-natur- Basin (Southern Alps): implications for palaeotectonics, palaeo- wissenschaftlichen Klasse: Abteilung 1, 146: 249-316, (Öster- climate and diagenesis. - Geologische Rundschau, 80: 1-17, reichische Akademie Wissenschaften) Wien. Stuttgart. CLAR, E. (1940): Von der Tarntaler Breccie (Lizum). - Sitzungs- DELECAT, S. & REITNER, J. (2005): Sponge communities from the berichte der Österreichischen Akademie der Wissenschaften. Lower Liassic of Adnet (Northern Calcareous Alps, Austria). - Mathematisch-naturwissenschaftlichen Klasse: Abteilung 1, 149, Facies, 51: 385-404, Berlin Heidelberg. Heft 1-2: 71-84, (Österreichische Akademie Wissenschaften) DERCOURT, J., ZONENSHAIN, L.P., RICOU, L.E., KAZMIN, V.G., LE Wien. PICHON, X., KNIPPER, A.L., GRANDJACQUET, C., SBORTSHIKOV, L.M., CLAUDEL, M.-E. & DUMONT, T. (1999): A record of multistage GEYSSANT, J., LEPVRIER, C., PECHERSKY, D.H., BOULIN, J., SIBUET, continental break-up on the Brianconnais marginal plateau (Wes- J.C., SAVOSTIN, L.A., SOROKHTIN, O., WESTPHAL, M., BAZHENOV, tern Alps): Early and Middle-Late Jurassic rifting. - Eclogae M.I., LAUER, J.P. & BIJU-DUVAL, B. (1986): Geological Evoluti- geologicae Helvetiae, 92: 45-61, Basel. on of the Tethys Belt from the Atlantic to the Pamirs since the COLACICCHI, R. & BIGOZZI, A. (1995): Event stratigraphy and Lias. - Tectonophysics, 123: 241-315, Amsterdam. carbonate platform-basin interrelations during the Jurassic in DERCOURT, J., RICOU, L.E. & VRIELYNCK, B. (1993): Atlas Tethys the Central Apennines. - Palaeopelagos, 5: 111-128, Roma. Palaeoenvironmental Maps. - Gauthier-Villars, Paris. CONTI, P., MANATSCHAL, G. & PFISTER, M. (1994): Synrift sedimen- DE WEVER, P. (1982): Nassellaria (Radiolaires Polycystines) du tation, Jurassic and Alpine tectonics in the central Ortler nappe Lias de Turquie. - Revue de Micropaléontologie, 24: 189-232, (Eastern Alps, Italy). - Eclogae geologicae Helvetiae, 87: 63-90, Paris. Basel. DE WEVER, P. & BAUDIN, F. (1996): Palaeogeography of radiolarite CORDEY, F. & CARTER, E. S. (1996): New Nassellaria (Radiolaria) and organic-rich deposits in Mesozoic Tethys. - Geologische from the Lower Jurassic of the Canadian Cordillera. - Canadian Rundschau, 85: 310-326, Berlin. Journal of Earth Science, 33: 444-451, Ottawa. DE WEVER, P., DUMITRICA, P., COULET, J.P., NIGRINI, C. & CARIDOIT, CORNELIUS, H. P. (1951): Zur Frage der Absatzbedingungen der M. (2001): Radiolarians in the Sedimentary Record. - 1-533, Radiolarite. - Geologische Rundschau, 39: 216-221, Stuttgart. (Gordon and Breach Science Publishers) Amsterdam. CORNELIUS, H.P. (1952): Die Geologie des Mürztalgebietes. - Jahr- DIENER, C. (1885): Über den Lias der Rofan-Gruppe. - Jahrbuch buch der Geologischen Bundesanstalt, Sonderband 4: 1-94, Wien. der kaiserlich-königlichen Geologischen Reichsanstalt, XXXV: CORNELIUS, H.P. & PLÖCHINGER, B. (1952): Der Tennengebirgs-N- 27-36, Wien. Rand mit seinen Manganerzen und die Berge im Bereich des DEWEY, J.F., PITMAN, W.C., RYAN, W.B.F. & BONIN, J. (1973): Lammertales. - Jahrbuch der Geologischen Bundesanstalt, 1952: Plate tectonics and evolution of the Alpine system. - Bulletin 145-225, Wien. geological Society of America, 84: 3137-3180, Washington. CORNELIUS-FURLANI, M. (1953): Beiträge zur Kenntnis der Schicht- DIERSCHE, V. (1980): Die Radiolarite des Oberjura im Mittelab- folge und der Tektonik der Lienzer Dolomiten. I. - Sitzungs- schnitt der Nördlichen Kalkalpen. - Geotektonische Forschun- berichte der Österreichischen Akademie der Wissenschaften. gen, 58: 1-217, Stuttgart. Mathematisch-naturwissenschaftlichen Klasse: Abteilung 1, 162: DIETRICH, V.J. (1976): Evolution of the Eastern Alps: a plate 279-294, (Österreichische Akademie Wissenschaften) Wien. tectonics working hypothesis. - Geology, 4: 147-152, Boulder. CORTESE, G. (1993): Radiolarian biostratigraphy of the Tuscan DÖSSEGGER, R., FURRER, H. & MÜLLER, W.H. (1982): Die Sediment- Cherts (Tuscan Succession) from Val di Lima, Tuscany, Northern serien der Engadiner Dolomiten und ihre lithostratigraphische Apennines. - Paleopelagos, 3: 169-189, Rom. Gliederung (Teil 2). - Eclogae geologicae Helvetiae, 75: 303-330, CRESCENTI, U. (1969): Biostratigrafia delle facies mesozoiche dell´ Basel.

129 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

DOMMERGUES, J.L., MEISTER, C. & BÖHM, F. (1995): New Data on chen. Austroalpine Liassic Ammonites from the Adnet Quarries and EHRENDORFER, T. (1988): Zur Geologie der Weyrer Bögen im Ge- Adjacent Areas (Oberösterreich, Northern Calcareous Alps). - biet von Großraming an der Enns (O.Ö.). - Mitteilungen der Jahrbuch der Geologischen Bundesanstalt, 138: 161-205, Wien. Gesellschaft Geologie- und Bergbaustudenten in Österreich, 34/ DONOFRIO, D.A. & MOSTLER, H. (1978): Zur Verbreitung der 35: 135-149, Wien. Saturnalidae (Radiolaria) im Mesozoikum der nördlichen Kalk- EL KADIRI, K. (1992): Description de nouvelles especes de alpen und Südalpen. - Geologisch-Paläontologische Mitteilun- radiolaires jurassiques de la dorsale calcaire externe (Rif, Maroc). gen Innsbruck, 7: 1-55, Innsbruck. - Revista Espanola de Paleontologia, v. Extra, 37-48, Madrid. DRAGASTAN, O. (1985): Review of Tethyan Mesozoic Algae of ENZENBERG, M. (1967): Die Geologie der Tarntaler Berge (Wattener Romania. - (In: TOOMEY, D.F. & NITECKI, M.H. (Eds.): Lizum), Tirol. - Mitteilungen der Gesellschaft Geologie- und Paleoalgology: Contemporary Research and Aplications), 101- Bergbaustudenten in Wien, 17 (1966): 5-50, Wien. 161, (Springer) Berlin. ENZENBERG-PRAEHAUSER, M. (1976): Zur Geologie der Tarntaler DUMITRICA, P. (1970): Cryptocephalic and cryptothoracic Nassella- Breccie und ihrer Umgebung im Kamm Hippold-Kalkwand ria in some Mesozoic deposits of Romania. - Revue Roumaine (Tuxer Voralpen, Tirol). - Mitteilungen der Gesellschaft Geolo- Géol. Géophys. Géogr., Séries Géol., 14: 45-124, Bucarest. gie- und Bergbaustudenten in Österreich, 23: 163-180, Wien. DUMITRICA, P. & DE WEVER, P. (1991): Assignation to rasdiolaria FABRICIUS, F. (1966): Beckensedimentation und Riffbildung an der of two Upper Jurassic secies previously described as Fora- Wende Trias/Jura in den bayrisch-tiroler Kalkalpen. - Internati- minifera: systematic consequences. - C.R. Académie des Sciences, onal Sedimentary Petrographical Series, IX: 1-143, Leiden. série II, 312: 553-558, Paris. FAHLBUSCH, V. (1962): Zur Stratigraphie des Doggers in der kalk- DUMITRICA, P., IMMENHAUSER, A. & DOMITRICA-JUD, R. (1997): alpinen Randzone des Kampenwand-Vorlandes. - Mitteilungen Mesozoic radiolarian biostratigraphy from Masirah ophiolite, der Bayerischen Staatsammlung Paläontologie und historische Sultanate of Oman. Part I: Middle Triassic, uppermost Jurassic Geologie, 2: 9-16, München. and Lower Cretaceous Spumellarians and Multisegmented FAUPL, P. (1978): Zur räumlichen und zeitlichen Entwicklung von Nassellarians. - Bulletin Nature Museum Natura Science Breccien- und Turbiditserien in den Ostalpen. - Mitteilungen (Taiwan), 9: 1-106, Taichung. der Gesellschaft Geologie- und Bergbaustudenten in Österreich, DURAND-DELGA, M. & GASIOROWSKI, S.M. (1970): Les niveaux à 25: 81-110, Wien. Aptychus dans les pays autour de la Méditerranée occidentale FAUPL, P. & BERAN, A. (1983): Diagenetische Veränderungen an et dans les Carpathes. - Compte Rendus de la Societe Geologique Radiolarien- und Schwammspicula-führenden Gesteinen der de France (Paris), 270: 767-770, Paris. Strubbergschichten (Jura, Nördliche Kalkalpen, Österreich). - DYA , M. (1992): Mikropaläontologische und fazielle Untersu- Neues Jahrbuch Geologie Paläontologie, Monatshefte, 1983: 129- chungen im Oberjura zwischen Salzburg und Lofer. - 1-138, 140, Stuttgart. PhD-Thesis Technische Universität Berlin, Berlin. FAUPL, P. & WAGREICH, M. (2000): Late Jurassic to Eocene EBERLI, G.P. (1985): Die jurassischen Sedimente in den ostalpinen palaeogeography and geodynamic evolution of the Eastern Alps. Decken Graubündens - Relikte eines passiven Kontinentalrandes. - Mitteilungen der Österreichischen Geologischen Gesellschaft, - Mitteilungen Geologisches Institut ETH Zürich, n.F., 255: 1- 92 (1999): 79-94, Wien. 203, Zürich. FENNINGER, A. (1967): Riffentwicklung im oberostalpinen Malm. EBERLI, G.P. (1987): Carbonate turbidite sequences deposited in - Geologische Rundschau, 56: 171-185, Stuttgart. rift-basins of the Jurassic Tethys Ocean (western Alps, Switzer- FENNINGER, A. (1968): Das Kalzitgefüge der sparitischen Kalke land). - Sedimentology, 34: 363-388, (Blackwell) Oxford. des Plassen (Tithonium, Nördliche Kalkalpen, Oberösterreich). EBERLI, G.P. (1988): The evolution of the southern continental - Sedimentology, 10: 273-291, (Blackwell) Oxford. margin of the Jurassic Tethys Ocean as recorded in the Allgäu FENNINGER, A. (1969): Die Hydrozoenfauna des Sandling (Kim- Formation of the Austroalpine nappes of Graubünden (Switzer- meridgium, Nördliche Kalkalpen). - Anzeiger der Österreich- land). - Eclogae geologicae Helvetiae, 81: 175-214, Basel. ischen Akademie der Wissenschaften, mathematisch-naturwis- EBERLI, G.P. (1991): Calcareous Turbidites and Their Relations- senschaftliche Klasse, 1969/2: 33-35, Wien hip to Sea-Level Fluctuations and Tectonism. - (In: EINSELE, G., FENNINGER, A. (1970): Faktorenanalyse nordalpiner Malmkalke. - RICKEN, W. & SEILACHER, A. (Eds.): Cycles and Events in Verhandlungen der Geologischen Bundesanstalt, 1970: 618-636, Stratigraphy), 340-359, (Springer) Berlin Heidelberg. Wien. EBLI, O. (1989): Foraminiferen und Coccolithen aus den Lias- FENNINGER, A. (1972): Die Fauna und Flora der Barmsteinkalk-

Epsilon-Schiefern der UnkenerMulde (Tirolikum, Nördliche Bank B2 im Raume des Trattberges (Osterhorngruppe, Salz- Kalkalpen). - Mitteilungen Bayerische Staatssammlung Paläon- burg). - Berichte aus dem Haus der Natur in Salzburg, 3: 10-23, tologie historische Geologie, 29: 61-83, München. Salzburg. EBLI, O. (1991), mit Beiträgen von DRAXLER, I., KLEIN, P., KODINA, FENNINGER, A., FLÜGEL, H. & HOLZER, H.-L. (1971): Der oberost- L.A., LOBITZER, H. & SCHWAIGHOFER, B.: Fazies, Paläontologie alpine Malm der Nördlichen Kalkalpen (Österreich). - Annales und organische Geochemie der Sachranger Schiefer (Unter- Instituti Geologici Publici Hungarici, Vol. LIV, fasc. 2: 345-352, toarcium) im Mittelabschnitt der Nördlichen Kalkalpen zwi- Budapest. schen Isar und . - Jahrbuch der Geologischen Bundesan- FENNINGER, A. & HÖTZL, H. (1965): Die Hydrozoa und Tabulozoa stalt, 134/1: 5-14, Wien. der Tressenstein- und Plassenkalke (Ober-Jura). - Mitteilungen EBLI, O. (1997): Sedimentation und Biofazies an passiven des Museums Bergbau, Geologie und Technik, Landesmuseum Kontinentalrändern: Lias und Dogger des Mittelabschnittes der Joanneum, 27: 1-61, Graz. Nördlichen Kalkalpen und des frühen Atlantik (DSDP site 547B, FENNINGER, A. & HÖTZL, H. (1967): Die Mikrofauna und -flora Marokko). - Münchner Geowissenschaftliche Abhandlungen, des Plassen- und Tressensteinkalkes der Typlokalität (Nördli- Reihe A, 32: 1-255, München. che Kalkalpen). - Neues Jahrbuch Geologie Paläontologie, Ab- EBLI, O., VETÖ, I., LOBITZER, H., SAJGO, C., DEMENY, A. & HETENYI, handlungen, 128/1: 1-37, Stuttgart. M. (1998): Primary productivity and early diagenesis in the FENNINGER, A. & HOLZER, H.L. (1971): Die Entwicklung der Retten- Toarcian Tethys on the example of the Mn-rich black shales of bachkalke im Raume des Hubkogels bei Bad Ischl. - Carinthia II, the Sachrang Formation, Northern Calcareous Alps. - Organic Sonderheft 28: 31-49, Klagenfurt. Geochemistry, 29, No. 5-7: 1635-1647, Amsterdam. FENNINGER, A. & HOLZER, H.L. (1972): Fazies und Paläogeogra- EGGER, J.G. (1902): Der Bau der Orbitolinen und verwandter For- phie des oberostalpinen Malms. - Mitteilungen der Geologi- men. - Abhandlungen Bayerische Akademie der Wissenschaf- schen Gesellschaft in Wien, 63 (1970): 52-141, Wien. ten, Mathematisch-Physikalische Classe, 21/3: 575-600, Mün- FERNECK, F.E. (1962): Stratigraphie und Fazies im Gebiet der mitt-

130 Journal of Alpine Geology, 50: 1-152, Wien 2009

leren Saalach und des Reiteralm-Gebirges: ein Beitrag zur Decken- lution of the Alps. - Tectonophysics, 60: 121-139, Amsterdam. frage in den Berchtesgadener Alpen. - 1-107, PhD-Thesis Tech- FRISCH, W. (1980a): Plate motions in the Alpine region and their nische Hochschule München, München. correlation to the opening of the Atlantic ocean. - Mitteilungen FESEFELDT, K. (1962): Schichtenfolge und Lagerung des oberen österreichische Geologische Gesellschaft, 71/72: 45-48, Wien. Weißjura zwischen Solnhofen und der Donau (Südliche Franken- FRISCH, W. (1980b): Plate motions in the Alpine region and their alb). - Erlanger geologische Abhandlungen, 46: 3-80, Taf. 1-2, correlation to the opening of the Atlantic ocean. - Geologische Erlangen. Rundschau, 70: 402-411, Stuttgart. FINKELSTEIN, H. (1888): Der Laubenstein bei Hohenaschau. Ein FRISCH, W., GOMMERINGER, K., KELM, U. & POPP, F. (1987): The Beitrag zur Kenntnis der Brachiopodenfauna des unteren alpi- Upper Bündner Schiefer in the Tauern Window: a key to under- nen Dogger. - Neues Jahrbuch Mineralogie, Geologie Paläonto- stand Eoalpine orogenic processes in the Eastern Alps. - (In: logie. Beilagenband, 6: 35-104, Stuttgart. FLÜGEL, H.W. & FAUPL, P. (Eds.): Geodynamics of the Eastern FISCHER, R. (1969): Roter Ammonitenkalk und Radiolarit aus dem Alps), 55-69, (Deuticke) Wien. unteren Dogger der Kammerker (Nordtirol). - Mitteilungen der FRISCH, W. & GAWLICK, H.-J. (2003): The nappe structure of the Bayerischen Staatssammlung für Paläontologie und historische central Northern Calcareous Alps and its disintegration during Geologie, 9: 93-116, München. Miocene tectonic extrusion - a contribution to understanding FISCHER, R. (1970): Ammoniten aus dem Aalenium der nördlichen the orogenic evolution of the Eastern Alps. - International Jour- Kalkalpen. - Neues Jahrbuch Geologie Paläontologie, Monats- nal of Earth Sciences, 92: 712-727, Berlin Heidelberg. hefte, 1970: 585-604, Stuttgart. FROITZHEIM, N. & EBERLI, G. (1990): Extensional detachment FISCHLI, H. (1916): Beitrag zur Kenntnis der Fossilen Radiolarien faulting in the evolution of a Tethys passive continental margin. in der Riginagelfluh. - Mitteilungen Naturwissenschaftliche - Geological Society America Bulletin 102: 1297-1308, Was- Gesellschaft Winterthur, Jahrgang 1915-1916, 11: 44-47, hington. Winterthur. FROITZHEIM, N. & MANATSCHAL, G. (1996): Kinematics of Jurassic FLORINETH, D. & FROITZHEIM, N. (1994): Transition from continen- rifting, mantle exhumation, and passive-margin formation in the tal to oceanic basement in the Tasna nappe (Engadine window, Austroalpine and Penninic nappes (eastern Switzerland). - Graubünden, Switzerland): evidence for Early Cretaceous Geological Society of America Bulletin, 108: 1120-1133, Was- opening of the Valais ocean. - Schweizer Mineralogische Petrogra- hington. phische Mitteilungen, 74: 437-448, Zürich. FROITZHEIM, N., PLASIENKA, D. & SCHUSTER, R. (2008): Alpine FLÜGEL, E. (1964): Ein neues Vorkommen von Plassenkalk (Ober- tectonics of the Alps and Western Carpathians. - (In: MCCANN, Jura) im Steirischen Salzkammergut, Österreich. - Neues Jahr- T. (Ed.): The Geology of Central Europe, Volume 2: Mesozoic buch Geologie Paläontologie, Abhandlungen, 120/2: 213-232, and Cenozoic), 1141-1232, Geological Society London, London. Stuttgart. FUCHS, G. & OBERHAUSER, R. (1990): Geologische Karte der Repu- FLÜGEL, E. (2004): Microfacies of Carbonate Rocks. Analysis, blik Österreich 1:50.000. Blatt 170 Galtür. - (Geologische Bun- Interpretation and Application. - 1-976, (Springer) Berlin. desanstalt) Wien. FLÜGEL, E. & MEIXNER, H. (1972): Pyritisierte Spongien-Nadeln FUCHS, T. (1878): Über die Entstehung der Aptychenkalke. - und Radiolarien aus Oberalmer-Kalken (Malm) des Weißenbach- Sitzungsberichte der Österreichischen Akademie der Wissen- tales SW Strobl/Wolfgangsee (Salzburg). - Annalen Naturhisto- schaften. Mathematisch-naturwissenschaftliche Klasse: Abtei- risches Museum Wien, 76: 187-194, Wien. lung 1, 76 (1877): 329-334, (Österreichische Akademie Wissen- FLÜGEL, H. (1967): Die Lithogenese der Steinmühl-Kalke des schaften) Wien. Arracher Steinbruchs (Jura, Österreich). - Sedimentology, 9: 23- FUCHS, T. (1883): Welche Ablagerungen haben wir als Tiefsee- 53, (Blackwell) Oxford. bildungen zu betrachten? - Neues Jahrbuch Mineralogie, Geolo- FLÜGEL, H. & PÖLSLER, P. (1965): Lithogenetische Analyse der gie Paläontologie. Beilageband, 2: 487-584, Heidelberg. Barmsteinkalkbank B2 nordwestlich von St. Koloman bei Hall- FUCHS, W. (1973): Ein Beitrag zur Kenntnis der Jura-„Globigeri- ein (Tithonium, Salzburg). - Neues Jahrbuch Geologie Paläon- nen“ und verwandter Formen an Hand polnischen Materials tologie, Abhandlungen, 123: 249-280, Stuttgart. des Callovien und Oxfordien. - Verhandlungen der Geologischen FOLGNER, R. (1917): Über die Unterschiede der Entwicklung von Bundesanstalt, 1973: 445-487, Wien. Jura und Kreide im Sonnwendgebirge. - Jahrbuch der kaiserlich- FURRER, H. (1993): Stratigraphie und Fazies der Trias/Jura-Grenz- königlichen Geologischen Reichsanstalt, 1917: 38-40, Wien. schichten in den oberostalpinen Decken Graubündens. - 1-111, FOREMAN, H.P. (1973): Radiolaria from DSDP Leg 20. - (In: (PhD-Thesis Universität Zürich) Zürich. HEEZEN, B.C., MACGREGOR, J.D. et al. (Eds.): Init. Reports Deep GAITANAKIS, P. (1977): Faziesgliederung und Tektonik der vor- Sea Drilling Project), 20: 249-305, (U. S. Government Printing alpinen Decken zwischen Enns- und Steyrtal (Nördliche Kalk- Office) Washington, D. C. alpen, Oberösterreich). - Mitteilungen der Gesellschaft Geolo- FOREMAN, H.P. (1975): Radiolaria from the North Pacific, Deep gie- und Bergbaustudenten in Österreich, 24: 189-201, Wien. Sea Drilling Project, Leg 32. - (In: LARSON, R. L. & MOBERLY, R. GALL, H. (1970): Die Stratigraphie des Jura in der kalkalpinen et al. (Eds.): Initial Reports Deep Sea Drilling Project), 32: 579- Randzone des Hochgern-Vorlandes. - (In: DOBEN, K. (Ed.): Geo- 676, (U.S. Government Printing Office) Washington, D.C. logische Karte von Bayern 1:25000, Erläuterungen zum Blatt FOURY, G. & VINCENT, E. (1967): Morphologie et répartition Nr. 8241 Ruhpolding), 29-88, München. stratigraphique du genre Kilianina PFENDER. (Foraminifère). - GALLET, Y., VANDAMME, D. & KRYSTYN, L. (1993): Magneto- Eclogae geologicae Helvetiae, 60/1: 33-45, Basel. stratigraphy of the Hettangian Langmoos section (Adnet, FRANK, W. & SCHLAGER, W. (2006): Jurassic strike slip versus Austria): evidence for time-delayed phases of magnetization. - subduction in the Eastern Alps. - International Journal of Earth Geophysical Journal International, 115: 575-585, Oxford. Sciences, 95: 431-450, Berlin Heidelberg. GANSS, O. (1956): Geologie des Blattes Bergen. - Geologica FRASL, G. (1958): Zur Seriengliederung der Schieferhülle in den Bavarica, 26: 1-164, München. mittleren Hohen Tauern. - Jahrbuch der Geologischen Bundes- GARRISON, R.E. (1964): Jurassic and Early Cretaceous anstalt, 101: 323-472, Wien. sedimentation in the Unken Valley area, Austria. - 1-188, PhD- FRIEBE, J.G. (2007): Geologie der österreichischen Bundesländer - Thesis Princeton University, Princeton. Vorarlberg. - 1-174, (Geologische Bundesanstalt) Wien. GARRISON, R.E. & FISCHER, A.G. (1969): Deep water Limestones FRISCH, W. (1975): Hochstegen-Fazies und Grestener Fazies - ein and Radiolarites of the Alpine Jurassic. - SEPM Special Vergleich des Jura. - Neues Jahrbuch Geologie Paläontologie, Publication, 14: 20-56, Tulsa. Monatshefte, 1975: 82-90, Stuttgart. GAWLICK, H.-J. (1993): Triassische Tiefwasserfazieskomponenten FRISCH, W. (1979): Tectonic Progradation on Plate Tectonic Evo- (Kieselkalke, Radiolarite) in der jurassischen Strubbergbrekzie

