Gymnosperm Plants of Threatened Categories’ Species in the Coniferetum of Grishko National Botanical Garden

Total Page:16

File Type:pdf, Size:1020Kb

Gymnosperm Plants of Threatened Categories’ Species in the Coniferetum of Grishko National Botanical Garden JOURNAL OF BOTANY VOL. IX, NR. 1 (14), 2017 69 GYMNOSPERM PLANTS OF THREATENED CATEGORIES’ SPECIES IN THE CONIFERETUM OF GRISHKO NATIONAL BOTANICAL GARDEN Pokhylchenko O.1, Bucatsel V.2, Bojko N.1, Kolodyajenska T.1, Ostapyuk V.1, Lodok V.1 1M. M. Grishko National Botanical Garden of National Academy of Science of Ukraine 2Botanical Garden (Institute) of Academy of Sciences of Moldova Abstract: The Coniferetum of National botanical garden has been founded in 1945. As of 2017, there are plants of 66 species. These plants belong to five plant familiesCupressaceae, ( Ephedraceae, Ginkgoaceae, Pinaceae, Taxaceae) and 22 plant genera. In accordance with The IUCN Red List of Threatened Species, these species are facing a higher risk of global extinction Critically Endangered (CR), Endangered (EN) and Vulnerable (VU), and would be threatened without an ongoing taxon-specific conservation programme (Near Threatened (NT)). The threats are a combination of the extensive exploitation, the spread of the introduced pathogen and a result of climate change. In order to indicate the plants’ growth characteristics, we use the diameter of trunks parameter (DBH - Diameter at breast height). There are eight trees from CR category,Abies numidica De Lannoy ex Carrière, which were planted in 1953 from seeds obtained from Adler (Russian Federation). Now these plants’ DBH are 44 - 71 cm. The grafts of Picea koyamae Shiras. from the same category were selected in the arboretum “Goverla” (Ivano Frankivsk region) in 2006; now we have four under stocks. The EN category is represented by the following plants. ThirteenGinkgo biloba L. trees from Bucharest, planted in 1949 with DBH 30-50 cm; ten trees from Odessa planted in 1956 with DBH 25-50 cm. One Abies koreana E.H.Wilson young tree purchased in 2009 from Belgium. 21 trees Metasequoia glyptostroboides Hu & W.C.Cheng from Lviv botanical garden were planted in 1964 and one tree from Leningrad (Saint-Petersburg) was planted in 1955. These plants’ DBH are 25-50 cm. Picea omorika (Pančić) Purk., obtained from Germany in 1947, have DBH 28 cm. From the VU category there are three plants Picea asperata Mast. taken from Fomin Botanical garden (Kiyv) and planted in 1970; their DBH are 15-23 cm. Two trees Picea likiangensis (Franch.) E. Pritz. taken from Yalta in 1971, their DBH are 22,5 cm. Picea breweriana S.Watson young tree bought in 2009 from Belgium. Tree Pseudolarix amabilis (J. Nelson) Rehder from Beregomet dendropark (Chernivci region) planted from seeds in 2010. From the NT category there are seventeen plants Chamaecyparis lawsoniana (A.Murray bis) Parl. obtained from Uzhgorod in 1962; DBH 11-28 cm. There are six trees Platycladus orientalis (L.) Franco grown from China seeds since 1964 year with DBH 23-41 cm. Two plants Chamaecyparis obtusa (Siebold & Zucc.) Endl. grown from Hiroshima seeds since 2010. Cryptomeria japonica (Thunb. ex L. f.) D. Don taken in 1971 from Uzhgorod. Plants taken from Trostyanets dendropark comprise four trees Pinus peuce Griseb. obtained in 1966; DBH 22-46 cm, five treesTsuga canadensis (L.) Carrière obtained in 1954; DBH 15-21 cm and Thuja standishii (Gordon) Carrière taken in 1952; DBH 35 cm. Keywords: Gymnosperms, threatened plant species, Kyiv. INTRODUCTION In accordance to Christenhusz et al. [3], we consider each of the currently existing four gymnosperm groups (Cycadidae, Ginkgoidae, Gnetidae, Pinidae) as subclasses of class Equisetopsida. Overall there are about 1026 gymnosperms species: the three ‘non-conifer’ groups comprise ca 310 species of cycads in 10 genera, one extant ginkgphyte and 80–100 gnetophytes in three genera; there are a total of 615 species of conifers in 70 