Informačné Technológie Pre Modelovanie a Simuláciu

Total Page:16

File Type:pdf, Size:1020Kb

Informačné Technológie Pre Modelovanie a Simuláciu MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY Informačné technológie pre modelovanie a simuláciu DIPLOMOVÁ PRÁCA Bc. Tibor Káčerik Brno, jar 2014 Prehlásenie Prehlasujem, že táto diplomová práca je mojím pôvodným autorským dielom, ktoré som vypracoval samostatne. Všetky zdroje, pramene a literatúru, ktorú som používal alebo som z nich čerpal, v práci riadne citujem s uvedením úplného odkazu na príslušný zdroj. Vedúci práce: prof. RNDr. Jiří Hřebíček, CSc. ii Poďakovanie Touto cestou vyslovujem poďakovanie pánovi prof. RNDr. Jiřímu Hřebíčkovi, CSc. za pomoc, odborné vedenie, cenné rady a pripomienky pri vypracovávaní mojej diplomovej práce. iii Zhrnutie Cieľom diplomovej práce je zhodnotiť súčasný stav informačných a komunikačných technológií (vybraný softvér pre symbolické a numerické výpočty) pre modelovanie a simulácie procesov v praxi. Z týchto technológií budú konkrétnejšie opísané systémy počítačovej algebry Maple 18, vrátane jeho nadstavby, systému MapleSim 6.4. Pomocou spomenutých systémov bude riešený problém z oblasti mechatroniky a počítačovou simuláciou analyzujeme vlastnosti získaného riešenia. iv Kľúčové slová informačné a komunikačné technológie, systém počítačovej algebry, modelovanie, model, simulácia, Maple, MapleSim, Mathematica v Obsah Úvod ................................................................................................................................................ 1 1 Modelovanie a simulácia ........................................................................................................ 2 1.1 Model ............................................................................................................................... 2 1.1.1 Matematický model .................................................................................................. 3 1.2 Modelovanie ..................................................................................................................... 3 1.3 Simulácia .......................................................................................................................... 4 1.3.1 Dôvody využívania simulácií ................................................................................... 4 2 Systém počítačovej algebry .................................................................................................... 6 2.1 Vývoj CAS ....................................................................................................................... 6 2.2 Rozdelenie systémov ........................................................................................................ 6 2.3 Zoznam systémov počítačovej algebry ............................................................................ 7 3 Systém Maple 18................................................................................................................... 15 3.1 Základné informácie o systéme ...................................................................................... 15 3.2 Novinky v Maple 18 ....................................................................................................... 16 3.3 Užívateľské rozhranie .................................................................................................... 18 3.3.1 Hlavné menu systému ............................................................................................. 18 3.3.2 Menu pracovnej plochy 1........................................................................................ 19 3.3.3 Menu pracovnej plochy 2........................................................................................ 19 3.3.4 Menu paliet ............................................................................................................. 20 3.3.5 Kontextové menu .................................................................................................... 20 3.3.6 Pracovná plocha ...................................................................................................... 20 3.4 Ovládanie systému ......................................................................................................... 20 3.4.1 Vkladanie jednoduchých operácií a symbolov z paliet........................................... 21 vi 3.4.2 Vkladanie príkazov ................................................................................................. 21 3.4.3 Vyhodnocovanie výrazov, príkazov ....................................................................... 22 3.4.4 Základné programové konštrukcie .......................................................................... 23 3.5 Pomocníci v systéme Maple ........................................................................................... 24 3.5.1 Maple Help.............................................................................................................. 24 3.5.2 Maple Tour.............................................................................................................. 25 3.5.3 Maple Portal ............................................................................................................ 25 3.5.4 Quick Help .............................................................................................................. 25 3.5.5 Quick Reference...................................................................................................... 25 3.5.6 Assistants, Tutors (Asistenti, Inštruktori) ............................................................... 26 3.6 Porovnanie systémov Maple a Mathematica .................................................................. 26 3.6.1 Užívateľské rozhranie ............................................................................................. 