131 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

am Tennengebirgsnordrand (Nördliche Kalkalpen, Österreich). along the eastern Periadriatic Lineament. - (In: SUDAR, M., - Jahrbuch der Geologischen Bundesanstalt, 136/2: 347-350, ERCEGOVAC, M. & GRUBIC, A. (Eds.): Proceedings XVIIIth Congress Wien. of the Carpathian-Balkan Geological Association. Proceedings), GAWLICK, H.-J. (1996): Die früh-oberjurassischen Brekzien der 163-166, (National Committee of the Carpathian - Balkan Stubbergschichten im Lammertal - Analyse und tektonische Geological Association. Serbian Geological Society) Belgrade. Bedeutung (Nördliche Kalkalpen, Österreich). - Mitteilungen GAWLICK, H.-J. & SCHLAGINTWEIT, F. (2006): Berriasian drowning der Gesellschaft Geologie- und Bergbaustudenten in Österreich, of the Plassen carbonate platform at the type-locality and its 39/40: 119-186, Wien. bearing on the early Eoalpine orogenic dynamics in the Northern GAWLICK, H.-J. (1997): Conodont Colour Alteration Indizes (CAI) Calcareous Alps (Austria). - International Journal of Earth - eine Möglichkeit für die Kartierung des Öl- und Gasfensters in Sciences, 95: 451-462, Berlin Heidelberg. mehrphasig deformierten karbonatdominierten Sedimentbecken. GAWLICK, H.-J. & SCHLAGINTWEIT, F. (2009): Revision of the - Erdöl Erdgas Kohle, 113/4: 164-167, Hamburg Wien. Tressenstein limestone: reinterpretation of the Late Jurassic to GAWLICK, H.-J. (1998): Obertriassische Brekzienbildung und ?Early Cretaceous sedimentary evolution of the Plassen Carbo- Schollengleitung im Zlambachfaziesraum (Pötschenschichten) - nate Platform (Austria, Northern Calcareous Alps). - Journal Stratigraphie, Paläogeographie und diagenetische Überprägung Alpine Geology (Mitteilungen Gesellschaft Geologie- Bergbau- des Lammeregg-Schollenkomplexes (Nördliche Kalkalpen, Salz- studenten Österreich), 51: 1-30, Wien. burg). - Jahrbuch der Geologischen Bundesanstalt, 141: 147- GAWLICK, H.-J. & SCHLAGINTWEIT, F. (in press): Tectonic controlled 165, Wien. diachronous Late Jurassic to Early Cretaceous drowning of the GAWLICK, H.-J. (2000): Die Radiolaritbecken in den Nördlichen Plassen Carbonate Platform, Austria. - Austrian Journal of Earth Kalkalpen (hoher Mittel-Jura, Ober-Jura). - Mitteilungen Ge- Sciences, Wien. sellschaft Geologie- Bergbaustudenten Österreich, 44: 97-156, GAWLICK, H.-J., SCHLAGINTWEIT, F., EBLI, O. & SUZUKI, H. (2004): Wien. Die Plassen-Formation (Kimmeridgium) des Krahstein (Steiri- GAWLICK, H.-J. (2007): Revision der Grünanger Schichten sches Salzkammergut, Österreich) und ihre Unterlagerung: neue (SCHÄFFER 1982) im Salzkammergut. - (In: EGGER, H. & RUPP, C. Daten zur Fazies, Biostratigraphie und Sedimentologie. - Zentral- (Eds.): Beiträge zur Geologie Oberösterreichs (GOK 67 und blatt Geologie Paläontologie, Teil 1, 2003, Heft 3/4: 295-334, 47). Arbeitstagung 2007 der Geologischen Bundesanstalt Linz), Stuttgart. 159-164, (Geologische Bundesanstalt) Wien. GAWLICK, H.-J., SCHLAGINTWEIT, F. & MISSONI, S. (2005): Die GAWLICK, H.-J. & FRISCH, W. (2003): The Middle to Late Jurassic Barmsteinkalke der Typlokalität nordwestlich Hallein (hohes carbonate clastic radiolaritic flysch sediments in the Northern Tithonium bis tieferes Berriasium; Salzburger Kalkalpen) - Calcareous Alps: sedimentology, basin evolution and tectonics - Sedimentologie, Mikrofazies, Stratigraphie und Mikropalä- an overview. - Neues Jahrbuch Geologie Paläontologie, Abhand- ontologie: neue Aspekte zur Interpretation der Entwicklungsge- lungen, 230: 163-213, Stuttgart. schichte der Ober-Jura-Karbonatplattform und der tektonischen GAWLICK, H.-J., FRISCH, W., MISSONI, S. & SUZUKI, H. (2002): Interpretation der Hallstätter Zone von Hallein - Bad Dürrnberg. Middle to Late Jurassic radiolarite basins in the central part of - Neues Jahrbuch Geologie Paläontologie, Abhandlungen, 236: the Northern Calcareous Alps as a key for the reconstruction of 351-421, Stuttgart. their early tectonic history - an overview. - Memoir Societa GAWLICK, H.-J., SCHLAGINTWEIT, F., MISSONI, S. (2007a): Das Ober- Geologia Italiana, 57: 123-132, Roma. Jura Seichtwasser-Karbonat-Vorkommen der Drei Brüder am GAWLICK, H.-J., FRISCH, W., VECSEI, A., STEIGER, T. & BÖHM, F. Wolfgangsee (Salzkammergut, Österreich): das westlichste Vor- (1999a): The change from rifting to thrusting in the Northern kommen der Wolfgangsee-Karbonatplattform südlich der Calcareous Alps as recorded in Jurassic sediments. - Geologi- Brunnwinkl-Schwelle am Nordrand des Tauglboden-Beckens. - sche Rundschau, 87: 644-657, Berlin Heidelberg. Journal Alpine Geology (Mitteilungen Gesellschaft Geologie- GAWLICK, H.-J., FRISCH, W., HOXHA, L., DUMITRICA, P., KRYSTYN, Bergbaustudenten Österreich), 48: 83-100, Wien. L., LEIN, R., MISSONI, S. & SCHLAGINTWEIT, F. (2008): Mirdita GAWLICK, H.-J., SCHLAGINTWEIT, F. & SUZUKI, H. (2007b): Die Ober- Zone ophiolites and associated sediments in Albania reveal Jura bis Unter-Kreide Schichtfolge des Gebietes Sandling-Höher- Neotethys Ocean origin. - International Journal of Earth Sciences, stein (Salzkammergut, Österreich) - Implikationen zur Rekons- 97: 865-881 (Springer) Berlin Heidelberg. truktion des Block-Puzzles der zentralen Nördlichen Kalkalpen, GAWLICK, H.-J. & HÖPFER, N. (1999): Stratigraphie, Fazies und der Gliederung der karbonatklastischen Radiolaritflyschbecken Hochdruck-Mitteltemperatur-Metamorphose der Hallstätter und der Entwicklung der Plassen-Karbonatplattform. - Neues Kalke der Pailwand (Nördliche Kalkalpen, Österreich). - Zeit- Jahrbuch Geologie Paläontologie, Abhandlungen, 243/1: 1-70, schrift der Deutschen Geologischen Gesellschaft, 150: 641-671, Stuttgart. Hannover. GAWLICK, H.-J. & SUZUKI, H. (1999): Zur stratigraphischen Stel- GAWLICK, H.-J., JANAUSCHEK, W., MISSONI, S., SUZUKI, H., DIERSCHE, lung der Strubbergschichten in den Nördlichen Kalkalpen V. & Z ANKL, H. (2003): Fazies, Alter und Komponentenbestand (Callovium-Oxfordium). - Neues Jahrbuch Geologie Paläonto- der jurassischen Kieselsedimente mit polymikten Brekzien logie, Abhandlungen, 211: 233-262, Stuttgart. (Callovium - Oxfordium) des Büchsenkopfes im Nationalpark GAWLICK, H.-J., SUZUKI, H., VORTISCH, W. & WEGERER, E. (1999b): Berchtesgaden und deren Bedeutung für die tektonische und Zur stratigraphischen Stellung der Tauglbodenschichten an der paläogeographische Interpretation der Berchtesgadener Kalk- Typlokalität in der Osterhorngruppe (Nördliche Kalkalpen, alpen (Deutschland). - Neues Jahrbuch Geologie Paläontologie, Ober-Oxfordium - Unter-Tithonium). - Mitteilungen Gesell- Abhandlungen, 228: 275-304, Stuttgart. schaft Geologie- Bergbaustudenten Österreich, 42: 1-20, Wien. GAWLICK, H.-J., KRYSTYN, L. & LEIN, R. (1994): Conodont colour GAWLICK, H.-J., SUZUKI, H. & MISSONI, S. (2001): Nachweis von alteration indices: Paleotemperatures and metamorphism in the unterliassischen Beckensedimenten in Hallstätter Fazies Northern Calcareous Alps - a general view. - Geologische Rund- (Dürrnberg-Formation) im Bereich der Hallein - Berchtesgadener schau, 83: 660-664, Berlin Heidelberg. Hallstätter Zone und des Lammer Beckens (Hettangium - GAWLICK, H.-J. & LEIN, R. (2000): Die Salzlagerstätte Hallein - Sinemurium). - Mitteilungen Gesellschaft Geologie- Bergbau- Bad Dürrnberg. - Mitteilungen Gesellschaft Geologie- Bergbau- studenten Österreich, 45: 39-55, Wien. studenten Österreich, 44: 263-280, Wien. GAWLICK, H-J., SUZUKI, H. & SCHLAGINTWEIT, F. (2006b): Die Ober- GAWLICK, H.-J., MISSONI, S., AUER, M., SCHLAGINTWEIT, F., SUZUKI, Trias- und Jura-Sedimentgesteine der Sarsteinalm und deren H. & WEYER, D. (2006a): The mega-imbricate zone south of Bedeutung für die tektonische Gliederung des Dachstein-Blo- Maria Elend (Karavank Mountains, Austria) - a contribution ckes (Salzkammergut, Nördliche Kalkalpen, Österreich). - Neues for a better understanding of the polyphase tectonic history Jahrbuch Geologie Paläontologie, Abhandlungen, 239: 101-160,

132 Journal of Alpine Geology, 50: 1-152, Wien 2009

Stuttgart. hefte, 1:163-185, München. GERMANN, K. (1971): Mangan-Eisen-führende Knollen und Krus- GUEX, J., RAKUS, M., TAYLOR, D. & BUCHER, H. (1998): Deux ten in jurassischen Rotkalken der Nördlichen Kalkalpen. - Neues nouveaux genres et quatre nouvelles espèces d´ammonites Jahrbuch Geologie Paläontologie, Monatshefte, 1971: 133-156, (Cephalopoda) du Lias inférieur. - Bulletin de Géologie Lausan- Stuttgart. ne, 339: 73-85, Lausanne. GEYER, G. (1884): Ueber jurassische Ablagerungen auf dem Hoch- GUEX, J., BARTOLINI, A., ATUDOREL, V. & TAYLOR , D. (2004): High- plateau des Todten Gebirges in Steiermark. - Jahrbuch der kai- resolution ammonite and carbon isotope stratigraphy across the serlich-königlichen Geologischen Reichsanstalt, 34 (2): 335-366, Triassic-Jurassic boundary at New York canyon (Nevada). - Wien. Earth and Planetary Science Letters, 225: 29-41 (Elsevier) GEYER, G. (1886): Über die Lagerungsverhältnisse der Hierlatz- Amsterdam. Schichten in der südlichen Zone der Nordalpen vom Pass Pyhrn GURSKY, H.-J. (1996): Siliceous rocks in the Culm Basin, Germany. bis zum Achensee. - Jahrbuch der kaiserlich-königlichen Geolo- - (In: STROGEN, P., SOMERVILLE, I.D. & JONES, G.L. (Eds.): Recent gischen Reichsanstalt, 36: 215-295, Wien. Advances in Lower Carbonoferous Geology), Geolological GEYER, G. (1903): Zur Geologie der Lienzer Dolomiten. - Ver- Society Special Publications, 207: 303-314, London. handlungen der kaiserlich-königlichen Geologischen Reichsanstalt, HAAS, J., KOVÁCS, S., KRYSTYN, L. & LEIN, R. (1995): Significance 1903: 165-196, Wien. of Late Permian - Triassic facies zones in terrane reconstructions GEYER, O. (1910): Über die Schichtfolge und den Bau der Kalk- in the Alpine - North Pannonian domain. - Tectonophysics, alpen im unteren Enns- und Ybbstale. - Jahrbuch der Geologi- 242: 19-40, Amsterdam. schen Reichsanstalt, 59: 29-100, Wien. HAAS, U. (2002): Tektonische und fazielle Untersuchungen zur GOLDFUSS, A. (1826-1833): Petrefacta Germaniae. - 1-252, 71 Taf., Klärung des Deckenbaues zwischen Allgäu- und Lechtal-Decke (Arnz & Cie) Düsseldorf. vom Ammergebirge bis zu den Tannheimer Bergen (Bayern/ GOLEBIOWSKI, R. (1990a): The Alpine Kössen Formation, a Key Tirol). - 1-267, (PhD-Thesis Technische Universität München) for European Topmost Triassic Correlations. A Sequence- and München. Ecostratigraphic Contribution to the Norian-Rhaetian Discuss- HAGN, H. (1981): Die Bayerischen Alpen und ihr Vorland in mikro- ion. - Albertiana, 8: 25-35, Utrecht. paläontologischer Sicht. - Geologica Bavarica, 81: 65-113, GOLEBIOWSKI, R. (1990b). Facial and faunistic changes from Triassic (Exkursionsführer zum 17. Europäischen Kolloquium in Ober- to Jurassic in the Northern Calcareous Alps (Austria). - Les bayern, September 1981) München. Cahiers de l´Université Catholique de Lyon, Série Sciences, 3: HAHN, F. (1910): Geologie des oberen Saalachgebietes zwischen 175-184, Lyon. Lofer und Diesbachtal. - Jahrbuch der kaiserlich-königlichen GOLEBIOWSKI, R. (1991): Becken und Riffe der alpinen Obertrias. Geologischen Reichsanstalt, 63: 1-76, Wien. Lithostratigraphie und Biofazies der Kössener Formation. - (In: HAHN, F. (1913): Grundzüge des Baues der nördlichen Kalkalpen NAGEL, D. & RABEDER, G. (Hrsg.): Exkursionen im Jungpaläo- zwischen Inn und Enns. - Mitteilungen der Geologischen Ge- zoikum und Mesozoikum Österreichs), 79-119, (Österreich- sellschaft in Wien, 6: 238-357 and 374-501, Wien. ische Paläontologische Gesellschaft) Wien. HAHN, F. (1914): Ergebnisse neuerer Spezialforschungen in den GOLEBIOWSKI, R. & BRAUNSTEIN, R.E. (1988): A Triassic/Jurassic deutschen Alpen. 3. Die Kalkalpen Süd-Bayerns. - Geologische Boundary Section in the Northern Calcareous Alps (Austria). - Rundschau, 5: 112-145, Leipzig. Berichte der Geologischen Bundesanstalt, 15: 39-48, Wien. HALAMIC, J., GORICAN, S., SLOVENEC, D. & KOLAR-JURKOVSEK, T. GÖRLER, K. & REUTTER, K.-J. (1968): Entstehung und Merkmale (1999): A Middle Jurassic radiolarite-clastic succession from der Olisthostrome. - Geologische Rundschau, 57: 484-514, the Medvednica Mount (NW Croatia). - Geologia Croatica, 52: Stuttgart. 29-57, Zagreb. GORICAN, S., CARTER, E.S., DUMITRICA, P., WHALEN, P.A., HORI, HALLAM, A. (1967): Sedimentology and palaeogeographic signi- R.S., DEWEVER, P., O´DOGHERTY, L., MATSUOKA, A. & GUEX, J. ficance of certain red limestones and associated beds in the Lias (2006): Catalogue and systematics of Pliensbachian, Toarcian of the Alpine region. - Scottland Journal Geology, 3: 377-412, and Aalenian radiolarian genera and species. - 1-446, (ZRC Glasgow. Publishing) Ljubljana. HALLAM, A. (1997): Estimates of the amount and rate of sea-level GRANIER, B. & BRUN, R. (1991): Cylindroporella cruciformis et change across the Rhaetian-Hettangian and Pliensbachian- Holosporella arabica, deux Dasycladacées nouvelles du Groupe Toarcian boundary (latest Triassic to early Jurassic). - Journal Thamama (? Portlandian-) Berriasian-Aptian d´Abu Dhabi, of the Geological Society of London, 154: 773-779, London. Emirats Arabes Unis. - Cretaceous Research, 12: 403-410, HAMILTON, W. (1981): Die Hallstätter Zone des östlichen Lammer- London. tales und ihre geologischen Beziehungen zum Tennengebirgs- GRUNAU, H. R. (1965): Radiolarian Cherts and Associated Rocks tirolikum (Nördliche Kalkalpen, Salzburg). - 1-226, 7 Beilagen, in Space and Time. - Eclogae geologicae Helvetiae, 58: 157-208, PhD.-Thesis Wien, Wien. Basel. HAUER, F. v. (1850): Über die geognostischen Verhältnisse des GRUNER, U. (1981): Die jurassischen Breccien der Falknis-Decke Nordabhanges der nordöstlichen Alpen zwischen Wien und Salz- und altersäquivalente Einheiten in Graubünden. - Beiträge zur burg. - Jahrbuch der kaiserlich-königlichen Geologischen Reichs- geologischen Karte der Schweiz. Neue Folge, 154: 136, (Franke) anstalt, 1: 17-60, Wien. Bern. HAUER, F. v. (1853): Über die Gliederung der Trias-, Lias- und GSCHWEND, D. (1992): Die Brachiopodenfauna im Unterdogger Juragebilde in den nordöstlichen Alpen. - Jahrbuch der kaiser- Vilserkalk der Allgäuer Alpen und ihre Fundorte. - Bericht des lich-königlichen Geologischen Reichsanstalt, 4: 715-784, Wien. Naturwissenschaftlichen Vereins für Schwaben und Neuburg, HÄUSLER, H. (1979): Zur Geologie und Tektonik der Hallstätter 96: 62-63, Augsburg. Zone im Bereich des Lammertales zwischen Golling und Abtenau GÜMBEL, C.W. von (1856): Beiträge zur geognostischen Kennt- (Sbg.). - Jahrbuch der Geologischen Bundesanstalt, 122/1: 75- niss von Vorarlberg und dem nordwestlichen Tirol. - Jahrbuch 141, Wien. der kaiserlich-königlichen Geologischen Reichsanstalt, 7: 1-39, HÄUSLER, H. (1981): Über die Einstufung der Hallstätter Schollen Wien. im Bereich der westlichen Lammermasse (Salzburger Kalkhoch- GÜMBEL, C.W. von (1861): Geognostische Beschreibung des alpen). - Mitteilungen der Gesellschaft Geologie- und Bergbau- Bayrischen Alpengebirges und seines Vorlandes. I-XX. - 1-950, studenten in Österreich, 27: 145-159, Wien. (Justus Perthes) Gotha. HÄUSLER, H. (1987): The Northern Austroalpine margin during GÜMBEL, C.W. von (1888): Nachträge zur geognostischen Beschrei- the Jurassic: breccias from the Radstädter Tauern and Tarntaler bung des bayerischen Alpengebirges. - Geognostische Jahres- Berge. - (In: FLÜGEL, H.W. & FAUPL, P. (Eds.): Geodynamics of