accepted genera [3]. About half of them are threatened species: Cycadidae - 255 species, Ginkgoidae - 1, Gnetidae - 11, Pinidae – 301 [17]. The threats are a combination of the extensive exploitation, the spread of the introduced pathogen and a result of climate change. The main reasons for that have nothing to do with the air pollution. These are issues accompanying the planet overpopulation and its impact on the natural environment: exploitation, conversion of woods to farmland and urbanization, degradation of woodland vegetation by excessive gathering of firewood, grazing of livestock, burning etc. What little is left after large-scale exploitation by the affluent portion of humankind is further destroyed by the larger and less well-off resident populations [4]. Botanic garden collections are also being proposed as refuge for threatened species to investigate and combat the effects of climate change. The subject of ‘assisted migration’ (intentionally relocating plants to new habitats) is a controversial one, but botanic gardens can assist by providing test sites for assisted migrations [16]. The Coniferetum of M. M. Grishko National botanical garden National Academy of science of Ukraine (NBG) has been founded in 1945. As of 2017, there are plants of 66 species. These plants belong to 22 plant genera from five plant families (Cupressaceae, Ephedraceae, Ginkgoaceae, Pinaceae, Taxaceae). Geographically, 70 JOURNAL OF BOTANY VOL. IX, NR. 1 (14), 2017 the National botanical garden is located in Kyiv, a city with a continental climate. The coldest temperature ever recorded in the city was −32,9°C, the highest - +39,4°C. The averageprecipitation is 621 mm, the average annual temperature is +8,4°C [25]. MATERIAL AND METHOD In accordance with The IUCN Red List of Threatened Species, these species are facing a higher risk of global extinction Critically Endangered (CR), Endangered (EN) and Vulnerable (VU), and would be threatened without an ongoing taxon-specific conservation programme (Near Threatened (NT)) [10]. Resistance to the lower temperature limits is showed according to The Gymnosperm Database (2015) [19]. In order to indicate the plants’ growth characteristics, we use the diameter of trunks parameter (DBH -Diameter at breast height). RESULTS AND DISCUSSIONS The Coniferetum’s seventeen species are threatened in the natural habitat. The basic information about this issue is presented in the Table 1. Table 1. Main information about threatened categories species plants in the Coniferetum Species In the natural sites In the garden Threat- Resistance to Year of DBH Number ened the lower planting of plants categories temperature limits Abies numidica de Lannoy ex Carrière CR -28.8°C 1953 44-71 8 Algerian Fir Picea koyamae Shiras. Koyama’s Spruce CR -28.8°C 2006 - 4 Ginkgo biloba L. Maidenhair Tree EN -34.3°C 1949 1956 30-50 23 Abies koreana E. H. Wilson Korean fir EN -28.8°C 2009 - 1 Metasequoia glyptostroboides Hu &W. C. Cheng EN -28.8°C 1955; 1964 25-50 21 Dawn Redwood Picea omorika (Pancic) Purk. Serbian spruce EN -28.8°C 1947 28 1 Picea asperata Mast. Dragon Spruce. VU -23,2°C 1970 15-23 3 Picea likiangensis (Franch.) E. Pritz. Likiang Spruce VU -12,1°C 1971 22,5 2 Picea breweriana S.Watson Brewer’s Spruce VU -23.2°C 2009 - 1 Pseudolarix amabilis (J. Nelson) Rehder Chinese VU -23.2°C 2010 - 1 Golden Larch Chamaecyparis lawsoniana (A. Murray bis) Parl. NT -23.2°C 1962 11-28 17 Port-Orford-cedar Platycladus orientalis (L.) Franco NT -23.2°C 1964 23-41 6 Oriental Arbor-vitae Chamaecyparis obtusa (Siebold & Zucc.) Endl. NT -23.2°C 2010 - 2 Hinoki Cypress Cryptomeria japonica (Thunb. ex L. f.) D. Don NT -23.2°C 1971 - 1 Japanese Cedar Pinus peuce Griseb. Balkan Pine NT -28.8°C 1966 22-46 4 Tsuga canadensis (L.) Carrière NT -34.3°C 1954 15-21 5 Eastern Hemlock Thuja standishii (Gordon) Carrière NT -23.2°C 1952 35 1 Japanese Arbor-vitae JOURNAL OF BOTANY VOL. IX, NR. 1 (14), 2017 71 Algerian fire’s