27 3.6.2 Matematika ............................................................................................................. 27 3.6.3 Podpora pre študentov............................................................................................. 28 3.6.4 Programovanie ........................................................................................................ 28 3.6.5 Konektivita .............................................................................................................. 29 3.6.6 Otvorenosť .............................................................................................................. 29 4 Systém MapleSim 6.4 ........................................................................................................... 30 4.1 Základné informácie o systéme ...................................................................................... 30 4.1.1 Vlastnosti systému .................................................................................................. 30 4.2 Fyzikálne modelovanie v systéme MapleSim ................................................................ 31 4.2.1 Topologická/akauzálna reprezentácia systému ....................................................... 31 4.2.2 Matematická formulácia modelu a zjednodušovanie .............................................. 31 4.2.3 Algoritmy pre pokročilé diferenciálne algebrické rovnice ..................................... 32 4.2.4 Kauzálne, akauzuálne modelovanie ........................................................................ 32 vii 4.3 Novinky v MapleSim 6.4 ............................................................................................... 34 4.3.1 Novinky v MapleSim 6.3 ........................................................................................ 34 4.3.2 Výkonné nástroje pre vlastné komponenty ............................................................. 34 4.3.3 Vylepšenia výpočtov ............................................................................................... 35 4.3.4 Vylepšenia pre toolbox MapleSim Connector ........................................................ 35 4.3.5 Vylepšenia pre toolbox Control Design ................................................................. 35 4.4 Užívateľské rozhranie .................................................................................................... 36 4.4.1 Hlavné menu systému ............................................................................................. 36 4.4.2 Menu pracovnej plochy 1........................................................................................ 37 4.4.3 Menu pracovnej plochy 2........................................................................................ 37 4.4.4 Menu paliet ............................................................................................................. 38 4.4.5 Konzola, menu konzoly .......................................................................................... 38 4.4.6 Menu parametrov .................................................................................................... 38 4.4.7 Plocha 3-D vizualizácie, menu plochy 3-D ............................................................ 39 4.4.8 Pracovná plocha ...................................................................................................... 39 4.5 Ovládanie systému ......................................................................................................... 39 4.5.1 Práca s komponentmi .............................................................................................. 39 4.5.2 Prepájanie komponent do systému.......................................................................... 40 4.5.3 Práca so sondami....................................................................................................
Recommended publications
  • Some Reflections About the Success and Impact of the Computer Algebra System DERIVE with a 10-Year Time Perspective
    Noname manuscript No. (will be inserted by the editor) Some reflections about the success and impact of the computer algebra system DERIVE with a 10-year time perspective Eugenio Roanes-Lozano · Jose Luis Gal´an-Garc´ıa · Carmen Solano-Mac´ıas Received: date / Accepted: date Abstract The computer algebra system DERIVE had a very important im- pact in teaching mathematics with technology, mainly in the 1990's. The au- thors analyze the possible reasons for its success and impact and give personal conclusions based on the facts collected. More than 10 years after it was discon- tinued it is still used for teaching and several scientific papers (most devoted to educational issues) still refer to it. A summary of the history, journals and conferences together with a brief bibliographic analysis are included. Keywords Computer algebra systems · DERIVE · educational software · symbolic computation · technology in mathematics education Eugenio Roanes-Lozano Instituto de Matem´aticaInterdisciplinar & Departamento de Did´actica de las Ciencias Experimentales, Sociales y Matem´aticas, Facultad de Educaci´on,Universidad Complutense de Madrid, c/ Rector Royo Villanova s/n, 28040-Madrid, Spain Tel.: +34-91-3946248 Fax: +34-91-3946133 E-mail: [email protected] Jose Luis Gal´an-Garc´ıa Departamento de Matem´atica Aplicada, Universidad de M´alaga, M´alaga, c/ Dr. Ortiz Ramos s/n. Campus de Teatinos, E{29071 M´alaga,Spain Tel.: +34-952-132873 Fax: +34-952-132766 E-mail: [email protected] Carmen Solano-Mac´ıas Departamento de Informaci´ony Comunicaci´on,Universidad de Extremadura, Plaza de Ibn Marwan s/n, 06001-Badajoz, Spain Tel.: +34-924-286400 Fax: +34-924-286401 E-mail: [email protected] 2 Eugenio Roanes-Lozano et al.