133 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

the Eastern Alps), 103-111, (Deuticke) Wien. HOLZER, H.-L. (1978): Eine stratigraphische Tabelle der Malm- HÄUSLER, H. (1988): Unterostalpine Jurabreccien in Österreich. vorkommen Österreichs (mit erläuternden Bemerkungen und Versuch einer sedimentologischen und paläogeographischen einem Schichtnamenverzeichnis). - (In: ZAPFE, H. (Hrsg.): Bei- Analyse nachtriadischer Breccienserien im unterostalpinen Rah- träge zur Biostratigraphie der Tethys-Trias. Schriftenreihe der men des Tauernfensters (Salzburg - Tirol). - Jahrbuch der Geo- Erdwissenschaftlichen Kommission), 4, 219-242, 2 Tabellen, logischen Bundesanstalt, 131: 21-125, Wien. (Österreichische Akademie der Wissenschaften) Wien. HÄUSLER, H. & PLASIENKA, D. & POLÁK, M. (1993): Comparison HOLZER, H.L. (1980): Radiolaria aus Ätzrückständen des Malm of Mesozoic successions in the Central Eastern Alps and the und der Unterkreide der Nördlichen Kalkalpen (Österreich). - Central Western Carpathians. - Jahrbuch der Geologischen Bun- Annalen des Naturhistorischen Musemus in Wien, 83: 153-167, desanstalt, 136: 715-739, Wien. Wien. HAUSNER, P. & BLIND, W. (1996): Eine weiße Kalkbank als Hin- HÖTZL, H. (1966): Zur Kenntnis der Tressenstein-Kalke (Ober- weis auf die Genese der Adneter Kalke (Pasilalm, Tirol). - Jahr- Jura, Nördliche Kalkalpen). - Neues Jahrbuch Geologie Paläon- buch der Geologischen Bundesanstalt, 139: 209-213, Wien. tologie, Abhandlungen, 123/3: 281-310, Stuttgart. HEIN, J.R. & KOSKI, R.A. (1987): Bacterially mediated diagenetic HORI, R. (1988): Some characteristic radiolarians from Lower origin for chert-hosted manganese deposits in the Franciscan Jurassic bedded cherts of the Inuyama area, Southwest Japan. - Complex, California Coast Ranges. - Geology, 15: 722-726, Transactions and Proceedings of the Palaeontological Society of Washington. Japan, New Series, 151: 543-563, Tokyo. HEITZER, I. (1930): Die Radiolarienfauna der mitteljurassischen HSÜ, K.J. & BRIEGEL, U. (1991): Geologie der Schweiz. Ein Lehr- Kieselmergel im Sonnwendgebirge. - Jahrbuch der Geologischen buch für den Einstieg, und eine Auseinandersetzung mit den Bundesanstalt, 80: 381-406, Wien. Experten. - 1-219, (Birkhäuser Verlag) Basel Boston Berlin. HELMCKE, D. (1969): Die Geologie der Spuller-See-Mulde zwi- HUBBARD, R.N.B.L. & BOUTLER, M.C. (2000): Phytogeography schen Wildgruben-Roggal-Spitz-Gruppe und Formarin-See in and palaeoecology in Western Europe and Eastern Greenland den Vorarlberger Kalkalpen. - 1-220, PhD-Thesis Universität near the Triassic-Jurassic boundary. - Palaios, 15: 120-131, Tulsa. Marburg/Lahn, Marburg/Lahn. HUCKRIEDE, H. & MEISCHNER, D. (1996): Origin and environment HERITSCH, F. (1921): Zwei neue Tabulaten aus dem alpinen Meso- of manganese-rich sediments within black-shale basins. - zoikum. - Centralblatt Mineralogie Geologie Paläontologie. In Geochimica et Cosmochimica Acta, 60: 1399-1413, Elsevier Verbindung mit dem Neuen Jahrbuch für Mineralogie, Geologie (USA). und Paläontologie, 1921: 564-571, Stuttgart. HUCKRIEDE, R. (1959a): Die Eisenspitze am Kalkalpensüdrand HERRMANN, J. (1990): Zur Unterscheidung von Barmsteinkalk und (Lechtaler Alpen, Tirol). - Zeitschrift der Deutschen Geologi- Tressensteinkalk (Oberjura, Nördliche Kalkalpen). - Zentralblatt schen Gesellschaft, 111/2: 410-433, Hannover. Geologie Paläontologie, Teil 1 (1989), 9/10: 1349-1357, Stuttgart. HUCKRIEDE, R. (1959b): Trias, Jura und tiefe Kreide bei Kaisers in HESSELBO, S.P., ROBINSON, S.A., SURLYK, F. & PIASECKI, S. (2002): den Lechtaler Alpen (Tirol). - Verhandlungen der Geologischen Terrestrial and marine mass extinction at the Triassic-Jurassic Bundesanstalt, 1959: 44-91, Wien. boundary synchronized with major carbon-cycle perturbation: HUCKRIEDE, R. (1971): Rhyncholithen-Anreicherung (Oxfordium) A link to initiation of massive volcanism? - Geology, 30: 251- an der Basis des Älteren Radiolarits der Salzburger Kalkalpen. - 254, Boulder. Geologica et Palaeontologica, 5: 131-147, Marburg/Lahn. HILLEBRANDT, A. von & URLICHS, M. (2008): Foraminifera and HUDSON, J.D. & JENKYNS, H.C. (1969): Conglomerates in the Adnet Ostracoda from the Northern Calcareous Alps and the end- limestones of Adnet (Austria) and the origin of the „Scheck“. - Triassic biotic crisis. - (In: KRYSTYN, L. & MANDL, G.W. (Eds.): Neues Jahrbuch Geologie Paläontologie, Monatshefte, 1969: 552- Upper Triassic Subdivisions, Zonations and Events. Meeting 558, Stuttgart. of the late IGCP 467 and STS). Berichte der Geologischen Bun- HULL, D. M. (1997): Upper Jurassic Tethyan and southern Bore- desanstalt, 76: 30-37, Wien. al radiolarians from western North America. - Micro- HILLEBRANDT, A. von, KRSYTYN, L. & KÜRSCHNER, W.M., with paleontology, 43 (Supplement 2): 1-202, New York. contributions from BOWN, P.R., MCROBERTS, C., RUHL, M., SIMMS, ICHIKAWA, K. & YAO, A. (1976): Two new genera of Mesozoic M., TOMASOVYCH, A. & URLICHS, M. (2007): A candidate GSSP cyrtoid radiolarians from Japan. - (In: TAKAYANAGI, Y. & SAITO, for the base of the Jurassic in the Northern Calcareous Alps T. (Eds.): Progress in Micropaleontology, special Publication), (Kuhjoch section, Mountains, Tyrol, Austria). - ISJS 110-117, (Micropaleontology Press) New York. Newsletter, 34(1): 2-20, International Subkommission on Jurassic JACOBSHAGEN, V. (1958): Zur Stratigraphie und Paläogeographie Stratigraphy. der Jura-Fleckenmergel im südöstlichen Allgäu. - Notizblatt des HILLEBRANDT, A. von & KRSYTYN, L. (2009): On the oldest Jurassic Hessischen Landesamtes für Bodenforschung, 87: 208-226, ammonites of Europe (Northern Calcareous Alps, Austria) and Wiesbaden. their global significance. - Neues Jahrbuch Geologie Paläontolo- JACOBSHAGEN, V. (1964): Lias und Dogger im West-Abschnitt der gie, Abhandlungen, 253: 163-195, Stuttgart. Nördlichen Kalkalpen. - Geologica Romana, 3: 303-318, Rom. HIRSCHBERG, K. & JACOBSHAGEN, V. (1965): Stratigraphische Kon- JACOBSHAGEN, V. (1965): Die Allgäu-Schichten (Jura-Fleckenmergel) densation in Adnether Kalken am Rötelstein bei Filzmoos (Salz- zwischen Wettersteingebirge und Rhein. - Jahrbuch der Geolo- burger Kalkalpen). - Verhandlungen der Geologischen Bundes- gischen Bundesanstalt, 108: 1-114, Wien. anstalt, 1965: 33-42, Wien. JACOBSHAGEN, V. (1966): Vom geologischen Aufbau der Allgäuer HÖCK, V. & SCHLAGER, W. (1964): Einsedimentierte Großschollen Kalkalpen. - Jahrbuch des Deutschen Alpenvereins, 91: 38-48, in den jurassischen Strubbergbrekzien des Tennengebirges (Salz- München. burg). - Anzeiger der Österreichischen Akademie der Wissen- JAKSCH, K. (1993): Über das Liasvorkommen von Schwendt am schaften. Mathematisch-naturwissenschaftlichen Klasse, 101: Nordostrand des Kaisergebirges (Tirol) mit besonderer Berück- 228-229, (Österreichische Akademie Wissenschaften) Wien. sichtigung seiner Ammonitenfauna. - Jahrbuch der Geologischen HÖLLER, H. & WALITZI, E.M. (1965): Mineralogische Untersu- Bundesanstalt, 136: 65-75, Wien. chungen an den Oberalmer Schichten und den mikritischen JENKYNS, H.C. (1971a): Speculations on the Genesis of Crinoidal Plassen-Kalken, Nördliche Kalkalpen. - Neues Jahrbuch Geolo- Limestones in the Tethyan Juassic. - Geologische Rundschau, gie Paläontologie, Monatshefte, 1965: 552-555, Stuttgart. 60: 471-487, Stuttgart. HOLZER, H.-L. (1968): Stratigraphie und Lithologie der Jura-Krei- JENKYNS, H.C. (1971b): The genesis of condensed sequences in de Folge im nördlichen Pechgraben-Steinbruch (OÖ). - Mittei- the Tethyan Jurassic. - Lethaia, 4: 327-352, Oslo. lungen Naturwissenschaftlichen Vereines Steiermark, 98: 47-57, JENKYNS, H.C. (1972): Pelagic „oolithes“ from the Tethyan Graz. Jurassic. - Journal Geology, 80: 21-33, Chicago.

134 Journal of Alpine Geology, 50: 1-152, Wien 2009

JENKYNS, H.C. (1974): Origin of red nodular limestones (Ammo- 279, Wien. nitico Rosso, Knollenkalke) in the Mediterranean Jurassic: a KIRCHNER, E.Ch. (1980b): Vulkanite aus dem Permoskyth der Nörd- diagenetic model. - (In: HSÜ, K. & JENKYNS, H.C. (Eds.): Pelagic lichen Kalkalpen und ihre Metamorphose. - Mitteilungen Sediments: on Land and under the Sea), Special Publication österreichische geologische Gesellschaft, 71/72: 385-396, Wien. Number 1 of the International Association of Sedimentologists: KISHIDA, Y. & HISADA, K. (1985): Late Triassic to Early Jurassic 249-271, (Blackwell) Oxford. radiolarian assemblages from the Ueno-mura area, Kanto JENKYNS, H.C. (1988): The Early Toarcian (Jurassic) anoxic event: Mountains, central Japan. - Memoirs Osaka Kyoiku University Stratigraphy, Sedimentary, and Geochemical evidence. - American (Ser. III), 34: 103-129, Osaka. Journal Science: International Earth Science Journal, 288: 101- KITO, N. & DE WEVER, P. (1992): Novelles espèces d’Hagiastridae 151, New Haven, Connecticut. (Radiolaires) du Jurassique moyen de Sicily (Italy) - Revue de JENKYNS, H.C. & WINTERER, E.L. (1982): Paleoceanography of Micropaléontologie, 35: 127-141, Paris. Mesozoic ribbon radiolarites. - Earth and Planetary Science KITO, N., DE WEVER, P., DANELIAN, T. & CORDEY, F. (1990): Middle Letters, 60: 351-375, Amsterdam. to Late Jurassic radiolarians from Sicily (Italy). - Marine JUD, R. (1994): Biochronology and systematics of Early Cretaceous Micropaleontology, 15: 329-349, Amsterdam. Radiolaria of the Western Tethys. - Mémoires de Géologie, 19: KLEINSCHMIDT. G. (1975): Die „Plankogelserie“ in der südlichen 1-147, Lausanne. Koralpe unter besonderer Berücksichtigung von Mangan- JURGAN, H. (1967): Genese und Fazies von Lias-Sedimenten in quarziten. - Verhandlungen der Geologischen Bundesanstalt, den Berchtesgadener Alpen. - 1-122, PhD.-Thesis Technische 1974, 2-3: 351-362, Wien. Universität Berlin, Berlin. KMENT, K. (1998): Beschreibung und Stratigraphie der Ammoni- JURGAN, H. (1969): Sedimentologie des Lias der Berchtesgadener ten eines fossilreichen Hartgrunds im unteren Toarc am Vorders- Kalkalpen. - Geologische Rundschau, 58: 464-501, Stuttgart. kopf (westliches Karwendelgebirge, Nördliche Kalkalpen). - JÜSSEN, E. (1890): Beiträge zur Kenntnis der Klausschichten in Jahrbuch der Geologischen Bundesanstalt, 141: 179-208, Wien. den Nordalpen. - Jahrbuch der kaiserlich-königlichen Geologi- KOCH, K.E. & STENGEL-RUTKOWSKI, W. (1959): Faziesunter- schen Reichsanstalt, 40: 381-397, Wien. suchungen in Jura und Unterkreide der westlichen Lechtaler KARAMATA, S. (2006): The geological development of the Balkan Alpen. - Verhandlungen der Geologischen Bundesanstalt, 1959: Peninsula related to the approach, collision and compression of 179-201, Wien. Gondwanan and Eurasian units. - (In: ROBERTSON A.H.F. &, KOCHER, R.N. (1981): Biochronostratigraphische Untersuchun- MOUNTRAKIS, D. (Eds.): Tectonic Development of the Eastern gen oberjurassischer Radiolarienführender Gesteine, insbe-son- Mediterranean Region), Geological Society London Special dere der Südalpen. - Mitteilungen geologisches Institut E.T.H. Publication, 260: 155-178, London. und Univ. Zürich, Neue Folge 234: 1-184, Zürich. KARRER, F. (1867): Über einige Foraminiferen aus dem weissen KOCKEL, C., RICHTER, M., & STEINMANN, H.G. (1931): Geologie Jura von St. Veit bei Wien. - Sitzungsberichte der Österreich- der Bayrischen Berge zwischen Lech und Loisach. - Zeitschrift ischen Akademie der Wissenschaften. Mathematisch-naturwis- des Deutschen und Österreichischen Alpenvereins, Heft 10: 1- senschaftliche Klasse: Abteilung 1, 55: 364-368, Wien. 231, (Wissenschaftliche Alpenvereinshefte) Innsbruck. KELLERBAUER, S. (1996): Geologie und Geomechanik der Salz- KOZUR, H. (1984): New radiolarian taxa from the Triassic and lagerstätte Berchtesgaden. - Münchner Geologische Hefte, Rei- Jurassic. - Geologisch-Paläontologische Mitteilungen Innsbruck, he B: Angewandte Geologie, 2: 1-101, München. 13: 49-88, Innsbruck. KELTS, K. (1981): A comparison of some aspects of sedimentation KOZUR, H. (1985): The radiolarian genus Eoxitus n. gen. from the and translational tectonics from the Gulf of California and the Unuma echinatus zone (Bajocian) of the northern Hungary. - Mesozoic Tethys, Northern Penninic margin. - Eclogae geologicae Proceedings Konink. Nederlands Akademie Wetenschappen, Helvetiae, 74: 317-338, Basel. Series B, 88: 211-220, Amsterdam. KEMKIN, I.B. & RUDENKO, V.S. (1993): Novye predstaviteli roda KOZUR, H. & MOCK, R. (1985): Erster Nachweis von Jura in der Cinguloturris (radioliarii) v mesozojskikh otlozheniiakh Sikhote- Meliata-Einheit der südlichen Westkarpaten. - Geologisch-Pa- Alinya. - Tikhookeanskaya Geologiya 110-121, Novosibirsk. läontologische Mitteilungen, 13/10: 223-238, Innsbruck. KEMKIN, I. V. & TAKETANI, Y. (2004): New radiolarian species KOZUR, H. & MOSTLER, H. (1990): Saturnaliacea DEFLANDRE and from Late Jurassic chert-terrigenous deposits of the Taukha some other stratigraphically important radiolaria from the Terrane, Southern Sikhote-Alin. - Paleontological Research, 8: Hettangian of Lenggries/Isar (Bavaria, northern calcareous Alps). 325-336, Paleontological Society of Japan. - Geologisch-Paläontologische Mitteilungen Innsbruck, 17: 179- KEUPP H. & MATYSZKIEWICZ, J. (1997): Zur Faziesrelevanz von 248, Innsbruck. Saccocoma-Resten (Schwebcrinoiden) in Oberjura-Kalken des KOZUR, H. & MOSTLER, H. (1992): Erster paläontologischer Nach- nördlichen Tethys-Schelf. - Geologische Blätter NO-Bayern, weis von Meliaticum und Süd-Rudabanyaicum in den Nördli- 47: 53-70, Erlangen. chen Kalkalpen (Österreich) und ihre Beziehungen zu den Ab- KIESLINGER, A. (1964): Die nutzbaren Gesteine Salzburgs. - 1- folgen in den Westkarpaten. - Geologisch-Paläontologische Mit- 436, (Das Bergland-Buch) Salzburg. teilungen Innsbruck, 18: 87-129, Innsbruck. KIESSLING, W. (1992): Palaeontological and facial features of the KRAINER, K. & MOSTLER, H. (1997): Die Lias-Beckenentwicklung Upper Jurassic Hochstegen Marble (Tauern Window, Eastern der Unkener Synklinale (Nördliche Kalkalpen, Salzburg) unter Alps). - Terra Nova, 4 (2): 184-197, Oxford. besonderer Berücksichtigung der Scheibelberg Formation. - Ge- KINDLE, P.J. (1990): Tektonisch kontrollierte Alterationen und ologisch-Paläontologische Mitteilungen Innsbruck, 22: 1-41, Neubildungen in Prae- und Syn-Rift-Sedimenten der westlichen Innsbruck. Nördlichen Kalkalpen. - Mitteilungen aus dem Geologischen KRAINER, K., MOSTLER, H. & HADITSCH J.G. (1994): Jurassische Institut der Eidg. Technischen Hochschule der Universität Zü- Beckenbildung in den Nördlichen Kalkalpen bei Lofer (Salz- rich, Neue Folge 291: 1-178, Zürich. burg) unter besonderer Berücksichtigung der Manganerz-Gene- KIRCHNER, E.Ch. (1977): Vorläufige Mitteilung über eine Pum- se. - Abhandlungen der Geologischen Bundesanstalt, 50: 257- pellyit-führende Kissenlava von Wienern am Grundlsee, Stmk. 293, Wien. - Geologisch Paläontologische Mitteilungen Innsbruck, 7(2): 1- KRISCHE, O., SUZUKI, H. & GAWLICK, H.-J. (2008): Type locality 2, Innsbruck. of the Hochreith Formation as part of the Lower Cretaceous KIRCHNER, E.Ch. (1980a): Natriumamphibole und Natrium- Rossfeld basin fill of the Weitenau syncline revisited (Northern pyroxene als Mineralneubildungen in Sedimenten und basischen Calcareous Alps, Salzburg). - Journal Alpine Geology (Mittei- Vulkaniten aus dem Permoskyth der Nördlichen Kalkalpen. - lungen Gesellschaft Geologie- Bergbaustudenten Österreich), Verhandlungen der Geologischen Bundesanstalt, 1980(3): 249- 49: 58-59, Wien.