nature side is located on the Petite Kabylie Mountain range which runs parallel to the Mediterranean coast of Nord Africa. The total extent of occurrence of forests containingAbies numidica is estimated to be less than 30 km2. The actual area of occupancy is estimated to be less than 1 km². Even though the area is protected by a Djebel Babor Nature Reserve, there has been a continual loss in nature side and a decline in the quality of habitat as a result of forest fires, collection of firewood and grazing. These species are therefore listed as Critically Endangered [22]. These species’ plants are found in the botanical collections only in Ukraine. Trees Abies numidica were planted from seeds obtained from Adler (Russian Federation) in the NBG. Periodically these plants produce cones with empty seeds. Koyama’s Spruce is Endemic to Central Honshu, Japan; Prefectures: Nagano (Akaishi Mountains) and Yamanashi (Yatsugatake Mountains). Picea koyamae is a relic species that is at the southern extremity of the range for the genus. It has an extent of occurrence of a less than 100 km². Historical events such as logging, fire, typhoons and landslides have resulted in the relatively small, fragmented stands. Recent genetic studies indicate that there is little genetic exchange between these populations. A change in precipitation, snowfall, temperature, and the frequency of severe weather events associated with climate change is also having an effect on the quality of habitat and regeneration. There has been a reduction of the area of occupancy and there continues to be a loss of mature individuals. This species is therefore listed as Critically Endangered [12]. Plants of this species are very rare in the Ukrainian dendrological collections. The grafts of P. koyamae were selected in the arboretum “Goverla” (Ivano Frankivsk region) in 2006; now we have four under stocks. Maidenhair Tree is the only species in the genus. It has an ancient geological record, appearing in the Jurassic [18]. Extant Ginkgo populations in the Dalou Mountains (SW China) represent fragments of the original natural Ginkgo range.
Recommended publications
  • Two New Chrysomyxa Rust Species on the Endemic Plant, Picea Asperata in Western China, and Expanded Description of C
    Phytotaxa 292 (3): 218–230 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.292.3.2 Two new Chrysomyxa rust species on the endemic plant, Picea asperata in western China, and expanded description of C. succinea JING CAO1, CHENG-MING TIAN1, YING-MEI LIANG2 & CHONG-JUAN YOU1* 1The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China 2Museum of Beijing Forestry University, Beijing 100083, China *Corresponding author: [email protected] Abstract Two new rust species, Chrysomyxa diebuensis and C. zhuoniensis, on Picea asperata are recognized by morphological characters and DNA sequence data. A detailed description, illustrations, and discussion concerning morphologically similar and phylogenetically closely related species are provided for each species. From light and scanning electron microscopy observations C. diebuensis is characterized by the nailhead to peltate aeciospores, with separated stilt-like base. C. zhuoni- ensis differs from other known Chrysomyxa species in the annulate aeciospores with distinct longitudinal smooth cap at ends of spores, as well as with a broken, fissured edge. Analysis based on internal transcribed spacer region (ITS) partial gene sequences reveals that the two species cluster as a highly supported group in the phylogenetic trees. Correlations between the morphological and phylogenetic features are discussed. Illustrations and a detailed description are also provided for the aecia of C. succinea in China for the first time. Keywords: aeciospores, molecular phylogeny, spruce needle rust, taxonomy Introduction Picea asperata Mast.is native to western China, widely distributed in Qinghai, Gansu, Shaanxi and western Sichuan.