    [Show full text]
  • CAS (Computer Algebra System) Mathematica
    CAS (Computer Algebra System) Mathematica- UML students can download a copy for free as part of the UML site license; see the course website for details From: Wikipedia 2/9/2014 A computer algebra system (CAS) is a software program that allows [one] to compute with mathematical expressions in a way which is similar to the traditional handwritten computations of the mathematicians and other scientists. The main ones are Axiom, Magma, Maple, Mathematica and Sage (the latter includes several computer algebras systems, such as Macsyma and SymPy). Computer algebra systems began to appear in the 1960s, and evolved out of two quite different sources—the requirements of theoretical physicists and research into artificial intelligence. A prime example for the first development was the pioneering work conducted by the later Nobel Prize laureate in physics Martin Veltman, who designed a program for symbolic mathematics, especially High Energy Physics, called Schoonschip (Dutch for "clean ship") in 1963. Using LISP as the programming basis, Carl Engelman created MATHLAB in 1964 at MITRE within an artificial intelligence research environment. Later MATHLAB was made available to users on PDP-6 and PDP-10 Systems running TOPS-10 or TENEX in universities. Today it can still be used on SIMH-Emulations of the PDP-10. MATHLAB ("mathematical laboratory") should not be confused with MATLAB ("matrix laboratory") which is a system for numerical computation built 15 years later at the University of New Mexico, accidentally named rather similarly. The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a popular copyleft version of Macsyma called Maxima is actively being maintained.
    [Show full text]
  • Estimado Profesor
    México, D.F., a 15 de abril de 2016 CURRICULUM VITAE Nombre: RICARDO LÓPEZ BAUTISTA Departamento de Adscripción: CIENCIAS BASICAS, Profesor titular "A", tiempo Completo, definitivo en UAM-Azcapotzalco Correo electrónico: [email protected] Formación Profesional: DOCTOR EN CIENCIAS en la especialidad de Matemáticas por el Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV) con Mención Honorífica. ESTANCIA POSTDOCTORAL Departamento de Matemáticas de la Ohio StateUniversity (USA). 2000 Líneas de investigación: 1) EVALUACIÓN EN LINEA y GENERACIÓN AUTOMATIZADA DE MILLONES DE REACTIVOS CON RETROALIMENTACION AUTOMATICA, PARA BANCOS DE EXÁMENES EN MATEMÁTICAS. a. Experto en plataforma MOODLE- LCMS (Learning Content Management System) b. Programador en diversos CAS (Computer Algebraic System) Axiom, Mathematica, Maple, Mathlab, Geogebra, Magma, SageMath, Maxima, SymPy, Xcas, Yacas, Pari-GP, Octave, GAP, CoCoA, Algebrator, MathCad 2) TEORIA ALGEBRAICA DE NUMEROS, FACTORIZACION DE ENTEROS, SEGURIDAD ELECTRONICA 3) SISTEMAS ALGEBRAICOS COMPUTACIONALES (CAS). a. INVESTIGACIÓN Y APLICACIONES DE CAS EN TEORÍA DE NÚMEROS. b. INVESTIGACIÓN Y APLICACIONES DE CAS EN MODELOS MIXTOS PARA LA EDUCACIÓN Y EVALUACIÓN EN MATEMÁTICAS 4) TECNOMATEMÁTICA EDUCATIVA EN MODELOS PRESENCIALES, NO PRESENCIALES Y MIXTOS. SISTEMAS ALGEBRAICOS COMPUTACIONALES EN LA EDUCACION Y EVALUACION EN MATEMÁTICAS. a. Portales activos para la comunidad en UAM-A: http://galois.azc.uam.mx http://evaluacionenlinea.azc.uam.mx http://matematicas.azc.uam.mx Proyecto CONACyT: Evaluación del aprendizaje en Matemáticas y propuesta de evaluaciones automáticas en línea. Aprobado en 2012, por concluir. 1 Formación de recursos humanos: Tesis de alumna de maestría: Jurado en examen doctoral. Uam Proyectos Terminales en Maestría en Ciencias de la Iztapalapa.