135 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

KRISTAN-TOLLMANN, E. (1962a): Stratigraphisch wertvolle Mikro- niederösterreichischen Kalkvoralpen. - Annalen des Naturhis- fossilien aus dem Oberjura und Neokom der Nördlichen Kalk- torischen Museums in Wien, 71: 263-293, Wien. alpen. - Erdöl Zeitschrift für Bohr- und Fördertechnik Gewin- KURZ, W., NEUBAUER, F., GENSER, J. & DACHS, E. (1998): Alpine nung-Aufbereitung-Transport, 78: 637-649, Hamburg Wien. geodynamic evolution of passive to active continental margin KRISTAN-TOLLMANN, E. (1962b): Das Unterostalpin des Penken- sequences in the Tauern Window (eastern Alps, Austria, Italy): Gschößwandzuges in Tirol. - Mitteilungen der Geologischen a review. - Geologische Rundschau, 87: 225-242, Berlin. Gesellschaft in Wien, 54: 201-227, Wien. LACKSCHEWITZ, K.S., GRÜTZMACHER, U. & HENRICH, R. (1991): KRISTAN-TOLLMANN, E. & COLWELL, J. (1992): Alpiner Enzesfelder Paleoceanography and Rotational Block Faulting in the Jurassic Kalk (Unter-Lias) vom Exmouth-Plateau nordwestlich von Carbonate Series of the Chiemgau Alps (Bavaria). - Facies, 24: Australien. - Mitteilungen der Österreichischen Geologischen 1-24, Erlangen. Gesellschaft, 84: 301-308, Wien. LANTSCHER, M., LEIN, R. & THÖNI, M. (1996): Kristallingerölle in KRYSTYN, L. (1970): Stratigraphie und Fauna des Klauskalkes Liasbuntkalken der Lechtaler Alpen. - Mitteilungen der Gesell- (Dogger) im Steinbruch Neumühle, NÖ. - Anzeiger der Öster- schaft Geologie- und Bergbaustudenten in Österreich, 39/40: reichischen Akademie der Wissenschaften. Mathematisch-na- 211-220, Wien. turwissenschaftliche Klasse, 107: 55-59, (Österreichische Aka- LAUER, G. (1968): Der Kalkalpennordrand im Raum Ybbsitz. - 1- demie Wissenschaften) Wien. 256, PhD.-Thesis Universität Wien, Wien. KRYSTYN, L. (1971): Stratigraphie, Fauna und Fazies der Klaus- LAUER, G. (1970): Der Kalkalpennordrand im Raume von Ybbsitz. Schichten (Aalenium-Oxford) in den östlichen Nordalpen. - Ver- - Mitteilungen der Gesellschaft der Geologie- Bergbaustudenten handlungen der Geologischen Bundesanstalt, 1971/3: 486-509, in Wien, 19: 103-130, Wien. Wien. LEBLING, C., HABER, G., HOFFMANN, N., KÜHNEL, J., WIRTH, E. KRYSTYN, L. (1972): Die Oberbajocium- und Bathonium-Ammo- (1935): Geologische Verhältnisse des Gebirges um den Königs- niten der Klaus-Schichten des Steinbruches Neumühle bei Wien See, 20. - Abhandlungen Geologische Landesuntersuchung (Österreich). - Annalen des Naturhistorischen Museums in Wien, Bayerisches Oberbergamt: 1-46, München. 76: 195-310, Wien. LEIN, R. (1985): Das Mesozoikum der Nördlichen Kalkalpen als KRYSTYN, L. (1987): Zur Rhät-Stratigraphie in den Zlambach- Beispiel eines gerichteten Sedimentationsverlaufes infolge fort- schichten (vorläufiger Bericht). - Sitzungsberichte der Österreich- schreitender Krustenausdünnung. - Archiv für Lagerstätten- ischen Akademie der Wissenschaften. Mathematisch-naturwis- forschung, 6: 117-128, (Geologische Bundesanstalt) Wien. senschaftliche Klasse: Abteilung 1, 196: 21-36, (Österreichische LEIN, R. (1987a): Evolution of the Northern Calcareous Alps Akademie Wissenschaften) Wien. During Triassic Times. - (In: FLÜGEL, H.W. & FAUPL, P. (Eds.): KRYSTYN, L., BÖHM, F., KÜRSCHNER, W. & DELECAT, S. (2005): The Geodynamics of the Eastern Alps), 85-102, (Deuticke) Wien. Triassic-Jurassic boundary in the Northern Calcareous Alps. - LEIN, R. (1987b): Zur Verbreitung der Hallstätter Zone beiderseits (In: PÁLVY, J. & OZSVART, P. (Eds.): Program, Abstracts and Field des Pyhrn-Passes. - Oberösterreichische Geonachrichten, Folge Guide). 5th Field Workshop IGCP 458 Project (Tata and Hall- 2: 21-37, Linz. ein, September 2005): A1-A39. LEIN, R., SUZUKI, H. & GAWLICK, H.-J. (2009): Die Obersee-Brek- KRYSTYN, L., LEIN, R., SCHLAF, J. & BAUER, F.K. (1994): Über ein zie bei Lunz (Niederösterreich): Revision der Stratigraphie und neues obertriadisch-jurassisches Intraplattformbecken in den des Komponentenbestandes. - Arbeitstagung der Geologischen Südkarawanken. - (In: SCHÖNLAUB, H.P., GAAL, G., LOBITZER, H., Bundesanstalt 2009 Leoben, 204-210, Wien. CSÁSZÁR, G. & DAURER, A. (Eds.): Jubiläumsschrift 20 Jahre LEINFELDER, R.R., SCHLAGINTWEIT, F., WERNER, W., EBLI, O., NOSE, Geologische Zusammenarbeit Österreich - Ungarn, Teil 2), 409- M., SCHMID, D.U. & HUGHES, G.W. (2005): Significance of stro- 416, (Geologische Bundesanstalt) Wien. matoporoids in Jurassic reefs and carbonate platforms - concepts KRYSTYN, L. LEIN, R. & GAWLICK, H.-J. (2008): How many Tethyan and implications. - Facies, 51: 287-325, Berlin Heidelberg. Triassic Oceans? - (In: KRYSTYN, L. & MANDL, G.W. (Eds.): LEISCHNER, W. (1959a): Zur Mikrofazies kalkalpiner Gesteine. - Upper Triassic Subdivisions, Zonations and Events), Berichte Sitzungsberichte der österreichischen Akademie der Wissenschaf- der Geologischen Bundesanstalt, 76: 12, Wien. ten, Mathematisch-naturwissenschaftliche Klasse, Abteilung I, KRYSTYN, L., MANDL, G.W. & SCHAUER, M. (2009): Growth and 168: 839-882, Wien. termination of the Upper Triassic platform margin of the Dach- LEISCHNER, W. (1959b): Geologische Aufnahme in der Umgebung stein area (Northern Calcareous Alps, Austria). - Austrian Jour- von Bad Ischl. - Mitteilungen der Gesellschaft der Geologie- nal of Earth Sciences, 102: 23-33, Wien. Bergbaustudenten in Wien, 10: 63-94, Wien. KÜBLER, H. & MÜLLER, W.-E. (1962): Die Geologie des Brenner- LEISCHNER, W. (1961): Zur Kenntnis der Mikrofauna und -flora Mesozoikums zwischen Stubai- und Pferschtal (Tirol). - Jahr- der Salzburger Kalkalpen. - Neues Jahrbuch Geologie Paläonto- buch der Geologischen Bundesanstalt, 105: 173-242, Wien. logie, Abhandlungen, 112: 1-47, Stuttgart. KÜHN, O. (1935): Die Hornsteinbreccie des Sonnwendgebirges LEMOINE, M. & TRÜMPY, R. (1987): Pre-oceanic rifting in the Alps. und ihre Korallenfauna. - Paläontologische Zeitschrift, 17: 178- - Tectonophysics, 133: 305-320, Amsterdam. 204, Stuttgart. LEUCHS, K. (1929): Die Oberjura-Breccien des Aalbachtales öst- KÜHN, O. (1962): Autriche. - Lexique stratigraphique Internatio- lich Tegernsee. - Centralblatt Mineralogie Geologie Paläontolo- nal, 1, Fasc. 8. - 1-646, (CNRS) Paris. gie. In Verbindung mit dem Neuen Jahrbuch für Mineralogie, KÜHNEL, J. (1925): Zur tektonischen Stellung des Hohen Göll im Geologie und Paläontologie, 1929: 417-425, Stuttgart. . - Geologische Rundschau, 16: 378-383, LILIENBACH, L. v. (1830): Ein Durchschnitt aus den Alpen mit Berlin. Hindeutung auf die Karpathen. - Neues Jahrbuch Mineralogie, KUERSCHNER, W.M., BONIS, N.R. & KRYSTYN, L. (2007): Carbon- Geognosie, Geologie Petrefaktenkunde, 1: 153-220, Heidelberg. isotope stratigraphy and palynostratigraphy of the Triassic- LIPOLD, M. v. (1852): Geologische Stellung der Alpenkalksteine, Jurassic transition in the Tiefengraben section - Northern welche die Dachsteinbivalve enthalten. - Jahrbuch der kaiser- Calcareous Alps (Austria). - Palaeogeography, Palaeoclimatology, lich-königlichen Geologischen Reichsanstalt 3/4: 90-98, Wien. Palaeoecology, 244: 257-280, Amsterdam. LIPOLD, M. v. (1854): Der Salzberg am Dürnberg nächst Hallein. - KUNZ, B.W.L. (1964): Die Fauna der Neuhauser Schichten von Jahrbuch der kaiserlich-königlichen Geologischen Reichsanstalt, Waidhofen/Ybbs, N. Ö. (Dogger, Klippenzone). - Sitzungs- 1854: 590-610, Wien. berichte der Österreichischen Akademie der Wissenschaften. LINNER, M. & HEJL, E. (2009): Unterostalpin. - (In: PESTAL, G., Mathematisch-naturwissenschaftlichen Klasse: Abteilung 1, 173: HEJL, E., BRAUNSTINGL, R. & SCHUSTER, R. (Eds.): Erläuterungen 231-276, (Österreichische Akademie Wissenschaften) Wien. zur Geologischen Karte von Salzburg 1:200000), 54-59, Wien. KUNZ, B.W.L. (1967): Eine Fauna aus dem oberen Dogger der LOBITZER, H., BODROGI, I., FILÁCZ, E. (1994): Lebensspuren der

136 Journal of Alpine Geology, 50: 1-152, Wien 2009

Oberalmer-, Schrambach- und Roßfeld-Formation (Oberjura/ MARCOUX, J. & BAUD, A. (1996): Late Permian to Late Triassic, Unterkreide) der Salzburger Kalkalpen. - (In: LOBITZER, H., Tethyan Paleoenvironments - Three Snapshots: Late Murgabian, CSASZAR, G. & DAURER, A. (Eds.): Jubiläumsschrift 20 Jahre Late Anisian, Late Norian. - (In: NAIRN, A.E.M., RICOU, L.-E., Geologische Zusammenarbeit Österreich - Ungarn, Teil 2), 285- VRIELYNCK, B. & DERCOURT, J. (Eds.): The ocean basins and 322, (Geologische Bundesanstalt) Wien. margins. Vol. 8: The Tethys Ocean), 153-190, (Plenum Press) LOGAN, B.W. & SEMENIUK, V. (1976): Dynamic metamorphism: New York. process and products in carbonate rocks: Canning MARASCHINI, P. (1824): Sulle formazioni delle rocce del Vicentino. basin, western Australia. - Geological Society of Australia, Spe- Saggio Geologico. - 1-229, (Dalla Tipografia della Minerva) cial Publication, 6: 1-138, Sydney. Padova. LORENZ, M. (1902): Geologische Studien im Grenzgebiet zwi- MARIOTTI, A. (1972a): Precisions sur la stratigraphie des Lienzer schen helvetischer und ostalpiner Facies. - Berichte der Natur- Dolomiten. Hypotheses sur les relations paleogeographiques forschenden Gesellschaft Freiberg Br., 12: 34-62, Freiburg im entre les Alpes meridionales: consequences structurales. - Geo- Breisgau. logie Alpine, 48/1: 121-129, Grenoble. LUCAS, S.G. & TANNER, L.H. (2007): The nonmarine Triassic- MAROITTI, A. (1972b): Sur la serie post-triasique des Lienzer Dolo- Jurassic boundary in the Newark Supergroup of eastern North miten: existence d´un flysch cretace au Nord de la ligne du Gail America. - Earth-Science Reviews, 84: 1-20, (Elsevier) Amster- (Autriche). - Bulletin de la Societe Geologique de France, 1972: dam. 31-34, Paris. LUKENEDER, A. (2004): Stratigrafische Erkenntnisse aus einem neuen MARZOLI, A., BERTRAND, H., KNIGHT, K.B., CIRILLI, S., BURATTI, Vorkommmen von Unterkreide-Ammonoideen in der Losenstein- N., VÉRATI, C., NOMADE, S., RENNE, P.R., YOUBI, N., MARTINI, R., er Mulde (Ternberger Decke, Nördliche Kalkalpen). - Jahrbuch ALLENBACH, K., NEUWERTH, R., RAPAILLE, C., ZANINETTI, L. & der Geologischen Bundesanstalt, 144/2: 173-189, Wien. BELLIENI, G. (2004): Synchrony of the Central Atlantic magmatic LUKENEDER, A., KRYSTYN, L., RASSER, M.W. & MÄRZENDORFER, G. province and the Triassic-Jurassic boundary climate and biotic (2003): A unique ammonoid fauna from the Upper Jurassic Lo- crisis. - Geology, 32: 973-976, Boulder. ser section (Northern Calcareous Alps, Salzkammergut). - (In: MATSUOKA, A. (1982): Jurassic two-segmented Nassellarians PILLER, W.E. (Ed.): Stratigraphia Austriaca. Österreichische Aka- (Radiolaria) from Shikoku, Japan. - Journal Geoscience Osaka demie der Wissenschaften). Schriftenreihe der Erdwissen- City University, 25: 71-87, Osaka. schaftlichen Kommissionen, 16: 217-229, (Österreichische Aka- MATSUOKA, A. (1983): Middle and Late Jurassic Radiolarian demie Wissenschaften) Wien. Biostratigraphy in the Sakawa and Adjacent Areas, Shikoku, LUKENEDER, A. & REHÁKOVÁ, D. (2004): Lower Cretaceous section Southwest Japan. - Journal Geoscience Osaka City University, of the Ternberg Nappe (Northern Calcareous Alps, Upper 26: 1-48, Osaka. Austria): facies-changes, biostratigraphy and paleoecology. - MATSUOKA, A. (1984): Late Jurassic four-segmented nassellarians Geologica Carpathica, 55 (3): 227-237, Bratislava. (Radiolaria) from Strikoku, Japan. - Journal Geoscience Osaka MADER, P. (1987): Die Jura- und Kreideablagerungen im Lischana- City University, 27: 143-153, Osaka. Gebiet (Oberostalpine S-charl-Decke, Unterengadin). - Eclogae MATSUOKA, A. (1986): Tricolocapsa yaoi assemblage (Late Jurassic geologicae Helvetiae, 80: 633-653, Basel. radiolarians) from the Togano Group in Shikoku, Southwest MAJZON, L. (1954): Contribution to the Stratigraphy of the Dach- Japan. - Journal Geoscience Osaka City University, 29: 101- stein Limestone. - Acta Geologica Academia Science Hungarica, 115, Osaka. 2: 243-249, Budapest. MATSUOKA, A. (1991): Early Jurassic radiolarians from the Nanjo MANATSCHAL, G. (2004): New models for evolution of magma- massiv in the Mino terrane, central Japan. - Trans. Proceedings poor rifted margins based on a review of data and concepts from Palaeontological Society Japan, New Series, 161: 720-738, West Iberia and the Alps. - International Journal of Earth Sciences, Tokyo. 93: 432-466 (Springer) Berlin Heidelberg. MATSUOKA, A. & YAO, A. (1985): Latest Jurassic radiolarians from MANATSCHAL, G., ENGSTRÖM, A., DESMURS, L., SCHALTEGGER, U., the Torinosu Group in Southwest Japan. - Journal Geoscience, COSCA, M., MÜNTERER, O. & BERNOULLI, D. (2006): What is the Osaka City University, 28: 125-145, Osaka. tectono-metamorphic evolution of continental break-up: The MCBRIDE, E.F. & FOLK, R.L. (1979): Features and origin of Italian example of the Tasna Ocean-Continent Transition. - Journal of Jurassic radiolarites deposited on continental crust. - Journal of Structural Geology, 28: 1849-1869, (Elsevier) Amsterdam. Sedimentary Petrology, 49: 837-868, Amsterdam. MANATSCHAL, G., MÜNTERER, O., DESMURS, L. & BERNOULLI, D. MCELWAIN, J.C., BEERLING, D.J. & WOODWARD, F.I. (1999): Fossil (2003): An ancient ocean-continent transition in the Alps: the plants and global warming at the Triassic-Jurassic boundary. - Totalp, Err-Platta, and Malenco units in the eastern Central Science, 285: 1386-1390, (HighWirePress) Stanford. Alps (Graubünden and northern Italy). - Eclogae geologicae MCROBERTS, CH., FURRER, H. & JONES, D.S. (1997): Palaeo- Helvetiae, 96: 131-146, Basel. environmental interpretation of a Triassic-Jurassic boundary MANATSCHAL, G. & NIEVERGELT, P. (1997): A continent-ocean tran- section from Western Austria based on palaeoecological and sition recorded in the Err and Platta nappes (Eastern Switzerland). geochemical data. - Palaeogeography, Palaeoclimatology, - Eclogae geologicae Helvetiae, 90: 3-27, Basel. Palaeoecology, 136: 79-95, Amsterdam. MANDL, G.W. (1982): Jurassische Gleittektonik im Bereich der MEDWENITSCH, W. (1958): Die Geologie der Salzlagerstätten Bad Hallstätter Zone zwischen Bad Ischl und Bad Aussee (Salz- Ischl und Alt-Aussee (Salzkammergut). - Mitteilungen der Ge- kammergut, Österreich). - Mitteilungen der Gesellschaft Geolo- ologischen Gesellschaft in Wien, 50: 133-200, Wien. gie- Bergbaustudenten in Österreich, 28: 55-76, Wien. MEDWENITSCH, W. (1963): D III: Halleiner Salzberg (Dürrnberg). - MANDL, G.W. (1996): Zur Geologie des Ödenhof-Fensters (Nörd- (In: GRILL, R., KOLLMANN, K., KÜPPER, H. & OBERHAUSER, R. (Hrsg.): liche Kalkalpen, Österreich). - Jahrbuch der Geologischen Bun- Exkursionsführer für das Achte Europäische Mikropaläontol- desanstalt, 139: 473-495, Wien. ogische Kolloquium in Österreich), Verhandlungen der Geologi- MANDL, G.W. & ONDREJICKOVÁ, A. (1991): Über eine triadische schen Bundesanstalt, Sonderheft F: 67-81. Wien. Tiefwasserfazies (Radiolarite, Tonschiefer) in den Nördlichen MEISTER, CH. & BÖHM, F. (1993): Austroalpine Liassic Ammonites Kalkalpen - ein Vorbericht. - Jahrbuch der Geologischen Bun- from the Adnet Formation (Northern Calcareous Alps). - Jahr- desanstalt, 134: 309-318, Wien. buch der Geologischen Bundesanstalt, 136/1: 163-211, Wien. MANDL, G.W. & ONDREJICKOVA, A. (1993): Radiolarien und Cono- MILLER, H. (1963): Gliederung und Altersstellung der jurassi- donten aus dem Meliatikum im Ostabschitt der Nördlichen Kalk- schen und unterkretazischen Gesteine am Südrand des Wetterst- alpen (Österreich). - Jahrbuch der Geologischen Bundesanstalt, ein-Gebirges („Jungschichten-Zone“) mit einem Beitrag zur ge- 136: 841-871, Wien. ologischen Stellung der Ehrwaldite. - Mitteilungen der Bayer-

137 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

ischen Staatssammlung Paläontologie und historische Geologie, gisch Paläontologische Mitteilungen Innsbruck, 21: 185-199, 3: 51-72, München. Innsbruck. MISSONI, S. (2003): Analyse der mittel- und oberjurassischen MOSTLER, H. & BALOGH, Z. (1994): Spätsedimentäre bis frühdia- Beckenentwicklung in den Berchtesgadener Kalkalpen - Strati- genetische Veränderungen an Mikroskleren criccomorpher Demo- graphie, Fazies und Paläogeographie. - 1-150, PhD-Thesis spongien aus dem Oberjura. - Geologisch-Paläontologische Mit- Montanuniversität Leoben, Leoben. teilungen Innsbruck, 19: 155-163, Innsbruck. MISSONI, S. & GAWLICK, H.-J. (in review): Jurassic subduction MOSTLER, H. & PAHR, A. (1981): Triasfossilien in „Cáker Konglo- versus Jurassic strike-slip/Cretaceous nappe stack concept and merat“ von Goberling. - Verhandlungen der Geologischen Bun- Mesozoic-Cenozoic evolution of the Northern Calcareous Alps desanstalt, 1981: 83-91, Wien. as proven in the Berchtesgaden Calcareous Alps. - Facies, (Sprin- MÜLLER-DEILE, G. (1940): Geologie der Alpenrandzone beiderseits ger) Berlin Heidelberg. vom Kochel-See in Oberbayern. - Mitteilungen der Reichsstelle MISSONI, S., SCHLAGINTWEIT, F., SUZUKI, H. & GAWLICK, H.-J. für Bodenforschung, Zweigstelle München, 34. - 1-109, Mün- (2001a): Die oberjurassische Karbonatplattformentwicklung im chen. Bereich der Berchtesgadener Kalkalpen (Deutschland) - eine NAGAI, H. & MIZUTANI, S. (1990): Jurassic Eucyrtidiellum (Radio- Rekonstruktion auf der Basis von Untersuchungen polymikter laria) in the Mino Terrane. - Trans. Proceedings Palaeontological Brekzienkörper in pelagischen Kieselsedimenten (Sillenkopf- Society Japan, New Series, 159: 587-602, Tokyo. Formation). - Zentralblatt Geologie Paläontologie, Teil 1, 2000: NAGEL, K.H., SCHÜTZ, K.-J., SCHÜTZ, S., WILMERS, W. & ZEIL, W. 117-143, Stuttgart. (1976): Die geodynamische Entwicklung der Thiersee- und der MISSONI, S., STEIGER, T. & GAWLICK, H.-J. (2001b): Das „Gschirr- Karwendelmulde (Nördliche Kalkalpen). - Geologische Rund- kopffenster“ in den Berchtesgadener Kalkalpen (Deutschland) schau, 65: 536-557, Stuttgart. und seine Interpretation: Neuergebnisse auf der Basis von stra- NEUBAUER, F., FRIEDL, G., GENSER, J., HANDLER, R., MADER, D. & tigraphischen und faziellen Untersuchungen. - Mitteilungen SCHNEIDER, D. (2007): Origin and tectonic evolution of the Eastern Gesellschaft Geologie- Bergbaustudenten Österreich, 45: 89- Alps deduced from dating of detrital white mica: a review. - 110, Wien. Austrian Journal Earth Sciences, 100: 8-23, Wien. MISSONI, S., GAWLICK, H.-J., SUZUKI, H. & DIERSCHE, V. (2005): NEUBAUER, F., HILBERG, S., HANDLER, R. & TOPA, D. (1999): Die paläogeographische Stellung des Blockes in den Evidence for Jurassic subduction in the Northern Calcareous Berchtesgadener Kalkalpen - Neuergebnisse auf der Basis der Alps: the tale of the Florianikogel Formation. - (In: SZEKELY, B., Analyse der Trias- und Jura-Entwicklung. - Journal Alpine DUNKL, I., KUHLEMANN, J. & FRISCH, W. (Eds.): 4th Workshop on Geology (Mitteilungen Gesellschaft Geologie- Bergbaustudenten Alpine Geological Studies 21-24 September 1999, Tübingen Österreich), 47:169-209, Wien. (Germany)). Tübinger Geowissenschaftliche Arbeiten, Series A, MIZUTANI, S. (1981): A Jurassic formation in the Hida-Kanayama 52: 105, Tübingen. area, central Japan. - Bulletin Mizunami Fossil Museum, 8: NEUBAUER, W. (1949): Geologie der nordöstlichen Kalkalpen um 147-190, Mizunami [Japanisch mit engl. Beschreibung]. Lilienfeld. Der Typus voralpinen Deckenbaues. - Mitteilungen MIZUTANI, S. & KIDO, S. (1983): Radiolarians in Middle Jurassic der Geologie- und Bergbaustudenten in Wien, 1: 1-44, Wien. siliceous shale from Kamiaso, Gifu Prefecture, Central Japan. - NEUMAYR, M. (1870): Über einige neue oder weniger bekannte Trans. Proceedings Palaeontological Society Japan, N. S., 132: Cephalopoden der Macrocephalen-Schichten. - Jahrbuch der 253-262, Pls. 51-53, Tokio. kaiserlich-königlichen Geologischen Reichsanstalt, 20: 147-156, MOJSISOVICS, E. v. (1868): Über den Malm des Salzkammergutes. Wien. - Verhandlungen der kaiserlich-königlichen Geologischen Reichs- NEUMAYR, M. (1871): I. Jurastudien. 3. Die Phylloceraten des anstalt, 1868: 124-128, Wien. Dogger und Malm. - Jahrbuch der kaiserlich-königlichen Geolo- MOJSISOVICS, E. v. (1905): Erläuterungen zur geologischen Karte gischen Reichsanstalt, 21: 299-354, Tafel 12-17, Wien. der im Reichsrate vertretenen Königreiche und Länder der NEUMAYR, M. (1873): Die Fauna der Schichten mit Aspidoceras Österr.-ungar. Monarchie. SW-Gruppe Nr. 19, Ischl und Hall- acanthicum. - Abhandlungen der kaiserlich-königlichen Geolo- statt. - 1-60, (Geologische Reichsanstalt) Wien. gischen Reichsanstalt, 5/6: 141-157, Wien. MOHTAT-AGHAI, P. (1999): Beiträge zu Geologie des Gebietes von NEUWEILER, F. & BERNOULLI, D. (2005): Mosozoic (Lower Jurassic) Schwendt/Tirol und zur Foraminiferenführung der Unterkreide red stromatactis limestones from the Southern Alps (Arzo, zwischen Thiersee und Lofer. - Jahrbuch der Geologischen Bun- Switzerland): calcite mineral authigenesis and syneresis-type desanstalt, 141: 449-471, Wien. deformation. - International Journal of Earth Sciences, 94: 130- MORANTE, R. & HALLAM, A. (1996): Organic carbon isotopic record 146, Berlin. across the Triassic-Jurassic boundary in Austria and its bearing NÖTH, L. (1926): Der geologische Aufbau des Hochfelln-Hoch- on the cause of the mass extinction. - Geology, 24: 391-394, kienberggebietes. - Centralblatt Mineralogie Geologie Paläonto- Boulder. logie. In Verbindung mit dem Neuen Jahrbuch für Mineralogie, MOSHAMMER, B. & LOBITZER, H. (2000): Weißmetrik und Geoche- Geologie und Paläontologie, Abteilung B, Beilagen-Band 76: 451- mie ausgewählter österreichischer Kalkstein- und Marmor-Vor- 511, Stuttgart. kommen. - Mitteilungen der Österreichischen Geologischen OBERHAUSER, R. (1980): Der geologische Aufbau Österreichs. XIX. Gesellschaft, 91: 63-77, Wien. - 1-701, (Springer) Wien New York. MOSTLER, H. (1989a): Mikroskleren hexactinellider Schwämme OBERHAUSER, R. (1983): Mikrofossilfunde im Nordwestteil des aus dem Lias der Nördlichen Kalkalpen. - Jahrbuch der Geologi- Unterengadiner Fensters sowie im Verspalaflysch des Rätikon. schen Bundesanstalt, 132/4: 687-700, Wien. - Jahrbuch der Geologischen Bundesanstalt, 126/1: 71-93, Wien. MOSTLER, H. (1989b): Mit „Zygomen“ ausgestattete Dermalia O´DOGHERTY, L. & GAWLICK, H.-J. (2008): Pliensbachian Radiolaria von Kieselschwämmen (Demospongiae) aus pelagischen Sedi- in the Teltschengraben (Northern Calcareous Alps, Salzkammer- menten der Obertrias und des unteren Jura (Nördliche Kalk- gut area, Austria) and their evidence for the reconstruction of alpen). - Jahrbuch der Geologischen Bundesanstalt, 132/4:701- Liassic Tethys. - Stratigraphy, 5/1: 63-81, New York. 726, Wien. O´DOGHERTY, L., GAWLICK, H.-J., GORICAN,. S. & MISSONI, S. (in MOSTLER, H. (1996a): Erster Nachweis von rosettenförmigen review): Middle to early Late Jurassic radiolarians of cherty Holothurien-Skleriten aus oberjurassischen Beckensedimenten sediments in the Northern Calcareous Alps (Strubberg Formati- (Oberalm-Formation, Nördliche Kalkalpen). - Geologisch-Palä- on, Salzkammergut area): a tool for the reconstruction of the ontologische Mitteilungen Innsbruck, 21: 173-183, Innsbruck. early tectonic history in the western Tethyan domain. - Paläon- MOSTLER, H. (1996b): Ein Beitrag zur Genese liassischer Toxa tologische Zeitschrift, Stuttgart. und Forcipes (Skelettelemente von Demospongien). - Geolo- O’DOGHERTY, L., BILL, M., GORICAN, S., DUMITRICA, P. & MASSON,