    [Show full text]
  • Genetic Diversity and Conservation of Picea Chihuahuana Martínez: a Review
    Vol. 13(28), pp. 2786-2795, 9 July, 2014 DOI: 10.5897/AJB2014.13645 Article Number: CADB48845877 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2014 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Review Genetic diversity and conservation of Picea chihuahuana Martínez: A review Quiñones-Pérez, Carmen Zulema1, Sáenz-Romero, Cuauhtémoc2 and Wehenkel, Christian1* 1Institute of Forestry and Wood Industry, Universidad Juárez del Estado de Durango, Durango, México. 2Institute of Agricultural and Forestry Research, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México. Received 20 January, 2014; Accepted 16 June, 2014 The conservation of genetic diversity in tree populations is an essential component of sustainable forest management. Picea chihuahuana Martínez is an endemic conifer species in Mexico and is considered to be endangered. P. chihuahuana covers a total area of no more than 300 ha at the Sierra Madre Occidental, a mountain range that harbor a high diversity of tree species. There are 40 populations of the species that have been identified in the region, and it cannot be found elsewhere. These populations form clusters within gallery forests and are usually associated with eight other tree genera. The P. chihuahuana community is mostly well preserved. Owing to its remarkable characteristics and high conservation value, P. chihuahuana has been the subject of several studies aimed at learning more about the genetic structure, ecology and potential effects of climate change. However, the overall applicability of such studies is to confirm a dataset to develop management tools to help decision makers and to implement preservation and conservation strategies using genetic diversity.
    [Show full text]
  • Variations of Climate-Growth Response of Major Conifers at Upper Distributional Limits in Shika Snow Mountain, Northwestern Yunnan Plateau, China
    Article Variations of Climate-Growth Response of Major Conifers at Upper Distributional Limits in Shika Snow Mountain, Northwestern Yunnan Plateau, China Yun Zhang, Dingcai Yin, Mei Sun, Hang Wang, Kun Tian, Derong Xiao and Weiguo Zhang * National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China; [email protected] (Y.Z.); [email protected] (D.Y.); [email protected] (M.S.); [email protected] (H.W.); [email protected] (K.T.); [email protected] (D.X.) * Correspondence: [email protected]; Tel.: +86-871-386-4277; Fax: +86-871-386-3477 Received: 11 July 2017; Accepted: 27 September 2017; Published: 4 October 2017 Abstract: Improved understanding of climate-growth relationships of multiple species is fundamental to understanding and predicting the response of forest growth to future climate change. Forests are mainly composed of conifers in Northwestern Yunnan Plateau, but variations of growth response to climate conditions among the species are not well understood. To detect the growth response of multiple species to climate change, we developed residual chronologies of four major conifers, i.e., George’s fir (Abies georgei Orr), Likiang spruce (Picea likiangensis (Franch.) E.Pritz.), Gaoshan pine (Pinus densata Mast.) and Chinese larch (Larix potaninii Batalin) at the upper distributional limits in Shika Snow Mountain. Using the dendroclimatology method, we analyzed correlations between the residual chronologies and climate variables. The results showed that conifer radial growth was influenced by both temperature and precipitation in Shika Snow Mountain. Previous November temperature, previous July temperature, and current May precipitation were the common climatic factors that had consistent influences on radial growth of the four species.