    [Show full text]
  • Titular Capítulo
    Jornadas In-Red 2014 Universitat Politècnica de València Doi************** Experiencias de aplicación de la simulación empleando software libre y gratuito en la enseñanza de las ingenierías de la rama industrial Asunción Santafé Morosa, José M. Gozálvez Zafrillaa, Javier Navarro Laboulaisa, Salvador Cardona Navarretea, Rafael Miró Herreroa, Juan Carlos García Díazb a Departamento de Ingeniería Química y Nuclear, Universitat Politècnica de Valencia, [email protected] b Departamento de Estadística e Investigación Operativa, Universitat Politècnica de Valencia. Resumen En este trabajo se presentan las experiencias de utilización de software libre y gratuito llevadas a cabo por el Equipo de Innovación y Calidad Educativa ASEI (Aplicación de la Simulación en la Enseñanza de la Ingeniería) en asignaturas de las áreas de Ingeniería Química, Nuclear y Estadística que requieren la utilización de software de cálculo y herramientas de simulación. El software libre puede ser utilizado como una herramienta en metodologías docentes basadas en el uso de la simulación en el aula de teoría o bien como una forma de disminuir los costes en la enseñanza y aportar nuevos valores. Adecuadamente empleadas, las metodologías basadas en el uso de programas de simulación pueden estimular la capacidad de autoaprendizaje del alumno. En esta comunicación se muestran ejemplos del amplio abanico de aplicaciones de software que se pueden utilizar sin representar coste para la Universidad y posteriormente para la empresa. Palabras clave: competencias, formación, metodologías activas, simulación, software libre. 2014, Universitat Politècnica de València 1 I Jornadas In-Red (2014): 1-9 Experiencias de aplicación de la simulación empleando software libre y gratuito en la enseñanza de las ingenierías de la rama industrial 1.
    [Show full text]
  • CID REBORIDO, Alicia. “Experiencias Del Examen Global En Línea De La UEA De Complementos De Matemáticas, DCBI-A” [Recurso Electrónico]
    LÓPEZ BAUTISTA, Ricardo; PULIDO RODRÍGUEZ, Georgina; CID REBORIDO, Alicia. “Experiencias del examen global en línea de la UEA de complementos de matemáticas, DCBI-A” [recurso electrónico]. -- p. 349-368. -- En: Coloquio sobre la Práctica de la Educación Virtual en la UAM-A (1º. : 2012 : UAM Azcapotzalco, Ciudad de México). Memorias del Primer Coloquio sobre la Práctica de la Educación Virtual en la UAM-A. Mesa 3: Estudios de caso, segunda parte / Micheli Thirión, Jordy, coordinador y Armendáriz Torres, Sara, coordinadora. – México: Universidad Autónoma Metropolitana (México), Unidad Azcapotzalco, División de Ciencias Sociales y Humanidades, Coordinación de Difusión y Publicaciones, 2012. 467 páginas. ISBN 978-607-477-830-4 EXPERIENCIAS DEL EXAMEN GLOBAL EN LÍNEA DE LA UEA DE COMPLEMENTOS DE MATEMÁTICAS, DCBI-A Ricardo López Bautista [email protected] Georgina Pulido Rodríguez [email protected] Alicia Cid Reborido [email protected] Resumen Desde 2011 se han aplicado en línea tanto el examen global como el de recuperación de la UEA Complementos de Matemáticas, que pertenece al Tronco General de las licenciaturas de Ingeniería en la UAM-A. En esta comunicación se describen las experiencias, retos y logros de llevar a cabo la aplicación de estos exámenes en línea en forma presencial a todos los sustentantes en tiempo y en forma de acuerdo con la legislación. Se utilizaron aulas virtuales con evaluación continua en los grupos de los autores en 2009, lo que dio lugar a la creación del sistema galoisenlinea, donde se encuentra ahora un Centro de Evaluación en Línea de Matemáticas. Ahí aparecen también autoevaluaciones, una gran variedad de recursos didácticos e información general para los usuarios del sistema, que puede ser un alumno o un académico de la comunidad UAM-A.