138 Journal of Alpine Geology, 50: 1-152, Wien 2009

H. (2006): Bathonian radiolarians from an ophiolithic mélange New York. of the Alpine Tethys (Gets Nappe, Swiss-French Alps). - PETERS, K.F. (1855): Die Nerineen des oberen Jura in Österreich. Micropaleontology, 51/6: 425-485, New York. - Sitzungsberichte der Österreichischen Akademie der Wissen- OGG, J.G. (2004a): The Triassic Period. - (In: GRADSTEIN, F., OGG, schaften. Mathematisch-naturwissenschaftlichen Klasse: Abtei- J. & SMITH, A.: A Geological Time Scale 2004), 271-306, lung 1, 16: 336-366, (Österreichische Akademie Wissenschaf- (Cambridge University Press) Cambridge. ten) Wien. OGG, J.G. (2004b): The Jurassic Period. - (In: GRADSTEIN, F., OGG, PILLER, W.E., EGGER, H., ERHART, C.W., GROSS, M., HARZHAUSER, J. & SMITH, A.: A Geological Time Scale 2004), 307-343, M., HUBMANN, B., VAN HUSEN, D., KRENMAYR, H.G., KRYSTYN, (Cambridge University Press) Cambridge. L., LEIN, R., LUKENEDER, A., MANDL, G.W., RÖGL, F., ROETZEL, OPPEL, A. (1861): Über die weissen und rothen Kalke von Vils in R., RUPP, C., SCHNABEL, W., SCHÖNLAUB, H.P., SUMMESBERGER, H., Tyrol. - Württembergische Naturwissenschaftliche Jahreshefte, WAGREICH, M. & WESSELY, G. (2004): Die stratigraphische Ta- 17: 1-40, München. belle von Österreich 2004 (sedimentäre Schichtfolgen). - OPPEL, A. (1863): Über jurassische Cephalopoden (Fortsetzung). Österreichische Akademie der Wissenschaften und Österreich- - Paläontologische Mitteilungen aus dem Museum des König- ische Stratigraphische Kommission, Wien. lich-Bayerischen Staates, 3: 163-266, (Ebner & Seubert) Stuttgart. PILLER, W.E. (in press) (Eds.): Explanatory notes to the Strati- ORTNER, H., USTASZEWSKI, M. & RITTNER, M. (2008): Late Jurassic graphic table of Austria 2004. - Österreichische Akademie der tectonics and sedimentation: breccias in the Unken syncline, Wissenschaften, Wien. central Northern Calcareous Alps. - Swiss Journal Geosciences, PLASIENKA, D. (1995): Passive and active margin history of the Supplement 1, 101: S55-S71, Basel. northern Tatricum (Western Carpathians, Slovakia). - Geologi- OTT, W. (1969): Zur Geologie des Sulzfluh-Kalkes (Malm) in sche Rundschau, 84: 748-760, Berlin. Graubünden und Vorarlberg. - 1-174, PhD-Thesis Technische PLÖCHINGER, B. (1952a): Charakterbilder aus der Tektonik der Hochschule Darmstadt, Darmstadt. Salzburger Kalkalpen. - Verhandlungen der Geologischen Bun- OZVOLDOVA, L. (1975): Upper Jurassic radiolarians from the desanstalt, Sonderheft C, 1952: 107-111, Wien. Kysuca Series in the Klippen Belt. - Zapadne Karpaty, Series PLÖCHINGER, B. (1952b): Fossile Bakterien in den Tennengebirgs- Paleontology, 1: 73-88, Pls. 99-103, Bratislava. Manganschiefern. - Mikroskopie, 7: 197-201, Wien. OZVOLDOVA, L. & FAUPL, P. (1993): Radiolarien aus kieseligen PLÖCHINGER, B. (1955): Zur Geologie des Kalkalpenabschnittes Schichtgliedern des Juras der Grestener und Ybbsitzer Klippen- vom Torrener Joch zum Ostfuß des Untersberges; die Göllmasse zone (Ostalpen, Niederösterreich). - Jahrbuch der Geologischen und die Halleiner Hallstätter Zone. - Jahrbuch der Geologischen Bundesanstalt, 136: 479-494, Wien. Bundesanstalt, 98: 93-144, Wien. PÁLFY, J., DEMÉNY, A., HAAS, J., HETÉNY, M., ORCHARD, M. & PLÖCHINGER, B. (1957): Zur Geologie der Umgebung von Hirten- VETÖ, I. (2001): Carbon isotope anomaly and other geochemical berg/Triesting. - Verhandlungen der Geologischen Bundesanstalt, changes at the Triassic-Jurassic boundary from a marine section 1957: 239-243, Wien. in Hungary. - Geology, 29: 1047-1050, Boulder. PLÖCHINGER, B. (1960): Der Kalkalpenrand bei Alland im PÁLFY, J. (2008): Triassic-Jurassic boundary. - (In: MCCANN, T. Schwechattal (Niederösterreich). - Verhandlungen der Geologi- (Ed.): The Geology of Central Europe. Volume 2: Mesozoic and schen Bundesanstalt, 1960: 56-71, Wien. Cenozoic), 826-827, Geological Society (London). PLÖCHINGER, B. (1964): Die tektonischen Fenster von St. Gilgen PARONA, C. F. (1890): Radiolarie nei noduli selciosi del calcare und Strobl am Wolfgangsee (Salzburg, Österreich). - Jahrbuch giurese di Cittiglio presso Laverno. - Bolletino Societa Geologia der Geologischen Bundesanstalt, 107: 11-64, Wien. Italiana, 9: 132-175, Roma. PLÖCHINGER, B. (1973): Erläuterungen zur Geologischen Karte PESSAGNO, E.A. Jr. (1977a): Upper Jurassic radiolaria and des Wolfgangseegebietes (Salzburg, Oberösterreich). - 1-92, radiolarian biostratigraphy of the California Coast Ranges. - (Geologische Bundesanstalt) Wien. Micropaleontology, 23: 56-113, New York. PLÖCHINGER, B. (1974): Gravitativ transportiertes Haselgebirge in PESSAGNO, E. A., Jr. (1977b): Lower Cretaceous radiolarian den Oberalmer Schichten (Tithonium, Salzburg). - Verhandlun- biostratigraphy of the Great Valley Sequence and Franciscan gen der Geologischen Bundesanstalt, 1974: 71-88, Wien. complex, California Coast Ranges. - Cushman Foundation for PLÖCHINGER, B. (1976): Die Oberalmer Schichten und die Platz- Foraminiferal Research, Special Publication, 15: 1-87, Washing- nahme der Hallstätter Masse in der Zone Hallein-Berchtesgaden, ton, D.C. mit Beiträgen von K. BADER und H. HOLZER. - Neues Jahrbuch PESSAGNO, E.A. Jr. & BLOME, C.D. (1980): Upper Triassic and Geologie Paläontologie, Abhandlungen, 151: 304-324, Stuttgart. Jurassic Pantanelliinae from California, Oregon and British PLÖCHINGER, B. (1980): Die Nördlichen Kalkalpen. - (In: OBER- Columbia. - Micropaleontology, 26: 225-273, New York. HAUSER, R. (Ed.): Der geologische Aufbau Österreichs), 217- PESSAGNO, E.A. Jr. & POISSON, A. (1981): Lower Jurassic radiolaria 264, (Springer) Wien New York. from the Gümüslu allochton of southwestern Turkey (Taurides PLÖCHINGER, B. (1982): Erläuterungen zu Blatt 95 St. Wolfgang im Occidentales). - Bulletin Mineral Research Exploration Institu- Salzkammergut der österreichischen Karte der Republik Öster- te Turkey, 92: 47-69, Ankara. reich 1:50000. - 1-76, (Geologische Bundesanstalt) Wien. PESSAGNO, E.A. Jr. & WHALEN, P.A. (1982): Lower and Middle PLÖCHINGER, B. (1983): Salzburger Kalkalpen. - Sammlung geolo- Jurassic radiolaria (multicyrtid Nassellariina) from California, gischer Führer, 73. - 1-144, (Gebrüder Bornträger) Berlin east-central Oregon and the Queen Charlotte Islands, B. C. - Stuttgart. Micropaleontology, 28: 111-169, New York. PLÖCHINGER, B. (1984): Zum Nachweis jurassisch-kretazischer PESSAGNO, E.A. Jr., WHALEN, P.A. & YEH, K.-Y. (1986): Jurassic Eingleitungen von Hallstätter Gesteinsmassen beiderseits des Nassellariina (Radiolaria) from the North American Geologic -Quertales (Salzburg). - Geologische Rundschau, 73: 293- Terranes. - Bulletins of American Paleontology, 91: 1-75, pls. 1- 306, Stuttgart. 11. PLÖCHINGER, B. (1987): Geologische Karte der Republik Öster- PESSAGNO, E.A. Jr., SIX, W.M. & YANG, Q. (1989): The Xipho- reich 1:50000, 94 Hallein. - (Geologische Bundesanstalt) Wien. stylidae Haeckel and Parvivaccidae, n. fam., (Radiolaria) from PLÖCHINGER, B. (1990): Erläuterungen zu Blatt 94 Hallein im Salz- the North American Jurassic. - Micropaleontology, 35: 193- kammergut der österreichischen Karte der Republik Österreich 255, New York. 1:50000. - 1-76, (Geologische Bundesanstalt) Wien. PESSAGNO, E.A. Jr. & YANG, Q. (1989): Systematic Paleontology. PLÖCHINGER, B. & PREY, S. (1968): Profile durch die Windisch- - (In: PESSAGNO, E.A., Jr., SIX, M.W. & YANG, Q. (Eds.): The garstener Störungszone im Raume Windischgarsten - St. Gallen. Xiphostylidae Haeckel and Parvivaccidae, n. fam., (Radiolaria) - Jahrbuch der Geologischen Bundesanstalt, 111: 175-211, Wien. from the North American Jurassic). - Micropaleontology, 35, PLÖCHINGER, B. & PREY, S. (1974): Der Wienerwald. - Sammlung

139 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

geologischer Führer, 59. - 1-141, (Gebrüder Bornträger) Berlin RATSCHBACHER, L., DINGELDEY, C., MILLER, C., HACKER, B.R. & Stuttgart. MCWILLIAMS, M.O. (2004): Formation, subduction, and ex- PLÖCHINGER, B. & PREY, S. (1993): Der Wienerwald. - Sammlung humation of Penninic oceanic crust in the Eastern Alps: time geologischer Führer, 59, 2. Auflage (Redaktion W. SCHNABEL). - constraints from 40Ar/39Ar geochronology. - Tectonophysics, 1-168, (Gebrüder Bornträger) Berlin Stuttgart. 394: 155- 170, Amsterdam. PLÖCHINGER, B. & SALAJ, J. (1991) mit Beiträgen von EGGER, H. & REMANE, J., ADATTE, T., BERGER, J.-P., BURKHALTER, R., STRADNER, H.: Der Nordrandbereich der Nördlichen Kalkalpen DALL´AGNOLO, S., DECROUEZ, D., FISCHER, H., FUNK, H., FURRER, zwischen Kaumberg und Altenmarkt an der Triesting (Nieder- H., GRAF, H.-R., GOUFFON, Y., HECKENDORN, W. & WINKLER, W. österreich) und der Mikrofossilinhalt seines Kreide-Paläogen- (2005): Richtlinien zur stratigraphischen Nomenklatur des Anteils. - Jahrbuch der Geologischen Bundesanstalt, 134: 783- Schweizerischen Komitee für Stratigraphie. - Eclogae geologicae 808, Wien. Helvetiae, 98: 385-405, Basel. POBER, E. & FAUPL, P. (1988): The chemistry of detrital chromian REISER, K. (1920): Geologie der Hindelanger und Pfrontener Ber- spinels and its implications for the geodynamic evolution of the ge im Allgäu. - Geognostische Jahreshefte, 33: 57-98, München. Eastern Alps. - Geologische Rundschau, 77: 641-670, Stuttgart. RICHTER, M. (1970): Die Aroser Decke (Arosa-Zone) in Vorarlberg PÖTTLER, D. & GAWLICK, H.-J. (2000): Oberjurassische Brekzien- und im Allgäu und ihre Fortsetzung am bayerischen Alpenrand. bildung und Schollengleitung nördlich des Rettenbachtales zwi- - Neues Jahrbuch Geologie Paläontologie, Monatshefte, 1970: schen Ischler Hütte und Jaglingalm (Nördliche Kalkalpen, Ober- 605-631, Stuttgart. österreich). - Mitteilungen Gesellschaft Geologie- Bergbau- RICHTHOFEN, F.F. v. (1861): Die Kalkalpen von Vorarlberg und studenten Österreich, 43: 108-109, Wien. Nord-Tirol. 2. Abth. - Jahrbuch der kaiserlich-königlichen Geo- POPP, F. (1984): Stratigraphische und tektonische Untersuchun- logischen Reichsanstalt, 12 (1861-1862): 87-206, Wien. gen in der Schieferhülle der Hohen Tauern im Gerlostal (Tirol). RIEDEL, W.R. & SANFILIPPO, A. (1974): Radiolaria from the Southern - Mitteilungen der Gesellschaft Geologie- Bergbaustudenten in Indian Ocean, DSDP Leg 26. - (In: DAVIS, T.A., LUYENDYK, B.P. Österreich, 30/31: 235-268, Wien. et al. (Eds.): Init. Rep. Deep Sea Drill. Proj.), 26: 771-814, (U.S. PRATURLON, A. (1963): Una nuova Teutloporella (Alga calcarea) Government Printing Office) Washington, D.C. nel Giurese superiore di Monte Corno (Parco nazionale RÖMER, F.A. (1836): Die Versteinerungen des Norddeutschen d´Abruzzo). - Geologica Romana, 2: 199-206, Roma. Oolithen-Gebirges. - 1-218, 16 Tafeln, (Hahn) Hannover. PUTIS, M., GAWLICK, H.-J., FRISCH, W. & SULAK, M. (2008): Creta- ROSENBERG, G. (1937): Bericht über weitere Begehungen in der ceous transformation from passive to active continental margin Umgebung von Kalksburg und Kaltenleutgeben. - Verhandlun- in the Western Carpathians as indicated by the sedimentary gen der Geologischen Bundesanstalt, 1937: 163-175, Wien. record in the Infratatricum. - International Journal of Earth ROSENBERG, G. (1954): Erforschungsgeschichte, Stratigraphie und Sciences, 97: 799-819, Berlin Heidelberg. nutzbare Gesteine. - (In: GRILL, R. & KÜPPER, H. (Eds.): Erläu- QUENSTEDT, W. (1951): Geologische Exkursion in das Achental- terungen zur geologischen Karte der Umgebung von Wien), 11- Gebiet (Tirol). - Geologica Bavarica, 6: 55-64, München. 29, (Geologische Bundesanstalt) Wien. RADOICIC R. (1963): Triploporella neocomiensis sp. nov. iz slojeva ROSENBERG, G. (1961): Übersicht über den Kalkalpennordostsporn valendis-otriva Crne Gore (Triploporella neocominensis sp. nov. um Kalksburg (Wien und Niederösterreich). - Verhandlungen des couches valanginiennes-hauteriviennes du Montenegro). - der Geologischen Bundsanstalt, 1961: 171-176, Wien. Vesnik Zavod za Geoloska I Geofizika Istrazivanja, ser. A, XXI: ROSENBERG, G. (1965): Der Kalkalpine Wienerwald um Kalten- 139-144, Beograd. leutgeben (Niederösterreich und Wien). - Jahrbuch der Geologi- RADOICIC R. (1975): Linoporella buseri sp. nov. from the Liassic schen Bundesanstalt, 109: 115-153, Wien. of the Julian Alps. - Bulletin Scientifique, section A: Sciences ROSENBERG, G. (1969): Knerzenalm und Knerzenkalk. - Verhand- Naturelles, technique et Médicales, 20 (9-10): 277-278, Zagreb. lungen der Geologischen Bundesanstalt, 1969: 16-22, Wien. RAKÚS, M. (1999a): Some hithero Undescribed Liassic Ammonites ROSENBERG, G. (1966): Geleitworte zu den Tabellen des Nord- from the Adnet Formation in Austria. - Abhandlungen der Geo- und Südalpinen Jura der Ostalpen. - Jahrbuch der Geologischen logischen Bundesanstalt, 56/2: 219-328, Wien. Bundesanstalt, 109: 173-175, Tafel 1-3, Wien. RAKÚS, M. (1999b): Lower Liassic (Hettangian) Ammonites from ROTHPLETZ, A. (1886): Geologisch-paläontologische Monographie Zlambach Graben near Bad Goisern, Upper Austria. - Abhand- der Vilser Alpen mit besonderer Berücksichtigung der Brachio- lungen der Geologische Bundesanstalt, 56/2: 329-341, Wien. poden-Systematik. - Paläontographica, 33: 1-180, Stuttgart. RAKÚS, M. (1999c): Liassic ammonites from Hierlatz, Austria. - RÜST, D. (1885): Beiträge zur Kenntnis der fossilen Radiolarien Abhandlungen der Geologischen Bundesanstalt, 56/2: 343-377, aus Gesteinen des Jura. - Palaeontographica, 31: 269-321, Wien. Stuttgart. RANTITSCH, G., MELCHER, F., MEISEL, T. & RAINER, T. (2003): Rare RÜST, D. (1898): Neue Beiträge zur Kenntnis der fossilien Radio- earth, major and trace elements in Jurassic manganese shales in larien aus Gesteinen der Jura und der Kreide. - Palaeontographica, the Northern Calcareous Alps: hydrothermal versus hydro- 45: 1-67, Stuttgart. genous origin of stratiform manganese deposits. - Mineralogy RUTTNER, A. (1980): Bericht über ergänzende Begehungen west- and Petrology, 77: 109-127, (Springer) Berlin Heidelberg. lich Gaming und südlich Lunz am See auf Blatt 71 Ybbsitz. - RASSER, M.W. & FENNINGER, A. (2002a): Paleoenvironmental and Verhandlungen der Geologischen Bundesanstalt, 1980: A45-A47, diagenetic implications of d18O and d13C isotope rations from Wien. the Upper Jurassic Plassen limestone (Northern Calcareous RUTTNER, A. & SCHNABEL, W. (1988): Geologische Karte der Re- Alps, Austria). - Geobios, 35: 41-49, Amsterdam. publik Österreich 1:50.000. Blatt 71 Ybbsitz. - (Geologische RASSER, M.W. & FENNINGER, A. (2002b): Jurassic/Cretaceous Bundesanstalt) Wien. dasycladalean algal stratigraphy in the Northern Calcareous Alps: SALVADOR, A.E. (Ed.) (1994): International Stratigraphic Guide: - a critical review and a palaeobiogeographic approach using A Guide to Stratigraphic Classification, Terminology, Procedure. similarity indices. - (In: BUCUR, I.I. & FILIPESCU, S. (Eds.): Re- - 2nd Edition, Geological Society of America, Boulder. search advances in calcareous algae and microbial carbonates), SANDER, B. (1910): Über neue geologische Forschungen im Gebie- 167-190, Cluj University Press. te der Tarntaler Köpfe (Navistal, Tirol). - Verhandlungen der RASSER, M.W. & SANDERS, D. (2003): Field Guide to Mesozoic kaiserlich-königlichen Geologischen Reichsanstalt, 1910: 43-50, carbonate platforms and reefs of the Northern Calcareous Alps. Wien. th - 9 International Symposium on Fossil Cnidaria and Porifera, SANDER, B. (1921): Geologische Studien am Westende der hohen Graz 2003, Field trip A2: “Mesozoic Reefs of the Northen Tauern. II. - Jahrbuch der Geologischen Staatsanstalt, 70: 273- Calcareous Alps, 1-30, Graz. 296, Wien.