    [Show full text]
  • Biodiversity Conservation in Botanical Gardens
    AgroSMART 2019 International scientific and practical conference ``AgroSMART - Smart solutions for agriculture'' Volume 2019 Conference Paper Biodiversity Conservation in Botanical Gardens: The Collection of Pinaceae Representatives in the Greenhouses of Peter the Great Botanical Garden (BIN RAN) E M Arnautova and M A Yaroslavceva Department of Botanical garden, BIN RAN, Saint-Petersburg, Russia Abstract The work researches the role of botanical gardens in biodiversity conservation. It cites the total number of rare and endangered plants in the greenhouse collection of Peter the Great Botanical garden (BIN RAN). The greenhouse collection of Pinaceae representatives has been analysed, provided with a short description of family, genus and certain species, presented in the collection. The article highlights the importance of Pinaceae for various industries, decorative value of plants of this group, the worth of the pinaceous as having environment-improving properties. In Corresponding Author: the greenhouses there are 37 species of Pinaceae, of 7 geni, all species have a E M Arnautova conservation status: CR -- 2 species, EN -- 3 species, VU- 3 species, NT -- 4 species, LC [email protected] -- 25 species. For most species it is indicated what causes depletion. Most often it is Received: 25 October 2019 the destruction of natural habitats, uncontrolled clearance, insect invasion and diseases. Accepted: 15 November 2019 Published: 25 November 2019 Keywords: biodiversity, botanical gardens, collections of tropical and subtropical plants, Pinaceae plants, conservation status Publishing services provided by Knowledge E E M Arnautova and M A Yaroslavceva. This article is distributed under the terms of the Creative Commons 1. Introduction Attribution License, which permits unrestricted use and Nowadays research of biodiversity is believed to be one of the overarching goals for redistribution provided that the original author and source are the modern world.
    [Show full text]
  • The Anatomy of Spruce Needles '
    THE ANATOMY OF SPRUCE NEEDLES ' By HERBERT F. MARCO 2 Junior forester. Northeastern Forest Experiment Station,^ Forest Service, United States Department of Agriculture INTRODUCTION In 1865 Thomas (16) * made a comparative study of the anatomy of conifer leaves and fomid that the structural variations exhibited by the different species warranted taxonomic considération. Since that time leaf anatomy has become a fertile and interesting field of research. Nearly all genera of gymnosperms have received some attention, and the literature on this subject has become voluminous. A detailed review of the literature will not be attempted in this paper, since com- prehensive reviews have already been published by Fulling (6) and Lacassagne (11). FuUing's paper contains in addition an extensive bibliography on conifer leaf anatomy. Most workers in tMs field of research have confined their efforts to the study of the cross sections of needles. This is partly because longitudinal sections are difficult to obtain and partly because they present but little structural variation of value for identification. The workers who have studied both longitudinal and cross sections have restricted their descrii)tions of longitudinal sections either to specific tissues or to a few species of a large number of genera, and the descrip- tions, although comprehensive, leave much to be desired from the standpoint of detailed information and illustration. Domer (S) was perhaps the first to use sketches to augment keys to and descriptions of the native firs and spruces. His diagrammatic sketches portray the shape of the needles in cross section and the position of the resin canals. Durrell (4) went a step further and illustrated his notes on the North American conifers by camera-lucida drawing^ depicting the orientation and arrangement of the various needle tissues in cross section.
    [Show full text]
  • Zusammenfassung Systematische Biologie: Pflanzen