    [Show full text]
  • An Overview of the Evolution of the Devices Running Computer Algebra Systems and Their Educational Implications
    Electrical & Electronic Technology Open Access Journal Short Communication Open Access An overview of the evolution of the devices running computer algebra systems and their educational implications Abstract Volume 1 Issue 1 - 2017 Only back in late 60’s and early 70’s powerful computers were required to run the Eugenio Roanes-Lozano then just released computer algebra systems (brand new software mainly designed as Instituto de Matemática Interdisciplinar & Depto de Álgebra, a specialized aid for astronomy and high energy physics). In the late 80’s they could Universidad Complutense de Madrid, Spain be run in standard computers. And in 1995 the first calculator including a computer algebra system was released. Now some of these pieces of software are freely available Correspondence: Eugenio Roanes-Lozano, Instituto de for Smartphones. That this software has been ported to these electronic devices is a Matemática Interdisciplinar & Depto de Álgebra, Universidad challenge to different aspects of mathematical and physics education, like: problem Complutense de Madrid, c/ Rector Royo Villanova s/n, solving, assessment and standardized assessment. 28040-Madrid, Spain, Tel 913-946-248, Fax 913-944-662, Email [email protected] Keywords: computer algebra systems, computers, calculators, smartphones, mathematical education Received: May 05, 2017 | Published: June 20, 2017 Introduction symbolic manipulations such as symbolic differentiation and integra- tion can be implemented. The incredible increase of microprocessors 1 Computer algebra systems have two main differences w.r.t. clas- power makes it possible to have CAS available for Smartphones. This sic computer languages: induces serious challenges in teaching mathematics as well and in the a) They perform numerical computations in exact arithmetic (by assessment of this subject.
    [Show full text]
  • SMT Solving in a Nutshell
    SAT and SMT Solving in a Nutshell Erika Abrah´ am´ RWTH Aachen University, Germany LuFG Theory of Hybrid Systems February 27, 2020 Erika Abrah´ am´ - SAT and SMT solving 1 / 16 What is this talk about? Satisfiability problem The satisfiability problem is the problem of deciding whether a logical formula is satisfiable. We focus on the automated solution of the satisfiability problem for first-order logic over arithmetic theories, especially using SAT and SMT solving. Erika Abrah´ am´ - SAT and SMT solving 2 / 16 CAS SAT SMT (propositional logic) (SAT modulo theories) Enumeration Computer algebra DP (resolution) systems [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories CAD Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping Partial CAD Virtual CDCL [GRASP’97] [zChaff’04] DPLL(T) substitution Watched literals Equalities and uninterpreted Clause learning/forgetting functions Variable ordering heuristics Bit-vectors Restarts Array theory Arithmetic Decision procedures for first-order logic over arithmetic theories in mathematical logic 1940 Computer architecture development 1960 1970 1980 2000 2010 Erika Abrah´ am´ - SAT and SMT solving 3 / 16 SAT SMT (propositional logic) (SAT modulo theories) Enumeration DP (resolution) [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping CDCL [GRASP’97] [zChaff’04]
    [Show full text]
  • Another Formulation of the Wick's Theorem. Farewell, Pairing?
