3677 The Journal of Experimental Biology 210, 3677-3688 Published by The Company of Biologists 2007 doi:10.1242/jeb.006486 Linkage mechanics and power amplification of the mantis shrimp’s strike S. N. Patek1,*, B. N. Nowroozi2, J. E. Baio1, R. L. Caldwell1 and A. P. Summers2 1Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA and 2Ecology and Evolutionary Biology, University of California–Irvine, Irvine, CA 92697-2525, USA *Author for correspondence (e-mail:
[email protected]) Accepted 6 August 2007 Summary Mantis shrimp (Stomatopoda) generate extremely rapid transmission is lower than predicted by the four-bar model. and forceful predatory strikes through a suite of structural The results of the morphological, kinematic and modifications of their raptorial appendages. Here we mechanical analyses suggest a multi-faceted mechanical examine the key morphological and kinematic components system that integrates latches, linkages and lever arms and of the raptorial strike that amplify the power output of the is powered by multiple sites of cuticular energy storage. underlying muscle contractions. Morphological analyses of Through reorganization of joint architecture and joint mechanics are integrated with CT scans of asymmetric distribution of mineralized cuticle, the mantis mineralization patterns and kinematic analyses toward the shrimp’s raptorial appendage offers a remarkable example goal of understanding the mechanical basis of linkage of how structural and mechanical modifications can yield dynamics and strike performance. We test whether a four- power amplification sufficient to produce speeds and forces bar linkage mechanism amplifies rotation in this system at the outer known limits of biological systems.