    Zusammenfassung Systematische Biologie: Pflanzen - FS18 v0.2 Gleb Ebert 6. M¨arz 2018 Vorwort Diese Zusammenfassung soll den gesamten Stoff der Vorlesung Systematische Biologie: Pflanzen (Stand Fruhjahrssemester¨ 2018) in kompakter Form zusammenfassen. Ich kann leider weder Vollst¨andigkeit noch die Abwesenheit von Fehlern garan- tieren. Fur¨ Fragen, Anregungen oder Verbesserungsvorschl¨agen kann ich unter [email protected] erreicht werden. Die neuste Version dieser Zusammenfassung kann stets unter https://n.ethz.ch/˜glebert/ gefunden werden. 1 1 Landpflanzen 1.2 Stammbaum 2.4 Systematik (nur vervorgehobene Taxa prufungsrelevant)¨ 1.1 Entwicklung • Klasse: Marchantiopsida (Lebermoose) – Bebl¨atterte Lebermoose – Thallose Lebermoose • Klasse: Antheceropsida (Hornmoose) • Klasse: Bryopsida (Laubmoose) – Sphaginidae (Torfmoose) → Deckel ohne Peristom – Andreaeidae (Klaffmoose) → Spalten + Kolumella – Bryidae (Echte Laubmoose) 2 Bryophyta (Moose) → Deckel mit Peristom – Einteilung nach Wuchsform 2.1 Allgemeine Merkmale ∗ Akrokarpe Moose (Gipfelmoose) ∗ Pleuokarpe Moose (Astmoose) • ¨alteste Landpflanzen • Verbreitung durch Sporen (Kryptogamen) • Generationswechsel mit dominantem Gametophyt 2.5 Wuchsformen • Vielzellige Gametangien, Embryobildung • Organisationsstufe: – keine Leitgef¨asse – St¨ammchen, Bl¨attchen – Rhizoiden 2.2 Vorkommen / Eigenschaften • Artenzahl: 25’000 • an Orten mit hoher Luftfeuchtigkeit 1.1.1 Charophyceen vs. Landpflanzen • Lichtbedarf (0.1%) • Trockenheitstoleranz Gemeinsamkeiten neu in Landpflanzen • Temperatur (-30
    [Show full text]
  • Curitiba, Southern Brazil
    data Data Descriptor Herbarium of the Pontifical Catholic University of Paraná (HUCP), Curitiba, Southern Brazil Rodrigo A. Kersten 1,*, João A. M. Salesbram 2 and Luiz A. Acra 3 1 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil 2 REFLORA Project, Curitiba, Brazil; [email protected] 3 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-3721-2392 Academic Editor: Martin M. Gossner Received: 22 November 2016; Accepted: 5 February 2017; Published: 10 February 2017 Abstract: The main objective of this paper is to present the herbarium of the Pontifical Catholic University of Parana’s and its collection. The history of the HUCP had its beginning in the middle of the 1970s with the foundation of the Biology Museum that gathered both botanical and zoological specimens. In April 1979 collections were separated and the HUCP was founded with preserved specimens of algae (green, red, and brown), fungi, and embryophytes. As of October 2016, the collection encompasses nearly 25,000 specimens from 4934 species, 1609 genera, and 297 families. Most of the specimens comes from the state of Paraná but there were also specimens from many Brazilian states and other countries, mainly from South America (Chile, Argentina, Uruguay, Paraguay, and Colombia) but also from other parts of the world (Cuba, USA, Spain, Germany, China, and Australia). Our collection includes 42 fungi, 258 gymnosperms, 299 bryophytes, 2809 pteridophytes, 3158 algae, 17,832 angiosperms, and only one type of Mimosa (Mimosa tucumensis Barneby ex Ribas, M.
    [Show full text]
  • Pteridofitas Y Gimnospermas”
    UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE BIOLOGÍA MANUAL DE PRÁCTICAS DE LABORATORIO “Helechos y Gimnospermas” CICLO 2019 “PTERIDOFITAS Y GIMNOSPERMAS” Pinus ayacahuite var. brachyptera Shaw. PROFESORES DEL CURSO 2019: Biol. Leticia Díaz López Dra. Gabriela Domínguez Vázquez Biol. Rosa Isabel Fuentes Chávez Biol. Federico Hernández Valencia Dr. Juan Carlos Montero Castro Dr. Juan Manuel Ortega Rodríguez Polypodium madrense Mickel Biól. Norma Patricia Reyes Martínez M.C. Patricia Silva Sáenz PRESENTACIÓN. En el plan de estudios de la carrera de biología de la Universidad Michoacana de San Nicolás de Hidalgo, la materia de Botánica II (pteridofitas y gimnospermas), contempla dentro de sus contenidos el estudio tanto de la morfología, ciclos de vida, las relaciones evolutivas como la taxonomía de estos grupos de vegetales, que representan una gran importancia evolutiva pues corresponden tanto a las primeras plantas vasculares como a las primeras plantas productoras de semillas, por lo que el presente manual constituye una herramienta didáctica útil para el estudiante. En el presente manual se incluyen los aspectos antes mencionados, por lo que las diferentes prácticas intentan que el alumno relacione la morfología con la evolución que han tenido estos grupos de vegetales. Las prácticas incluidas, con excepción de la denominada “Evolución de las plantas vasculares” y la titulada “Herbario”, fueron implementadas originalmente como parte de la materia de Botánica III del plan de estudios de 1976 por el Prof. Biol. José L. Magaña Mendoza; y a partir del semestre marzo – agosto de 1998 y a iniciativa de los profesores Biol. Martha Santoyo Román y M.C. María del Rosario Ortega Murillo se formalizaron y estructuraron en el presente manual, aumentando una primera práctica de evolución de las plantas vasculares y una última práctica de Herbario.