140 Journal of Alpine Geology, 50: 1-152, Wien 2009

SANDER, B. (1941a): Zum Gesteinscharacter der Hornsteinbreccien K. & JENKYNS, H.C. (Eds.): Pelagic Sediments: on Land and des Sonnwendjochgebirges. - Berichte der Reichsstelle für Boden- under the Sea), Special Publication Number 1 of the Internatio- forschung, 1941: 81-88, Wien. nal Association of Sedimentologists: 49-70, (Blackwell) Oxford. SANDER, N. (1941b): Petrographie der nachtriadischen Tarntaler SCHLAGER, W. & SCHLAGER, M. (1973): Clastic sediments associated Breccie (Ostmark). - Berichte der Reichsstelle für Boden- with radiolarites (Tauglbodenschichten, Upper Jurassic, Eastern forschung. Zweigstelle Wien, 1941: 121-129, Wien. Alps). - Sedimentology, 20: 65-89, (Blackwell) Oxford. SANDERS, D., LUKESCH, M., RASSER, M. & SKELTON, P. (2007): Shell SCHLAGER, W. & SCHÖLLNBERGER, W. (1974): Das Prinzip stratigra- beds of diceratid rudists ahead of low-energy gravelly beach phischer Wenden in der Schichtfolge der Nördlichen Kalkalpen. (Tithonian, Northern Calcareous Alps, Austria): Palaeoecology - Mitteilungen der geolologischen Gesellschaft Wien 66/67: 165- and Taphonomy. - Austrian Journal Earth Sciences, 100: 186- 193, Wien. 199, Wien. SCHLAGINTWEIT, F. (2004): Iberopora bodeuri GRANIER & BERTHOU SASHIDA, K. (1988): Lower Jurassic multisegmented Nassellaria 2002 (incertae sedis) from the Plassen Formation (Kimmeridgian- from the Itsukaichi area, western part of Tokyo Prefecture, Berriasian) of the Tethyan Realm. - Geologia Croatica, 57/1: 1- central Japan. - Scietific Reports, Institute Geoscience, Universi- 13, Zagreb. ty Tsukuba, Section B, 9: 1-27, Pls. 1-4, Tsukuba. SCHLAGINTWEIT, F. (2005): Neogyroporella? gawlicki n.sp., a New SASHIDA, K., MUNASRI, ADACHI, S. & KAMATA, Y. (1999): Middle Dasycladale from the Upper Jurassic-Lower Cretaceous “Lärch- Jurassic radiolarian fauna from Rotti Island, Indonesia. - Journal berg Formation“ of the Northern Calcareous Alps, Austria. - of Asian Earth Sciences, 17: 561-572. Geologia Croatica, 58/2: 103-117, Zagreb. SCHAFHÄUTL, C. (1846): Beiträge zur nähern Kenntniss der Bayer- SCHLAGINTWEIT, F. & DRAGASTAN, O. (2004): Pinnatiporidium ischen Voralpen. - Neues Jahrbuch für Mineralogie, Geognosie, untersbergensis n. sp., a new siphonous green alga of the family Geologie und Petrefaktenkunde, 1846: 641-695, Heidelberg. Protohalimedaceae DRAGASTAN, LITTLER & LITTLER 2002 from SCHÄFFER, G. (1982): Geologische Karte der Republik Österreich the Upper Jurassic of the Northern Calcareous Alps (Germany, 1:50000, 96 Bad Ischl. - (Geologische Bundesanstalt) Wien. Austria). - Acta Palaeontologae Romaniae, (2004), 4: 455-462, SCHÄFFER, G. & STEIGER, T. (1986): Der Jura zwischen Salzburg Bukarest. und Bad Aussee - Stratigraphie und Gleitmassen in Tiefwasser- SCHLAGINTWEIT, F. & EBLI, O. (1999): New results on microfacies, Sedimenten der Nördlichen Kalkalpen. - Exkursionsführer zur biostratigraphy and sedimentology of Late Jurassic-Early Jahrestagung der Subkommission für Jura-Stratigraphie: 1-67, Cretaceous platform carbonates of the Northern Calcareous Alps. München Salzburg Bad Aussee. Part I: Tressenstein Limestone, Plassen Formation. - Jahrbuch SCHILLER, W. (1904): Geologische Untersuchungen im östlichen der Geologischen Bundesanstalt, 56/2: 379-418, Wien. Unterengadin. I. Lischannagruppe. - Berichte der naturforschen- SCHLAGINTWEIT, F. & EBLI, O. (2000): Short note on Clypeina den Gesellschaft Freiburg/Breisgau, 14: 107-180, Freiburg/Breis- catinula CAROZZI, 1956 (dasycladale). - Revue de Paléobiologie, gau. 19/2: 465-473, Geneve. SCHILLER, W. (1904): Geologische Untersuchungen im östlichen SCHLAGINTWEIT, F. & GAWLICK, H.-J. (2006): Sarsteinia babai n. Unterengadin. I. Piz Lad-Gruppe. - Berichte der naturforschen- gen, n. sp, a new problematic sponge (Inozoa?) from the Late den Gesellschaft Freiburg/Breisgau, 16: 108-163, Freiburg/Breis- Jurassic of the Northern Calcareous Alps, Austria. - Rivista gau. Italiana Paleontologia Stratigrafia, 112: 251-260, Milano. SCHLAF, J. (1996): Ein obertriadisches Intraplattformbecken aus SCHLAGINTWEIT, F. & GAWLICK, H.-J. (2007): Analysis of Late den Südkarawanken (Kärnten, Österreich). - Mitteilungen der Jurassic to Early Cretaceous algal debris-facies of the Plassen Gesellschaft Geologie- Bergbaustudenten in Österreich, 39/40: carbonate platform in the Northern Calcareous Alps (Germany, 1-14, Wien. Austria) and in the Kurbnesh area of the Mirdita zone (Albania) SCHLAGER, M. (1953): Beitrag zur Geologie des Trattberges. - - a tool to reconstruct tectonics and paleogeography of eroded Mitteilungen der Naturwissenschaftlichen Arbeitsgemeinschaft platforms. - Facies, 53: 209-227, Berlin Heidelberg. am (vom) Haus der Natur in Salzburg, 3/4: 11-26, Salzburg. SCHLAGINTWEIT, F. & GAWLICK, H.-J. (2009a): Enigmatic tube- SCHLAGER, M. (1956): Geologische Studien im Tauglboden. - Mit- shaped microfossils associated with microbial crusts from Late teilungen der Naturwissenschaftlichen Arbeitsgemeinschaft am Jurassic reefal carbonates of the Northern Calcareous Alps (vom) Haus der Natur in Salzburg, 5: 31-44, Salzburg. (Austria): a possible mutualistic sponge-epibiont consortium. - SCHLAGER, M. (1961): Bericht 1960 über geologische Arbeiten auf Lethaia, 42: 452-461, Oslo. Blatt Strasswalchen (64). - Verhandlungen der Geologischen SCHLAGINTWEIT, F. & GAWLICK, H.-J. (2009b): Lituola? baculiformis Bundesanstalt, 1961: A61-A67, Wien. n. sp., a new benthic foraminifer from Late Jurassic peri-reefal SCHLAGER, M. (1966): Bericht 1965 über geologische Arbeiten auf carbonates of the Western Tethyan domain. - Journal of Alpine den Blättern Berchtesgaden (93) und Hallein (94). - Verhandlun- Geology, 51: 39-49, Wien. gen der Geologischen Bundesanstalt, 1966: A50-A54, Wien. SCHLAGINTWEIT, F., GAWLICK, H.-J. & LEIN, R. (2003): Die Plassen- SCHLAGER, M. (1969): Zur Definition der Oberalmer Schichten. - Formation der Typlokalität (Salzkammergut, Österreich) - neue Anzeiger der Österreichischen Akademie der Wissenschaften. Daten zur Fazies, Sedimentologie und Stratigraphie. - Mittei- Mathematisch-naturwissenschaftliche Klasse, 106: 85, (Öster- lungen Gesellschaft Geologie- Bergbaustudenten Österreich, 46: reichische Akademie Wissenschaften) Wien. 1-34, Wien. SCHLAGER, M. (1970): Bericht 1969 über geologische Arbeiten auf SCHLAGINTWEIT, F., GAWLICK, H.-J. & LEIN, R. (2005): Mikro- Blatt Hallein (94). - Verhandlungen der Geologischen Bundes- paläontologie und Biostratigraphie der Plassen-Karbonat- anstalt, 1970: A52-A59, Wien. plattform der Typlokalität (Ober-Jura bis Unter-Kreide, Salz- SCHLAGER, M. & SCHLAGER, W. (1969): Über die Sedimentations- kammergut, Österreich). - Journal of Alpine Geology (Mittei- bedingungen der jurassischen Tauglbodenschichten (Osterhorn- lungen Gesellschaft Geologie- Bergbaustudenten Österreich), gruppe, Salzburg). - Anzeiger der Österreichischen Akademie 47: 11-102, Wien. der Wissenschaften. Mathematisch-naturwissenschaftlichen SCHLAGINTWEIT, F., MISSONI, S., LEIN, R. & GAWLICK, H.-J. (2004): Klasse, 106: 178-183, (Österreichische Akademie Wissenschaf- Rivularia barmsteinensis n. sp. and Rivularia ? loseri n. sp. - ten) Wien. Two New Cyanophycean Algae from the Upper Jurassic-Lower SCHLAGER, W. (1963): Zur Geologie der östlichen Lienzer Dolomi- Cretaceus of the Northern Calcareous Alps (Germany/Austria). ten. - Mitteilungen der Gesellschaft Geologie- Bergbaustudenten - Jahrbuch der Geologischen Bundesanstalt, 144/2: 223-323, in Wien, 13 (1962): 41-120, Wien. Wien. SCHLAGER, W. (1974): Preservation of cephalopod skeletons and SCHMID, S.M., FÜGENSCHUH, B., KISSLING, E. & SCHUSTER, R. (2004): carbonate dissolution on ancient Tethyan sea floors. - (In: HSÜ, Tectonic map and overall architecture of the Alpine orogen. -

141 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Eclogae geologicae Helvetiae, 97: 93-117, Basel. Alps) - its facies, silicified fauna and implications for the end- SCHMID, S. M., FÜGENSCHUH, B., MATENCO, L., SCHEFER S., SCHUS- Triassic biotic crisis. - Facies, 51: 405-418, Berlin Heidelberg. TER, R., TISCHLER, M. & USTASZEWSKI, K. (2008): The Alps- SIBLIK, M. (1993): Review of the Early Liassic brachiopods of Carpathians-Dinarides-connection: a correlation of tectonic units. the Northern Calcareous Alps. - (In: PÁLFY, J. & VÖRÖS, A. (Eds.): - Swiss Journal of Geosciences, 101: 139-183, Basel. Mesozoic brachiopods of Alpine Europe, 127-132), Hungarian SCHMIDT, T. & BLAU, J. (1989): Der Unterlias der Lienzer Dolomi- Geological Society, Budapest. ten: Ein Beispiel syntektonischer Sedimentation auf einem pas- SIBLIK, M. (1999): New data on the Hettangian brachiopod fauna siven Kontinentalrand. - Geologisch Paläontologische Mittei- of the Northern Calcareous Alps (Austria, Bavaria). - Abhand- lungen Innsbruck, 16: 185-187, Innsbruck. lungen der Geologischen Bundesanstalt, 56/2: 419-438, Wien. SCHMIDT, T., BLAU, J. & KÁZMÉR, M. (1991): Large-scale strike- SIBLIK, M. (2008) with a contribution by LOBITZER, H.: A Jurassic slip displacement of the Drauzug and the Transdanubian Moun- Brachiopod Fauna from the Mitterwand area near Hallstatt tains in early Alpine history: evidence from Permo-Mesozoic (Upper Austria). - Jahrbuch der Geologischen Bundesanstalt, facies belts. - Tectonophysics 200: 213-232, Amsterdam. 148: 59-87, Wien. SCHÖLL, W. & WENDT, J. (1971): Obertriadische und jurassische SIMONY, F. (1850): Bericht über die Arbeiten der Section V. - Jahr- Spaltenfüllungen im Steinernen Meer (Nördliche Kalkalpen). - buch der kaiserlich-königlichen Geologischen Reichsanstalt 1/4: Neues Jahrbuch Geologisch Paläontologische Abhandlungen, 651-657, Wien. 139: 82-98, Stuttgart. SOKAC, B. & VELIC, I. (1976): Linoporella? svilajensis n. sp. SCHÖLLNBERGER, W. (1967): Zur Faziesverzahnung im Gebiet der (Calcareous Algae; Dasycladaceae) from the Upper Jurassic?- Hohen Schrott (E Bad Ischl, Salzkammergut) und die Auflösung Lower Cretaceous? limestone of Mount Svilaja, southern Croatia der „Singereben-Teuflingkogel-Deckscholle“. - Mitteilungen der (Dalmatia). - Geoloski Vjesnik, 29: 173-179, Zagreb. Geologie- und Bergbaustudenten in Wien, 17: 73-86, Wien. SOLOMONICA, P. (1934): Zur Geologie der sogenannten Kieselkalk- zone am Kalkalpenrande bei Wien und ihrer angrenzenden Ge- SCHÖLLNBERGER, W. (1973): Zur Verzahnung von Dachsteinkalk- Fazies und Hallstätter Fazies am Südrand des Toten Gebirges biete. - Mitteilungen der Geologischen Gesellschaft in Wien, 27: (Nördliche Kalkalpen, Österreich). - Mitteilungen der Gesell- 1-119, Wien. schaft Geologie- Bergbaustudenten in Österreich, 22: 95-153, SPIELER, A. (1994): Bericht 1993 über geologische Aufnahmen in Wien. den Nördlichen Kalkalpen auf Blatt 88 Achenkirch. - Jahrbuch der Geologischen Bundesanstalt, 137/3: 474-475, Wien. SCHÖNLAUB, H.P. (1973): Schwamm-Spiculae aus dem Rechnitzer Schiefergebirge und ihr stratigraphischer Wert. - Jahrbuch der SPENGLER, E. (1919): Die Gebirgsgruppe des Plassen und des Hall- Geologischen Bundesanstalt, 116: 35-49, Wien. stätter Salzberges. - Jahrbuch der kaiserlich-königlichen Geolo- gischen Reichsanstalt, 68: 285-474; Wien. SCHOTT, M. (1984): Mikrofaziell-multivariante Analyse einer rhäto-liassischen Karbonatplattform in den Nördlichen Kalk- SPENGLER, E. (1935): Bemerkungen zum Problem der Hornstein- alpen). - Facies, 11: 229-280, Erlangen. breccie im Sonnwendgebirge. - Verhandlungen der Geologischen Bundesanstalt, 1935: 157-165, Wien. SCHRÖDER, G. (1925): Die Jurassischen Fleckenmergel der bayerischen Alpen. - Neues Jahrbuch Mineralogie, Geologie SPENGLER, E. (1951): Die nördlichen Kalkalpen, die Flyschzone Paläontologie, 52: 214-283, Stuttgart. und die Helvetische Zone. - (In: SCHAFFER, F.X. (Ed.): Geologie von Österreich), 302-413, (Deuticke) Wien. SCHRÖDER, M. (1988): Stratigraphische und fazielle Untersuchun- gen der Obertrias bis Unterkreide am Nordrand der Karawanken SPITZ, A. (1919): Studien über die fazielle und tektonische Stel- zwischen St. Margareten im Rosental und Abtei (Kärnten). - lung des Tarntaler und des Tribulaun-Mesozoikums. - Jahrbuch Jahrbuch der Geologischen Bundesanstalt, 131/1: 133-151, Wien. der kaiserlich-königlichen Geologischen Reichsanstalt, 68 (1918), Heft 1-2: 171-204, Wien. SCHÜTZ, K.I. (1979): Die Aptychen-Schichten der Thiersee- und Karwendelmuld. - Geotektonische Forschungen, 57: 1-84, SPÖTL, C. (1989): The Alpine Haselgebirge Formation, Northern Stuttgart. Calcareous Alps (Austria): Permo-Skythian evaporites in an alpine thrust system. - Sedimentary Geology, 65: 113-125, SCHÜTZ, S. & HÜSSNER, H. (1997): Sedimentäre Rhythmen im Oberjura der Nördlichen Kalkalpen. - Geologische Blätter NO- Amsterdam. Bayern, 47: 273-288, Erlangen. SPÖTL, C. & HASENHÜTTL, C. (1998): Thermal history of the evaporitic Haselgebirge mélange in the Northern Calcareous Alps SCHWERD, K., LANGENSCHEIDT, E. & OTHOLT, D. (1998): Geologi- sche Karte von Bayern, 1:25000: Nationalpark Berchtesgaden. (Austria). - Geologische Rdschau, 87: 449-460, Berlin Heidelberg. - Bayerisches Geologisches Landesamt, München. SPÖTL, C., LONGSTAFFE, F.J., RAMSEYER, K., KUNKS, M.J. & WIES- HEU, R. (1998): Fluid-rock reactions in an evaporitic mélange, SCHWINGENSCHLÖGL, R. (1981): Geologie der Kalkvoralpen und der subalpinen Zone im Raume Kirchberg-Pielach in Nieder- Permian Haselgebirge, Austrian Alps. - Sedimentology, 45: 1019- österreich. - Mitteilungen der Gesellschaft Geologie- Bergbau- 1044, (Blackwell) Oxford. studenten in Österreich, 27: 39-86, Wien. SPÖTL, C., LONGSTAFFE, F.J., RAMSEYER, K. & RÜDIGER, B. (1999): Authigenic albite in carbonate rocks - a tracer for deep-burial SCHWINNER, R. (1951): Die Zentralzone der Ostalpen. (In: SCHAF- brine migration? - Sedimentology, 46: 649-666, (Blackwell) FER, F.X. (Ed.): Geologie von Österreich), 105-232, (Deuticke) Wien. Oxford. STAMPFLI G.M. & BOREL, G.D. (2002): A plate tectonic model for SENGÖR, A.M.C. (1985a): Die Alpiden und die Kimmeriden: die verdoppelte Geschichte der Tethys. - Geologische Rundschau, the Paleozoic and Mesozoic. - Earth Planetary Science Letters, 74: 181-213, Stuttgart. 196: 17-33 (Elsevier) Amsterdam. STAMPFLI, G.M. & KOZUR, H. (2006): Europe from the Variscan to SENGÖR, A.M.C. (1985b): The Story of Tethys: How many Wives Did Okeoanos Have? - Episodes, 8: 3-12, Beijing. the Alpine cycles. - (In: GEE D.G. & STEPHENSON, R.A. (Eds.): European Lithosphere Dynamics), Geological Society Memoir, SENOWBARI-DARYAN, B., BUCUR, I.I., SCHLAGINTWEIT, F., SASARAN, 32: 57-82, London. E. & MATYSZKIEWICZ, J. (2008): Crescentiella, a new name for STEIGER, T. (1980): Geologische Aufnahme des Zauchenbachtales „Tubiphytes“ morronensis CRESCENTI, 1969: an enigmatic Jurassic- Cretaceous microfossil. - Geologia Croatica, 61: 185-214, Zagreb. und des Krahstein-Massivs am Südrand des Toten Gebirges N´ Bad Mitterndorf (Nördliche Kalkalpen, Steirisches Salzkammer- SEPKOSKI, J.J., JR. (1996): Patterns of Phanerozoic extinction: a gut, Österreich). - Mitteilungen der Gesellschaft Geologie- Berg- perspective from global data bases. - (In: WALLISER, O.H. (Eds.): Global events and Event Stratigraphy in the Phanerozoic), 35- baustudenten in Wien, 26: 213-245, Wien. 51, (Springer) Berlin Heidelberg. STEIGER, T. (1981): Kalkturbidite im Oberjura der Nördlichen Kalkalpen (Barmsteinkalke, Salzburg, Österreich). - Facies, 4: SEUSS, B., HÖFLING, R. & NÜTZEL, A. (2005): Triassic/Jurassic carbonates from the Hochfelln Mountain (Northern Calcareous 215-348, Erlangen.