    [Show full text]
  • Gravitropisms and Reaction Woods of Forest Trees – Evolution, Functions and Mechanisms
    Review Tansley review Gravitropisms and reaction woods of forest trees – evolution, functions and mechanisms 1,2 Author for correspondence: Andrew Groover Andrew Groover 1 2 Tel: +1 530 759 1738 Pacific Southwest Research Station, US Forest Service, Davis, CA 95618, USA; Department of Plant Biology, University of California Email: [email protected] Davis, Davis, CA 95616, USA Received: 29 December 2015 Accepted: 15 March 2016 Contents Summary 790 V. Mechanisms regulating developmental changes in reaction woods 798 I. Introduction 790 VI. Research questions and new research approaches 800 II. General features and evolution of reaction woods of angiosperms and gymnosperms 792 VII. Conclusions 800 III. Adaptive significance of reaction woods, including Acknowledgements 800 relationship to form 795 References 800 IV. Perception and primary responses to gravity and physical stimuli in woody stems 797 Summary New Phytologist (2016) 211: 790–802 The woody stems of trees perceive gravity to determine their orientation, and can produce doi: 10.1111/nph.13968 reaction woods to reinforce or change their position. Together, graviperception and reaction woods play fundamental roles in tree architecture, posture control, and reorientation of stems Key words: compression wood, genomics, displaced by wind or other environmental forces. Angiosperms and gymnosperms have evolved poplar, tension wood, wood development. strikingly different types of reaction wood. Tension wood of angiosperms creates strong tensile force to pull stems upward, while compression wood of gymnosperms creates compressive force to push stems upward. In this review, the general features and evolution of tension wood and compression wood are presented, along with descriptions of how gravitropisms and reaction woods contribute to the survival and morphology of trees.
    [Show full text]
  • BDB 2014 Picea Study Day, an Introduction
    BDB 2014 Picea study day, an introduction, by Paul Goetghebeur, BG Ghent University Scan Jan De Langhe : Picea_asperata_(not_heterolepis)_NPVBM19842407_2950JDL_15022007_10.JPG From ferns to Gymnosperms : from sporangia to seeds Seed ferns : Medullosaceae (fossil) (Kalkman 1972) A. Medullosa noei, habit B. Id., stele in cross section C. Medullosa solmsii, id. D. Medullosa luckartii, id. E. Alethopteris lancifolia, pinna F. Neuropteris, pinna with seed G. Trigonocarpus, ovule longitudinal section H. Id., cross section Seed ferns (fossil) (Stewart 1983) 1. Archaeosperma arnoldii, ovules The integument is almost entirely united with the nucellus (except for the top). In the nucellus a large macroprothallium (= female gametophyte) is evident. 2. Reconstruction of a semophylesis explaining the origin of the ovule. A : basic pattern with dichotomous branching and terminal sporangia B : start of heterospory, with one macrosporangium surrounded by many microsporangia C : microsporangia are reduced, their telomes are “sterile” D : webbing of the “sterile” telomes around the macrosporangium resulting in the formation of a new layer, this new layer = the integument (later on forming the seed coat !) Development of the ovule in Gymnosperms (Kalkman 1972) A : full grown ovule B : primordium of ovule, with a small nucellus, surrounded by an incipient integument C : differentiation of the macrospore mother cell (still diploid !) in the nucellus (= macrosporangium wall) D : meiosis of the macrospore mother cell, yielding 4 haploid macrospores E : degeneration
    [Show full text]
  • 1 Universidad Michoacana De San Nicolás De Hidalgo
    PROGRAMA DE LA MATERIA: Pteridofitas y Gimnospermas CICLO ESCOLAR 2021 UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE BIOLOGÍA PROGRAMA DE LA MATERIAPTERIDOFITAS Y GIMNOSPERMAS Semestre: 4ºSemestre. Área Académica: Botánica Nombre delaJefa de materia: Juan Carlos Montero Castro Número de horas teoría: 3 horas/semana Número de horas de práctica: 3 horas/semana de laboratorio y 1 horas/semana de prácticas de campo. Número de créditos: 10 Profesores que elaboraron el programa (en orden alfabético):Biol. Leticia Díaz López, Dra. Gabriela Domínguez Vázquez, Biol. Rosa Isabel Fuentes Chávez, Biol. Federico Hernández Valencia, Dr. Juan Carlos Montero Castro, Dr. Juan Manuel Ortega Rodríguez, M.C. Gerardo Rodríguez Lozano, M.C. Patricia Silva Sáenz. Fecha de elaboración del programa: 27 /junio /2016 Perfil profesional del profesor: Grado de licenciatura, con experiencia y conocimiento de las plantas vasculares en aspectos de taxonomía, morfología, evolución, ecología, en manejo de plantas vasculares, o en su caso, maestría o doctorado en la especialidad de botánica relacionada con plantas vasculares. Profesores que impartieron el programa en 2019(en orden alfabético): Biol. Leticia Díaz López, Dra. Gabriela Domínguez Vázquez, Biol. Rosa Isabel Fuentes Chávez, Biol. Federico Hernández Valencia, Dr. Juan Carlos Montero Castro, Dr. Juan Manuel Ortega Rodríguez, Biól. Norma Patricia Reyes Martínez, M.C. Patricia Silva Sáenz. Fecha de actualización:15 /04 /2021 Profesores que participaron en la actualización del programa (en orden alfabético):Biol. Leticia Díaz López, Dra. Gabriela Domínguez Vázquez, Biol. Rosa Isabel Fuentes Chávez, Biol. Federico Hernández Valencia, Dr. Juan Carlos Montero Castro, Dr. Juan Manuel Ortega Rodríguez, M.C. Gerardo Rodríguez Lozano, M.C.
    [Show full text]
  • Srovnání Morfologie Příčných Řezů Jehlic Smrků (Rod Picea)
    Přírodovědecká fakulta v Olomouci Katedra Botaniky BAKALÁŘSKÁ PRÁCE Markéta Frdlíková Srovnání morfologie příčných řezů jehlic smrků (rod Picea) Vedoucí práce: RNDr. Radim J. Vašut, Ph.D. Obor: Biologie – geologie a ochrana ţivotního prostředí Místo a datum odevzdání: Olomouc, 26. července 2013 PROHLÁŠENÍ Prohlašuji, ţe jsem bakalářskou práci vykonávala samostatně, řídila jsem se pokyny svého vedoucího práce a předepsanou literaturou. V Olomouci, 26. července 2013 …..……………………. Markéta Frdlíková PODĚKOVÁNÍ Chtěla bych poděkovat svému vedoucímu práce RNDr. Radimu Janu Vašutovi, Ph.D. za ochotu pomoci, dodání materiálu a jeho času strávených na konzultačních hodinách. Dále bych chtěla poděkovat RNDr. Dagmar Skálové, Ph.D. za názornou ukázku řezání příčných řezů jehlic a seznámení s prací na mikrofotografickém systému Olympus DP 70. BIBLIOGRAFICKÁ IDENTIFIKACE Jméno a příjmení: Markéta Frdlíková Název práce : Srovnání morfologie příčných řezů jehlic smrků (rod Picea) Typ práce: Bakalářská Pracoviště: Katedra botaniky Vedoucí práce: RNDr. Radim J. Vašut, Ph.D. Rok obhajoby práce: 2013 Abstrakt: Úkolem mé bakalářské práce je charakterizovat vybrané druhy rodu Picea (smrku). Hlavním cílem je srovnání morfologie příčných řezů jehlic nejčastěji pěstovaných druhů u nás napříč hlavními fylogenetickými skupinami. Morfologické znaky jsou hlavním identifikačním znakem pro rozlišení jednotlivých druhů smrku (Picea). Práce byla doplněna o přehled dalších morfologických makroznaků uváděných v dendrologické literatuře, informace o rozšíření a další biologické
    [Show full text]