142 Journal of Alpine Geology, 50: 1-152, Wien 2009

STEIGER, T. (1992): Systematik, Stratigraphie und Palökologie der Gesellschaft Geologie- Bergbaustudenten Österreich), 49: 109, Radiolarien des Oberjura-Unterkreide-Grenzbereiches im Oster- Wien. horn-Tirolikum (Nördliche Kalkalpen, Salzburg und Bayern). - SUZUKI, H., SCHUSTER, R., GAWLICK, H.-J., LEIN, R. & FAUPL, P. Zitteliana (Abhandlungen Bayerischen Staatsammlung Paläon- (2007): Neotethys derived obducted ophiolite nappes in the tologie und historische Geologie), 19: 1-188, München. Eastern Alps: informations from radiolarite pebbles in the Gosau STEIGER, T. (1995): Rüst´s radiolarians from Urschlau (Late Group. - 8th Workshop on Alpine Geological Studies: 79-80, Jurassic, Chiemgau Alps, Bavaria). - Festschrift zum 60. Ge- Davos. burtstag von Helfried Mostler. Geologisch Paläontologische SUZUKI, H., WEGERER, E. & GAWLICK, H.-J. (2001): Zur Radiolarien- Mitteilungen Innsbruck, 20: 407-435, Innsbruck. stratigraphie im unteren Callovium in den Nördlichen Kalkalpen STEIGER, E. & STEIGER, T. (1994): New Radiolaria from the „Ruh- - das Klauskogelbachprofil westlich von Hallstatt. - Zentral- poldinger Marmor“ of Urschlau (Late Jurassic, Chiemgau Alps, blatt Geologie Paläontologie, Teil 1, 2000: 167-184, Stuttgart. Bavaria). – (In: SENOWBARI-DARYAN, B. & DAURER, A. (Eds.): SYKORA, M. & OZVOLDOVA, L. (1996): Lithoclasts of middle Jurassic Festschrift zum 60. Geburtstag von Erik Flügel), Abhandlungen radiolarites in debris flow sediments from Silica Nappe (locality der Geologischen Bundesanstalt, 50: 453-466, (Geologische Bleskovy pramen, Slovak Karst, Western Carpathians. - Minera- Bundesanstalt) Wien. lia Slovaca, 28: 21-25, Bratislava. STEIGER, T. & WURM, D. (1980): Faziesmuster oberjurassicher SZENTE, I. (1996): Bivalve assemblages from the Austrian and Plattform-Karbonate (Plassen-Kalke, Nördliche Kalkalpen, Stei- Hungarian Hierlatzkalk (Lower Jurassic): a comparison. - (In: erisches Salzkammergut, Österreich). - Facies, 2: 241-284, Er- DUDICH, E. & LOBITZER, H. (Eds.): Advances in Austrian- langen. Hungarian Joint Geological Research), 137-145, Budapest. STEINER, P. (1968): Geologische Studien im Grenzbereich der mitt- TAKEMURA, A. (1986): Classification of Jurassic Nassellarians leren und östlichen Kalkalpen (Österreich). I. Erläuterungen zur (Radiolaria). - Palaeontographica Abteilung A, 195: 29-74, Pls. Geologischen Karte der Kalkvoralpen zwischen Enns, Ybbs und 1-12, Stuttgart. Salza. II. Vorschläge zur Klärung tektonischer Erscheinungen im TAKEMURA, A. & NAKASEKO, K. (1983): Perseus, a new genus of Raum Weyer- Gr.Reifling-Lunz auf fazies- und struktur- Jurassic Palaeoscenidiidae and phylogeny of subfamily Hilarisire- geologischer Grundlage. - Mitteilungen der Gesellschaft Geolo- cinae. - Memoir Faculty Science, Kyoto University, Series B gie- Bergbaustudenten in Wien, 18: 9-88, Wien. (Geol. Mineral.), 49: 111-118, pls. 9-10, Kyoto. STEINIGER, F. & PILLER, W. (Eds.) (1999): Empfehlungen (Richtli- TELLER, F. (1888): Kössener Schichten, Lias und Jura in den nien) zur Handhabung der stratigraphischen Nomenklatur. - Ostkarawanken. - Verhandlungen der kaiserlich-königlichen Courier Forschungsinstitut Senckenberg, 209: 1-19, Frankfurt/ Geologischen Reichsanstalt, 1888: 110-117, Wien. Main. THIELE, O. (1967): Bericht 1966 über geologische Aufnahmen auf STEINMANN, G. (1903): Nachträge zur Fauna von Stramberg. II. Blatt Lanersbach 149. - Verhandlungen der Geologischen Bun- Milleporidium, eine Hydrocoralline aus dem Tithon von Stram- desanstalt, 1967, Heft 3: A48-A50, Wien. berg. - Beiträge zur Paläontologie Geologie Österreich-Ungarns TOLLMANN, A. (1956): Geologie der Pleisling-Gruppe (Radstädter und des Orients, 15: 1-8, Wien, Leipzig. Tauern). - Verhandlungen der Geologischen Bundesanstalt, 1956: STOTTER, M. (1849): Über den geognostischen Bau der Tiroler 146-164, Wien. Alpen. - Berichte über die Mitteilungen von Freunden der Na- TOLLMANN, A. (1960): Die Hallstätter Zone des östlichen Salz- turwissenschaften in Wien, 5: 141-151, Wien. kammergutes und ihr Rahmen. - Jahrbuch der Geologischen STUR, D. (1851): Die liassischen Kalksteingebilde von Hirtenberg Bundesanstalt, 103: 37-131, Wien. und Enzersfeld. - Jahrbuch der kaiserlich-königlichen Geologi- TOLLMANN, A. (1963): Das Westende der Radstädter Tauern schen Reichsanstalt, 2/3: 19-27, Wien. (Tappenkarberge). - Mitteilungen der Geologischen Gesellschaft STUR, D. (1871): Geologie der Steiermark. - 1-654, (Geognostisch- in Wien, 55 (1962): 85-126, Wien. montanistische Verhandlungen Steiermark) Graz. TOLLMANN, A. (1965): Faziesanalyse der alpidischen Serien der SUESS, E. (1852): Über die Brachiopoden der nordöstlichen Al- Ostalpen. - Zeitschrift Deutschen Geologischen Gesellschaft, pen. - Jahrbuch der kaiserlich-königlichen Geologischen Reichs- 116 (1964): 359-389, Hannover. anstalt, 3/2: 171, Wien. TOLLMANN, A. (1966a): Geologie der Kalkvoralpen im Ötscherland SUETTE, G. (1978): Litho- und biostratigraphische Gliederung des als Beispiel alpiner Deckentektonik. - Mitteilungen der Geolo- Jura und Neokom der Nordkarawanken. - 1-97, PhD.-Thesis gischen Gesellschaft Wien, 58: 103-207, Wien. Universität Graz, Graz. TOLLMANN, A. (1966b): Die alpidischen Gebirgsbildungs-Phasen SUZUKI, H. & GAWLICK, H.-J. (2003a): Die jurassischen Radiolarien- in den Ostalpen und Westkarpaten. - Geotektonische Forschun- zonen der Nördlichen Kalkalpen. - (In: WEIDINGER, J.T., LOBITZER, gen, 21: 1-156, Stuttgart. H. & SPITZBART, I. (Eds.): Beiträge zur Geologie des Salz- TOLLMANN, A. (1976a): Analyse des klassischen nordalpinen kammerguts. Gmundner Geo-Studien), 2: 115-122, Gmunden. Mesozoikums. Stratigraphie, Fauna und Fazies der Nördlichen SUZUKI, H. & GAWLICK, H.-J. (2003b): Biostratigraphie und Taxo- Kalkalpen. - 1-580, (Deuticke) Wien. nomie der Radiolarien aus den Kieselsedimenten der Blaa Alm TOLLMANN, A. (1976b): Der Bau der Nördlichen Kalkalpen. Oro- und nördlich des Loser (Nördliche Kalkalpen, Callovium- gene Stellung und regionale Tektonik. - 1-449, (Deuticke) Wien. Oxfordium). - Mitteilungen Gesellschaft Geologie- Bergbau- TOLLMANN, A. (1977): Geologie von Österreich, Band 1: Die studenten Österreich, 46: 137-228, Wien. Zentralalpen. - 1-766, (Deuticke) Wien. SUZUKI, H., WEGERER, E. & GAWLICK, H.-J. (2004): Radiolarians TOLLMANN, A. (1981): Oberjurassische Gleittektonik als Haupt- form the lower Oxfordian of Fludergraben (Austria, Northern formungsprozeß der Hallstätter Region und neue Daten zur Calcareous Alps). - Abstract with Programs of the 2004 Annual Gesamttektonik der Nördlichen Kalkalpen in den Ostalpen. - Meeting of the Palaeontological Society of Japan: 126, Mitteilungen der Österreichischen Geologischen Gesellschaft, Kitakyushu. 74/75: 167-195, Wien. SUZUKI, H. & GAWLICK, H.-J. (2009): Jurassic radiolarians from TOLLMANN, A. (1985): Geologie von Österreich, Band 2: Außer- the base of the Hallstatt salt-mine (Northern Calcareous Alps, zentralalpiner Anteil. - 1-710, Wien (Deuticke). Austria). - Neues Jahrbuch Geologie Paläontologie, Abhandlun- TOLLMANN, A. (1987): Late Jurassic/Neocomian Gravitational gen, 251: 155-197, Stuttgart. Tectonics in the Northern Calcareous Alps in Austria. - (In: SUZUKI, H., MISSONI, S. & GAWLICK, H.-J. (2008): Callovian to FLÜGEL, H.W. & FAUPL, P. (Eds.): Geodynamics of the Eastern Early/Middle Oxfordian radiolarians from hemipelagic sequences Alps), 112-125, Wien (Deuticke). from a “Slovenian Trough“-like sedimentary succession in the TRAUTH, F. (1908): Zur Tektonik der subalpinen Grestener Schich- Karavank Mountains. - Journal Alpine Geology (Mitteilungen ten Österreichs. - Mitteilungen der Geologischen Gesellschaft

143 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Wien, 1: 112-134, Wien. der Geologischen Bundesanstalt, 56: 325-330, Wien. TRAUTH, F. (1909): Die Grestener Schichten der österreichischen WÄCHTER, J. (1987): Jurassische Massflow- und Internbreccien Voralpen und ihre Fauna. Eine stratigraphisch-paläontologische und ihr sedimentär-tektonisches Umfeld im mittleren Abschnitt Studie. - Beiträge zur Paläontologie Geologie Österreich-Un- der Nördlichen Kalkalpen. - Bochumer geologische geotechnische garns und des Orients, 22: 1-142, Wien. Arbeiten, 27: 1-239, Bochum. TRAUTH, F. (1922): Über die Stellung der „pienninischen Klippen- WÄHNER, F. (1903): Das Sonnwendgebirge im Unterinntal. 1. Teil. zone“ und die Entwicklung des Jura in den niederösterreichischen - 1-356, (Deuticke) Wien. Voralpen. - Mitteilungen der Geologischen Gesellschaft in Wien, WÄHNER, F. & SPENGLER, E. (1935): Das Sonnwendgebirge im Unter- 14 (1921): 105-265, Wien. inntal. 2. Teil. - 1-200, (Deuticke) Wien. TRAUTH, F. (1938): Die Lamellaptychi des Oberjura und der Unter- WAKITA, K. (1988): Early Cretaceous melange in the Hida-Kana- kreide. - Palaeontographica, Abteilung A, 88: 115-229, Stuttgart. yama area, central Japan. - Bulletin Geological Survey Japan, TRAUTH, F. (1950): Die fazielle Ausbildung und Gliederung des 33: 367-421, Tsukuba. Oberjura in den nördlichen Ostalpen. - Verhandlungen der Geo- WARD, P.D., GARRISON, G.H., HAGGART, J.W., KRING, D.A. & logischen Bundesanstalt, 1948: 145-218, Wien. BEATTIE, M.J. (2004): Isotope evidence bearing on Late Triassic TRAUTH, F. (1954): Zur Geologie des Voralpengebietes zwischen extinction events, Queen Charlotte Islands, British Columbia, Waidhofen a. d. Ybbs und Steinmühl östlich von Waidhofen. - and implications for the duration and cause of the Triassic/ Verhandlungen der Geologischen Bundesanstalt, 1954/2: 89-140, Jurassic mass extinction. - Earth and Planetary Science Letters, Wien. 224: 589-600 (Elsevier) Amsterdam. TREMOLADA, F., BORNEMANN, A., BRALOWER, T., KOEBERL, C. & WHALEN, P.A. & CARTER, E.S. (1998): Teil II. Systematic SCHOOTBRUGGE, B. van de (2006): Paleoceanographic changes Paleontology. - (In: CARTER, E.S., WHALEN, P.A. & GUEX, J. across the Jurassic/Cretaceous boundary: The calcareous (Eds.:): Biochronology and paleontology of Lower Jurassic phytoplanton response. - Earth and Planetary Science Letters, (Hettangian and Sinemurian) radiolarians, Queen Charlotte 24: 361-371, Amsterdam. Islands, British Columbia), Geological Survey of Canada, Bulle- UHLIG, V. (1908): Zweiter Bericht über geologisch-tektonische tin, 496: 1-86, Pls. 1-27, Ottawa, Calgary, Vancouver. Untersuchungen in den Radstädter Tauern. - Sitzungsberichte WENDT, J. (1969): Stratigraphie und Paläogeographie des Roten der Österreichischen Akademie der Wissenschaften. Mathema- Jurakalkes im Sonnwendgebirge (Tirol, Österreich). - Neues Jahr- tisch-naturwissenschaftlichen Klasse: Abteilung 1, 117: 1379- buch Geologie Paläontologie, Abhandlungen, 132/2: 219-238, 1422, (Österreichische Akademie Wissenschaften) Wien. Stuttgart. ULRICH, R. (1960): Die Entwicklung der ostalpinen Juraformation WENDT, J. (1970): Stratigraphische Kondensation in triadischen im Vorkarwendel zwischen Mittenwald und Achensee. - Geolo- und jurassischen Cephalopodenkalken der Tethys. - Neues Jahr- gica Bavarica, 41: 99-151, München. buch Geologie Paläontologie, Monatshefte, 1970: 433-448, VECSEI, A., FRISCH, W., PIRZER, M. & WETZEL, A. (1989): Origin Stuttgart. and tectonic Significance of Radiolarien Chert in the Austroalpine WENDT, J. (1971): Die Typlokalität der Adneter Schichten (Lias, Rifted Continental Margin. - (In: HEIN, J. & OBRADOVIC, J. (Eds.): Österreich). - (In: VÉGH-NEUBRANDT, E. (ed.): Colloque du Siliceous Deposits of the Tethys and Pacific Regions), 65-80, Jurassique méditerranéen), Magyar Allami Foldtani Intezet (Springer) Berlin Heidelberg New York. Evkonyve (Annales Hungarian Geological Institute), 54/2: 105- VÖRÖS, A. (1991): Hierlatzkalk - a Peculiar Austro-Hungarian 116, Budapest. Jurassic Facies. - (In: SCHÖNLAUB, H.P., GAAL, G., LOBITZER, H., WEGERER, E. (2002): Zur Stratigraphie der Kieselsedimente im CSÁSZÁR, G. & DAURER, A. (Eds.): Jubiläumsschrift 20 Jahre Salzkammergut (Nördliche Kalkalpen, Österreich). - 1-302, PhD- Geologische Zusammenarbeit Österreich - Ungarn, Teil 1), 145- Thesis Montanuniversität Leoben, Leoben. 154, (Geologische Bundesanstalt) Wien. WEGERER, E., SUZUKI, H. & GAWLICK, H.-J. (1999): Stratigraphi- VÖRÖS, A., SZABÓ, J., DULAI, A., SZENTE, I., EBLI, O. & LOBITZER, H. sche Einstufung von Radiolarienfaunen aus Kieselsedimenten (2003): Early Jurassic Fauna and facies of the Schafberg area im Bereich der Hallstätter Zone westlich von Hallstatt (Callovium (Salzkammergut, Austria). - Fragmenta Palaeontologica Hunga- - Oxfordium, Nördliche Kalkalpen). - Mitteilungen Gesellschaft rica, 21: 51-82, Budapest. Geologie- Bergbaustudenten Österreich, 42: 93-108, Wien. VORTISCH, W. (1950): Die Geologie der Inneren Osterhorngruppe. WEGERER, E., SUZUKI, H. & GAWLICK, H.-J. (2001): Zur stratigra- II. Teil (Kendelbach). - Neues Jahrbuch Mineralogie, Geologie phischen Einstufung von Kieselsedimenten im Bereich des Paläontologie. Abhandlungen, 91: 429-496, Stuttgart. Sandling (Nördliche Kalkalpen, Callovium-Oxfordium). - Mit- VORTISCH, W. (1953a): Die Geologie der Inneren Osterhorngruppe. teilungen Gesellschaft Geologie- Bergbaustudenten Österreich, III. Teil: Liegendgebirge und Bewegungszone im Karlgraben. - 45: 67-85, Wien. Neues Jahrbuch Geologie Paläontologie, Abhandlungen, 96: 181- WEGERER, E., SUZUKI, H. & GAWLICK, H.-J. (2003): Zur stratigra- 200, Stuttgart. phischen Einstufung von Kieselsedimenten südöstlich des VORTISCH, W. (1953b): Die Geologie der Inneren Osterhorngruppe. Plassen (Nördliche Kalkalpen, Österreich). - Jahrbuch der Geo- IV. Teil: (Hangendgebirge). - Neues Jahrbuch Geologie Paläon- logischen Bundesanstalt, 143: 323-335, Wien. tologie, Abhandlungen, 98: 125-148, Stuttgart. WESTRUP, J. (1970): Geologie der südlichen Lechtaler Alpen zwi- VORTISCH, W. (1955): Die Geologie der Inneren Osterhorngruppe. schen Schnann und Imsterau. - 1-152, PhD-Thesis Universität I. Teil. - Neues Jahrbuch Geologie Paläontologie, Abhandlun- Marburg/Lahn, Marburg/Lahn. gen, 102: 77-142, Stuttgart. WESSELY, G. (2006): Geologie der Österreichischen Bundesländer VORTISCH, W. (1956): Der Oberjura des Sonnwendgebirges. - Zeit- - Niederösterreich. - 1-416, (Geologische Bundesanstalt) Wien. schrift der Deutschen Geologischen Gesellschaft, 108/1: 105- WEYNSCHENK, R. (1949): Beiträge zur Geologie und Petrographie 108, Hannover. des Sonnwendgebirges (Tirol), besonders der Hornsteinbreccien. VORTISCH, W. (1968): Die Jura-Serie der Kehlbach-Schlucht (Salz- - Schlern-Schriften, 59: 1-66, Innsbruck. burg, Österreich). - Neues Jahrbuch Geologie Paläontologie, WEYNSCHENK, R. (1950): Die Jura-Mikrofauna und -flora des Sonn- Abhandlungen, 131: 252-262, Stuttgart. wendgebirges (Tirol). - Schlern-Schriften, 83: 1-32, Innsbruck. VORTISCH, W. (1970): Die Geologie des Glasenbachtales südlich WEYNSCHENK, R. (1951): Two new foraminifera from the Dogger von Salzburg. - Geologica et Palaeontologica, 4: 147-166, and Upper Triassic of the Sonnwend Mountains of Tyrol, Marburg/Lahn. Austria. - Journal Paleontology, 25: 793-795, Tulsa. VOZÁROVÁ, A., VOZÁR, J. & MAYR, M. (1999): High-pressure meta- WIECZOREK, J. (1998): Maiolica - a unique facies of the western morphism of basalts in the evaporite sequence of the Hasel- Tethys. - Annales Societatis Geologorum Poloniae, 58: 255- gebirge: An evidence from Bad Ischl (Austria). - Abhandlungen 276, Warschau.

144 Journal of Alpine Geology, 50: 1-152, Wien 2009

YAO, A. (1972): Radiolarian Fauna from the Mino Belt in the ische Akademie Wissenschaften) Wien. Northern Part of the Inuyama Area, Central Japan. Part I. YOUNG, A.P. (1908): On the Stratigraphy and Structure of the Spongosaturnalids. - Journal Geoscience, Osaka City University., Tarnthal Mass (Tyrol). - Quarterly Journal Geological Society 15: 21-64, Pls. 1-11, Osaka. London, 64: 596-603, London. YAO, A. (1979): Radiolarian Fauna from the Mino Belt in the YOUNG, A.P. (1909): Notes on the Structure and Physiography of Northern Part of the Inuyama Area, Central Japan, Part II: the Tarntal Mass. - Geological Magazine, (5)6: 339-346, London. Nassellaria 1. - Journal Geoscience, Osaka City University, 22: ZACHER, W. (1964): Erläuterungen zur Geologischen Karte von 21-72, Pls. 1-12, Osaka. Bayern 1:25000 Blatt Nr. 8430 Füssen. - 1-151, (Bayerisches YAO, A. (1997): Faunal change of Early-Middle Jurassic radio- Geologisches Landesamt) München. larians. - News Osaka Micropaleontology, Special Volume 10, ZACHER, W. (1966): Erläuterungen zur Geologischen Karte von 155-182, Osaka. [in japanese with engl. summary]. Bayern 1:25000 Blatt Nr. 8249 Pfronten. - 1-208, (Bayerisches YAO, A. (1982): Middle Triassic to Early Jurassic radiolarians Geologisches Landesamt) München. from the Inuyama area, central Japan. - Journal Geoscience, ZACHER, W. & LUPU, M. (1999): Pitfalls on the race for an ultimate Osaka City University, 25: 53-70, Pls. 1-4, Osaka. Tethys model. - International Journal of Earth Science, 88: 111- YEH, K.-Y. (1987): Taxonomic studies of Lower Jurassic radiolaria 115, Berlin. from east-central Oregon. - Nature Museum Natura Science, ZAPFE, H. (1963): Aptychen-Lumachellen. - Annalen Naturhisto- Special Publications, 2: 1-169, Taichung. risches Museum Wien, 66: 261-266, Wien. YEH, K.-Y. & CHENG Y.-N. (1996): Jurassic Radiolarians from the ZERBES, D.H. (2001): Sedimentäre Anlage und tektonische For- northeast coast of Busuanga Island, North Palawan Block, mung des Kaisergebirges. - 1-348, PhD.-Thesis Techunische Uni- Philippines. - Micropaleontology, 42: 93-124, New York. versität München, (Hieronymus) München. YOKOYAMA, M. (1890): Foraminiferen aus dem Kalksteine von ZÜGEL, P. (1997): Discovery of a radiolarian fauna from the Torinosu und Kompira. - (In: NAUMANN, E. & NEUMAYR, M. Tithonian of the Solnhofen area (Southern Franconian Alb, (Hrsg.): Zur Geologie und Paläntologie von Japan), Denkschrif- southern Germany). - Paläontologische Zeitschrift, 71: 197-209, ten der Österreichischen Akademie der Wissenschaften. Mathe- Stuttgart. matisch-Naturwissenschaftliche Klasse, 57: 26-27, (Österreich-

145 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Index Barmstein Limestone 8, 10, 69, 71, 78, 80, 86, 89, 90, 91, 93, 95, 98, 100, 101, 102, 125 Bavaric (group, nappes, units) 4, 7, 8, 11, 14, 15, 16, 29, A 32, 33, 35, 37, 39, 49, 50, 53, 55, 57, 74, 80, 83, Abtenau 61 85, 86, 89, 90, 100, 102, 105, 107, 109, 113 Abwärtsgraben 53, 80, 83 Berchtesgaden 39, 41, 43, 44, 64, 67, 71, 80, 119 Acanthicuskalk 85, 86 Berchtesgaden Calcareous Alps 18, 20, 22, 25, 27, 31, Achenkirch 30 41, 53, 55, 61, 64, 71, 73, 80, 81, 83, 85, 115, 117, Achensee 29, 102, 113 118, 119, 120, 122, 124 Adnet 17, 18, 19, 20, 22, 55 Biancone 8, 11, 12, 90, 100, 101, 102, 105, 107, 109, Adneter Riedel 98 113, 115 Adnet Formation 8, 11, 12, 13, 14, 17, 18, 19, 20, 22, 24, Birkenfeld Formation 8, 11, 41, 43, 44, 45, 118, 119 25, 29, 30, 33, 35, 39, 45, 49, 50, 53, 67, 71, 73, Birkenfeld gallery 41, 43, 44 74, 76, 80, 86, 89 Bläckenboden 86 Adnet Group 8, 9, 12, 13, 17, 18, 20, 24, 67, 71, 76 Blekar 67 Agatha Formation 8, 78, 80, 85, 86, 89, 90, 91, 95 Brandlucke 86, 107 Agathakalk 85 Breitenberg Member 27 Alland 32 Brenner Mesozoic 12, 110 Allgäu Formation 8, 9, 11, 12, 13, 14, 17, 20, 25, 30, 33, Brennkogel Breccia 48 35, 37, 39, 41, 45, 47, 48, 50, 53, 55, 61, 69, 71, Briançonnais 7, 9, 12 73, 74, 80, 109, 113 Brielgraben 49 Alpine Haselgebirge 61, 80, 83 Brunnwinkl Rise 50, 76, 90 Altaussee 59, 69, 71, 73, 91, 95, 105 Büchsenkopf 25, 64 Amlacher syncline 12, 39 Bündner Schiefer 6, 9, 12, 13, 47, 48 Ammergau Formation 8, 11, 47, 73, 74, 76, 78, 80, 90, Bunte Lias-Cephalopodenkalke 14 91, 100, 102, 107, 109, 113, 115 Bürgl(stein) 91, 107 Ammergauer Wetzstein-Schichten 100 Ammerwald 100 C Ampelsbach 35, 37 Anninger 91 Cak Conglomerate 48 Anzenbach Series 107, 109 Calpionella Limestone 100, 109 Aptychus Limestone 8, 10, 11, 12, 13, 47, 80, 90, 98 Carinthia 45, 109 100, 101, 102, 107, 109, 110, 113, 115 Central Alpine Mesozoic 4, 5, 8, 12, 45, 80, 109 Arrach quarry 80, 102, 105 Chaschauna Breccia 35 Aschau 55 Chiemgau Alps 55 Atlantic 5, 7 Chiemgauer Schichten 55 Austroalpine domain 3, 4, 5, 6, 7, 8, 9, 12, 13, 20, 24, 50, Chiemgau Series 11, 33, 55, 57, 80, 107, 113 80, 105, 110, 115, 117 Christlum 29 Cinguloturris cylindra zone 69, 80, 83, 114, 117, 124, 126 B Collicyrtidium rubetum zone 114, 119, 125, 126 Backhaus gallery 44 Crinoidal Limestone 55, 110 Bad Aussee 89, 91, 95 Crinoidenkalk 110 Bad Dürrnberg 39, 41, 115 Bad Goisern 53, 55, 86, 89, 95, 98 D Bad Ischl 22, 49, 59, 61, 69, 73, 85, 89, 91, 105 Bad Mitterndorf 39, 41, 55, 59, 67, 83, 89, 93, 105 Dachsgraben 85 Bad Reichenhall 25, 39, 41, 67, 80 Dachstein Limestone 8, 13, 20, 22, 23, 24, 25, 33, 35, 49, Bagotum erraticum subzone 41, 114, 118, 119, 120 51, 67, 69, 71, 74, 76, 83 Bagotum sp. A subzone 41, 114, 117, 119, 120 Dachstein Mountains 22

146 Journal of Alpine Geology, 50: 1-152, Wien 2009

Davidgraben 19 Gerhardstein 83, 93, 95 Dietrichshorn 93, 95 Gföllhörndl 93 Dogger-Spatkalk 53 Glasenbach gorge 30 Donnerkogel Formation 23, 64 Glasfelder Kopf 37 Drau Range 4, 5, 7, 8, 12, 14, 20, 25, 49, 105, 107, 109, Golling 61, 64 113 Gorgansium alpinum subzone 41, 114, 117, 119 Dürrnberg Formation 8, 11, 13, 39, 41, 45, 44, 64, 117, Gosau 49 118 Gosausee Limestone 64 Dürreckberg 71 Gotzen Member 8, 50, 83, 85, 123 Gotzen(tal) 25, 80, 83, 85 Graubünden 33, 47, 48 E Grauer Lamellibranchiatenkalk 25 Eastern Alps 4, 5, 48 Grauer Liasbasiskalk 14 Ebensee 18, 27, 29, 117 Gresten (Beds, facies, shelf) 17 Eiberg Basin 7, 8, 9, 13, 14, 27, 29, 30 Gresten Formation 17 Eiberg Member 27 Grimming 25, 53, 55, 67 Eisenspitz Breccia 8, 35, 37, 71, 73, 76 Großraming 85 Eisenspitze 35, 71, 73 Grubhörndl Breccia 69 Eisgraben 47 Grünanger Breccia 20, 69 Engadin Dolomites 49, 113, 115 Grünanger Formation 61 Enns 85 Grundlsee 53, 93 Enzesfeld Formation 8, 9, 13, 18, 19, 20, 23, 27, 29, 30, Gscheigraben (beds, Series) 89, 101 32, 35, 41, 71, 74, 76 Gscheigraben Breccia 47, 102, 113, 115 Erfurter Hütte 76 Gschöllkopf 76 Eucyrtidiellum unumaense-Podocapsa amphitreptera Gschwendlbach 78 interval zone 114, 119, 123, 125, 126 Guggen Member 17, 18, 19, 22, 24, 25, 29 Eucyrtidiellum cf. disparile subzone 44, 114, 115, 118, 119, 122 H Eucyrtidiellum unumaense zone 80, 109, 114, 117, 122 Ewige Wand 55, 95, 98 Hahnkogel 44, 45 Hahnkogel unit 4, 11, 44, 45, 109, 110, 112 Hahnkogel Formation 11, 44, 45, 109 F Haidachstellwand 76 Falkensteinkalk 91 Hallein 17, 18, 25, 27, 39, 61, 67, 69, 95, 98, 125 Falknis Breccia 48, 49 Hallstatt 22, 25, 44, 49, 51, 67, 86, 89, 93, 115 Falkniskalk 113, 115 Hallstatt Limestone 57, 58, 59, 61, 93 Fleckenmergel 17, 33 Hallstatt Mélange 8, 9, 10, 41, 43, 49, 50, 58, 59, 61, 64, Flirsch 71 90, 93, 105 Florianikogel 10, 57, 58, 59 Hallstatt Salzberg facies 6, 8, 59 Florianikogel Formation 8, 11, 50, 57, 58, 59 Hallstatt (Limestone facies) Zone 5, 6, 7, 8, 9, 10, 11, 13, Fludergraben 59, 61, 69, 71, 73, 123 14, 27, 29, 30, 41, 44, 45, 49, 50, 59, 90 Fludergraben Member 8, 50, 69, 71, 73 Hangendgraukalk 61 Frankenfelser nappe 37 Hanslgraben 86, 107 Frauenkogel Formation 45, 109 Haselgebirge Mélange 61 Hatschek quarry 18, 27, 29, 115, 117 Hauptdolomit 6, 8, 24, 37, 39, 47, 48, 49, 69, 113 G Hauptdolomit/Dachstein carbonate platform 6, 7, 9, 10, Gaissau 78 13, 29 Geier 115 Heitzerau 35 Geier Series 8, 47, 90, 113, 115 Heutal 115

147 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Hexasaturnalis hexagonus subzone 44, 114, 119, 122 Kalkmarmor/-schiefer- and Tonschiefer-Komplex 45, 47, Hierlatz 22, 25 48, 110 Hierlatzkalk 22 Kalksburg Formation 8, 11, 13, 14, 16, 17, 33 Hierlatz Limestone (Member) 8, 13, 14, 17, 18, 19, 22, Kaltenhausen 125 23, 24, 25, 29, 67, 74 Kampenwand 55 Hierlatzer Schichten 22 Karnergraben 30 Himperlahn 39 Katrin 73 Hinterriß Series 101 Kehlbach Member 8, 18 Hintersee 18 Kendlbach 25, 27 Hochfeind facies 113 Kendlbachgraben 25 Hochfelln Beds 29 Kendlbach Formation 8, 9, 13, 14, 17, 18, 25, 27, 29, 30, Hochfelln Mountains 29 32, 33, 35, 41, 69, 71, 74, 76, 117 Hochleitengraben 19 Kesselstrasse 67, 115 Hochkranz 93 Kesselwand 67 Hochreith Schichten 85 Kimmeric orogeny 10 Hochzöbel 86 Kirchberg 17, 32, 100 Höfats 33 Kirchstein Limestone 8, 11, 13, 14, 17, 25, 30, 32, 33, 35, Höhenberg 16, 86 119 Höherstein(-Plateau) 69, 71, 95 Klammkalk Formation 12 Hohenberg 37 Klausalm (Klaus Alpe) 25, 49, 51 Hohes Brett 23 Klaus(alm)bach 32, 107 Hornbach 33 Klaus Formation 8, 9, 11, 12, 20, 25, 37, 49, 50, 51, 53, Hornkogel 78, 86, 89 57, 59, 67, 69, 71, 73, 74, 76, 80, 83, 85, 86, 105, Hornstein Breccia 76, 78 123 Hsuum exiguum zone 44, 114, 117, 118, 119, 120, 122 Klauskogelbach Member 8, 25, 50, 51, 67, 73, 123 Kleinkirchentalweg 39 Kleinreifling 32, 86, 107 I Klingerbach 53, 55, 115 Idalp 12 Knerzenalm 69, 71 Idalpsandstone 12 Knerzenkalk 69 Infangalm 64 Kohlstatt Schichten 55, 57, 80 Infanggraben 64 Königssee 39, 53, 55, 61, 64, 80 Innsbruck-Land 47, 115 Körbersee Breccia 22, 39 Konradsweg 95 Koschuta unit 4, 11, 45, 109 J Kössen Formation 6, 8, 9, 14, 17, 27, 30, 35, 37, 39, 69, Jägergraben 32 74, 76 Jakobberg gallery 39 Krahstein 91, 93, 105 Jakobberg Series 39 Kranzbichlweg 41 Jes Formation 115 Krautkaser 64 Jochwand 98 Kuchl 67, 69, 71, 73, 115 Jodl 25 Kuchlbach 64 Jurassic gravitational tectonics 10 Juvavic (nappe system) 8, 9, 10, 50 L

Lärchberg carbonate platform 10, 81, 83, 86, 89, 90, 93, K 95 Kahlkogel Formation 11, 45, 109, 110, 112 Lärchberg Formation 80, 83, 85, 86, 89, 90, 93, 95 Kainisch 59 Lärchberghörndl 93, 95 Lärchkogel Limestone 93

148 Journal of Alpine Geology, 50: 1-152, Wien 2009

Lammer Basin 61, 64, 67, 80 Massiger Hellkalk 61 Lammer valley 61 Marxerboden 37 Landeck 71 Meliata facies (zone) 6, 8, 10, 13, 49 Landneralm 115 Meliata Formation 59 Langmoos Member 17, 18 Micrite Ooid Formation 8, 50, 80, 85, 86, 89 La Parè 33 Middle Penninic 9, 12, 48 Laubenstein 53 Mikritooid-Formation 85 Laubenstein Limestone 53, 55 Mirifusus dianae globosus zone 114, 119, 125, 126 Lavant 39 Mörtlbach 78 Lavant Breccia 8, 12, 13, 39, 41 Molterboden 74 Lechtal Alps 30, 37, 71, 78 Motzen Member 18, 20 Lechtal nappe 22, 102 Mühlberg Limestone 105 Leiten 35, 57 Lenggries 30 N Lerchkogel Limestone 93 Leube quarry 107, 125 Neotethys Ocean 3, 4, 5, 6, 7, 9, 10, 11, 13, 44, 45, 50 Lias-Brachiopodenkalk 22 Neotethys realm 8, 9, 20, 45, 49, 59 Liasfleckenmergel 25, 30, 33 Nerineenkalk 89 Lienbach Member 8, 18, 20, 22, 25 Neubruck 107 Lienz Dolomites 4, 7, 8, 12, 37, 39, 41 Neunkirchen 57 Lischana Breccia 8, 48, 49, 113, 115 Niederaschau 55 Lithodendronkalk 39 Northern Calcareous Alps 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, Litzelkogel 93, 95 16, 17, 22, 29, 32, 33, 35, 37, 44, 47, 49, 53, 55, Lizumer Boden 47 57, 58, 59, 73, 76, 85, 86, 89, 90, 91, 98, 100, 102, Lochgraben 55 105, 107, 109, 110, 114, 115, 117, 119 Lofer 30, 67, 83, 93, 95 Northern Karavank Mountains 12, 20, 25, 107 Lofer Member 93 North Penninic 5, 7, 8, 9, 12, 49, 113, 115 Loferer Beds 93, 95 Loferer Kalvarienberg 93, 95 O Lorüns quarry 14, 15, 16 Lorüns Oolith 14, 15 Oberalm 98 Loser 100, 102, 105 Oberalmer Basiskonglomerat 69 Lower Austria 14, 27, 57, 73, 74, 102, 105 Oberalm Formation 8, 10, 11, 12, 13, 69, 71, 80, 86, 89, Lower Austroalpine 4, 5, 6, 7, 8, 9, 10, 12, 33, 35, 37, 45, 90, 91, 93, 95, 98, 100, 102, 107, 109, 113, 115, 47, 48, 49, 50, 55, 90, 109, 110, 113, 115 125 Lower Steinmühl Limestone 49 Oberrhät Limestone 12, 13, 14, 17, 37, 39, 47, 48, 74, 76 Lower Tirolic nappe 9, 10, 11, 50, 90 Oberscheffau 61, 64 Luftstrasse 17 Obersee Breccia 25, 50, 69, 73, 74, 76, 78, 100, 102 Lunz 71, 73, 74, 100 Oberstdorf 33 Lunzer nappe 74, 100 Ödenhof 57 Lunzer See 73 ophiolite obduction 3, 9 Upper Austria 22, 85, 86 Osterhorn (Block, Group, Mountains) 17, 18, 25, 27, 49, M 67, 69, 78 Maiolica 98, 109 Manganese shales 110 P Maria Elend 109, 110, 112 Maria Elender Sattel 109 Pasilalm Member 22 Marmorea crust 19 Penken Breccia 48 mass extinction 5

149 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Penninic Ocean 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 17, 45, 48, Rofankorallenkalk 91, 101 49, 50, 90, 113, 115 Rofanspitze 76 Penninic realm 7, 9, 11, 12, 13, 35, 37, 47, 48, 50, 90, Rosenbach 44, 45, 109, 112 113 Roßköpfe 76 Perbla Formation 11 Rotenstein Limestone 49 Peutenberg 107 Ruhpolding 78, 80 Pielach 100 Ruhpolding Formation 8, 12, 35, 49, 50, 55, 57, 78, 80, Pielachtal 85 85, 90, 102, 105, 107, 109, 115 Piemont Ocean 5, 7, 9, 12, 47, 49, 50, 113 Ruhpolding Radiolarite Group 8, 9, 11, 12, 20, 33, 35, 37, Plankogel Serie 110 49, 50, 53, 55, 57, 59, 67, 71, 73, 74, 78, 80, 83, Plassen 49, 67, 89, 91, 93 86, 89, 109, 110, 113, 121, 122, 124 Plassen Carbonate Platform 8, 9, 10, 11, 61, 69, 73, 76, Ruhpoldinger Marmor 78 78, 80, 83, 86, 89, 90, 91, 98 Ruhpoldinger Schichten 78 Plassen Formation 8, 59, 67, 80, 83, 85, 86, 89, 90, 91, Russenna-Aptychenkalk-Formation 115 93, 95, 100, 102 Plassen Group 8, 59, 89, 91, 93, 100, 102 S Plassenkalk sensu stricto 91 Plassen Limestone 95 Saccocoma Limestone 8, 12, 80, 90, 100, 102, 105 Podocapsa amphitreptera zone 114, 117, 122, 124, 126 Sachrang Member 8, 11, 18, 22, 30, 33, 35, 45 Pötschen (facies zone, Formation) 8, 11, 59, 61, 64, 83 Salzburg 4, 18, 30, 39, 61, 93, 98, 100, 107, 110, 113, Prielgraben 115 125 Protunuma lanosus subzone 114, 119, 121, 123 Salzburg Calcareous Alps 18, 19, 20, 22, 27, 29, 30, 41, Pseudogresten facies 17 64, 69, 71, 73, 83, 95, 98, 107, 115, 117, 118, 121, Puchberg 57 124 Salzkammergut area 18, 20, 27, 29, 33, 41, 49, 51, 53, 55, 59, 61, 67, 69, 71, 73, 78, 89, 91, 93, 95, 98, 100, Q 105, 107, 115, 117, 120, 121, 122, 123, 124 Quarzitbrekzie 115 Sandling 59, 61, 100, 102, 105 Sandlingalm Formation 8, 11, 33, 39, 41, 49, 50, 57, 59, 61, 83, 91, 120 R Sandlingkalk 91 radiolarian zonation 44, 59, 69, 83, 91, 98, 114, 115, 117 Sarstein 53 Radstädter Tauern 12, 47, 48, 110, 113 Sattlberg 61, 64 Rätikon 113 Saubach Formation 20, 22 Ramsau 93 Saubach Member 8, 18, 20, 22, 30, 35, 49, 55 Reichraming 35 Schattwald 14 Rauchberg 93 Schattwald Formation 11, 14, 15, 16, 17, 27, 45 Rengerweg 41 Schattwalder Schichten 14 Reitmauer Limestone 49 Scheckbrekzie 20 Restental Basin 8, 9, 13, 14, 33 Scheck Member 8, 18, 20, 22, 30, 45, 73, 89 Restental Member 8, 17 Scheibelberg Basin 9, 14 Rettenbach 105 Scheibelberg Formation 8, 9, 13, 18, 20, 25, 27, 29, 30, Rettenbach Limestone 98, 102 31, 32, 33, 35, 37, 41, 67, 69, 71, 74, 76 Rettenstein 91, 93 Schistes lustrés 12 Reutte 14, 53 Schmiedwirt Member 8, 18, 20 Rötelstein 59, 91 Schneeberg 57 Röthelmoos 78 Schnöll Formation 8, 14, 17, 18, 19, 20, 22, 24, 25, 27, Rofan Basin 50, 74 29, 33 Rofan Breccia 8, 50, 73, 74, 76, 78, 86, 98, 102 Schönlehner 85 Rofan-Hornstein-Breccie 76 Schrambach Formation 9, 91, 100, 102, 109, 113

150 Journal of Alpine Geology, 50: 1-152, Wien 2009

Schröcken 22, 39 Tarntal Breccia 5, 8, 12, 13, 35, 37, 45, 47, 48, 102, 109, Schwalbenwand 45 110, 113 Schwarzbergklamm Breccia 69, 78 Tarntaler Köpfe 47 Schwarzeck 48, 113 Tarntal Mesozoic 47 Schwarzeck Breccia 5, 12, 47, 48, 90, 110, 113, 115 Tarntal Mountains 12, 47, 110 Schwaz 76, 100 Tauglbach valley 67, 69, 71, 73 Seebachtal 73 Tauglboden Basin 10, 67, 69, 71, 74, 78, 100, 102 Seekarspitz Kalk 76, 91, 100 Tauglboden Formation 8, 49, 50, 61, 67, 69, 71, 73, 74, Seekarspitz Limestone 8, 74, 76, 78, 80, 90, 91, 98, 100, 76, 78, 83, 86, 91, 100, 102, 124 101, 102, 113 Tauglboden Mélange 9, 10 Sieding 57 Tegernsee 47, 100 Sillenkopf Basin 10, 80 Tegernsee Limestone 105 Sillenköpfe 53, 80, 83 Teltschengraben 39, 41 Sillenkopf Formation 8, 59, 61, 67, 80, 81, 83, 86, 89, 90, Tennengebirge 61 91, 93 Thiersee syncline 35, 37, 57, 102 Slovenian Trough 7, 11 Tiefenbach estuary 100 Sonnwend Mountains 76, 98, 100 Tiefengraben Member 14, 17, 27 South Alpine 7 Tirolic (nappes, realm, units) 4, 5, 7, 8, 9, 10, 11, 12, 13, Southern Alps 4, 22, 107 18, 19, 20, 22, 25, 27, 29, 31, 33, 41, 45, 49, 50, Southern Karavank Mountains 11, 45, 109 51, 53, 55, 64, 67, 69, 71, 73, 74, 76, 78, 81, 83, South Penninic 5, 7, 8, 9, 12, 13, 17, 37, 45, 47, 48, 49, 85, 89, 93, 95, 98, 100, 102, 105, 107, 109 50, 90 Trattberg 125 Spatkalk 53, 55, 57 Trattberg Rise 10, 50, 67, 69, 86, 90, 100 Stadelwiese Member 8, 12, 13, 35, 37, 39 Tressenstein 78, 89, 91, 95 Stadtweg 39 Tressensteinkalk 91 Steinernes Meer 25, 53, 67, 80, 81, 83, 85 Tressenstein Limestone 86, 89, 91, 98 Steinmühle 105 Trexus dodgensis zone 41, 114, 117, 118, 119 Steinmühle quarry 49 Trisselwand 53, 93 Steinmühl Formation 8, 11, 12, 49, 80, 85, 86, 89, 90, Türkenwand 48 102, 105, 107, 109 Türkenkogel Breccia 8, 12, 35, 37, 45, 47, 48, 109, 110 Steinmühlkalke 105 Türkenwand Konglomerat 48 Steinplatte 7, 13, 29 Tyrol 14, 30, 47, 53, 71, 100 Steyr-Land 85 Stierkogel quarry 32 U Stramberger Kalke 89 Strobl 107 Unken 67, 71, 83, 95, 115 Strubberg 61 Unken syncline 22, 30 Strubberg Formation 8, 25, 39, 49, 50, 51, 57, 61, 64, 67, Unken valley 69 69, 71, 73, 83, 120 Unterscheffau 64 St. Agatha 85, 86, 89 Untersteiner Kalk 49 St. Johann 30 Unterstein Limestone 49 St. Wolfgang 25, 61 Upper Tirolic nappe 9, 10, 50, 90 Styria 59, 91 Urbangraben 19, 73 Sulzfluh carbonate platform 12 Urschlau 78 Urschlauer Achen 78 T V Tamsweg 48, 110, 113 Tannheim valley 14 Valais (Ocean) 5, 7, 8, 9, 12, 49, 113, 115 Tarntal 47, 115 Val Müschauns 33

151 GAWLICK et al.: Jurassic Tectonostratigraphy of the Austroalpine Domain

Vienna 4, 14, 49 Williriedellum dierschei subzone 69, 83, 91, 114, 119, Villach-Land 45, 109 122, 123 Vils 53 Wimbach gorge 18, 20, 27, 30, 31 Vilser Kalk 53 Winkel 85 Vils Limestone 8, 11, 25, 35, 37, 50, 53, 55, 57, 74, 76, Winklern 37 80, 110 Wolfgangsee carbonate platform 10, 76, 90 Vorarlberg 15, 16, 22, 39 Wurzen Limestone 98 Vordere Großwand 110 Wurzener Kalk 98 Vordere Sandlingalm 59, 61 Y W Ybbs 105 Waidhofen 105 Ybbsitz 73 Waidring 30 Wattens 47 Z Weissenhaus Limestone 53 Western Carpathians 7, 59 Zentralalpine Mesozoika 5 Wetterstein Mountains 107 Zhamoidellum ovum zone 59, 67, 69, 74, 83, 91, 109, Weyerer Bögen 16, 32, 35, 37, 86, 107 114, 117, 119, 120, 121, 122 White Limestone Layer 22 Zlambach 86 Wiestal 18 Zlambach Formation 11, 41, 44, 45 Wildenstein waterfall 20, 25, 107 Zlambach (/Pötschen) facies 6, 8, 11 Williriedellum carpathicum subzone 114, 119, 120, 123

All localities in this paper can be found using

www.austrianmap.at

152