    Spec. Matrices 2015; 3:169–174 Communication Open Access Igor V. Beloussov Another formulation of the Wick’s theorem. Farewell, pairing? DOI 10.1515/spma-2015-0015 Received February 19, 2015; accepted July 2, 2015 Abstract: The algebraic formulation of Wick’s theorem that allows one to present the vacuum or thermal averages of the chronological product of an arbitrary number of field operators as a determinant (permanent) of the matrix is proposed. Each element of the matrix is the average of the chronological product of only two operators. This formulation is extremely convenient for practical calculations in quantum field theory, statistical physics, and quantum chemistry by the standard packages of the well known computer algebra systems. Keywords: vacuum expectation value; chronological product; contractions AMS: 15-04, 15A15, 65Z05, 81U20 1 Introduction Wick’s theorems are used extensively in quantum field theory [1–4], statistical physics [5–7], and quantum chemistry [8]. They allow one to use the Green’s functions method, and consequently to apply the Feynman’s diagrams for investigations [1–3]. The first of these, which can be called Wick’s Theorem for Ordinary Products, gives us the opportunity to reduce in almost automatic mode the usual product of operators into a unique sum of normal products multiplied by c–numbers. It can be formulated as follows [4]. Let Ai (xi) (i = 1, 2, ... , n ) are “linear operators”, i.e., some linear combinations of creation and annihilation operators. Then the ordi- nary product of linear operators is equal to the sum of all the corresponding normal products with all possible contractions, including the normal product without contractions, i.e., A1 ...An = : A1 ...An : +: A1A2 ...An : + ..
    [Show full text]
  • Linux Mint Debian Edition (LMDE) Di Giorgio Beltrammi
    Guida a Linux Mint Debian Edition Guida a Linux Mint Debian Edition (LMDE) di Giorgio Beltrammi 1 2 Guida a Linux Mint Debian Edition 3 4 Guida a Linux Mint Debian Edition INDICE INTRODUZIONE ¼................................. 9 Note di Consultazione ¼........................ 9 Linux Mint Debian Edition ¼.................... 11 Per utenti Windows ¼........................... 17 DOWNLOAD & MASTERIZZAZIONE .................... 23 Download & Masterizzazione ¼................... 23 Download....................................... 25 Checksum....................................... 27 LIVE & INSTALLAZIONE ¼......................... 29 Cos©è un sistema Live.......................... 29 Partizionamento ¼.............................. 33 Installazione ¼................................ 39 Postinstallazione.............................. 47 Personalizzare Mint............................ 53 PERSONALE...................................... 61 Applicazioni d©avvio ¼......................... 61 Applicazioni preferite......................... 65 Gestione File.................................. 67 Scorciatoie Tastiera.......¼................... 69 Tecnologie Assistive........................... 71 ASPETTO & STILE................................ 73 Aspetto........................................ 73 Impostazioni del Desktop....................... 79 Menu Principale................................ 81 Salvaschermo................................... 85 INTERNET & RETE................................ 87 Bluetooth...................................... 87 5 Condivisione
    [Show full text]
  • Using a Small Algebraic Manipulation System to Solve Differential and Integral Equations by Variational and Approximation Techniques
    J. Symbolic Computation (1987) 3, 291-301 Using a Small Algebraic Manipulation System to Solve Differential and Integral Equations by Variational and Approximation Techniques R. D. MILLS Computing Science Department. University of Glasgow, Glasgow, UK (Received 2 December 1985) The microcomputer algebraic manipulation system MUMATH is used to implement the classical variational, Galerkin and least-squares techniques for solving boundary-value problems in differential equations and also for solving Fredhohn integral equations. Examples are given which extend the precision of known results. The technique is presented as a general algorithm which can readily be implemented on other algebraic manipulation systems. 1. Introduction Computer programs have been in existence since the fifties to manipulate polynomials, differentiate functions and solve equations. By the late sixties and early seventies programs were written which could integrate functions analytically. The late seventies saw the development of programs for the symbolic solution of differential and integral equations (see Golden, 1977; Stoutemyer, 1977; Bogen, 1979). Large and complex algebraic manipulation systems were devised to implement the algorithms which effect these processes, the best known being FORMAC, REDUCE2, MACSYMA and SCRATCHPAD. There then opened up the exciting possibility of tackling many problems in applied mathematics and engineering which could be solved approximately by analytical methods but which require very large amounts of algebraic manipulation. The Rayleigh-Ritz, Galerkin and least-squares methods for solving boundary-value problems in differential equations are typical examples. For early work using computer algebra in these methods, see Miola (1974) and Andersen & Noor (1977). This application area involves the interaction of numerical and algebraic computation (see Ng, 1979).
    [Show full text]
  • Constructing a Computer Algebra System Capable of Generating Pedagogical Step-By-Step Solutions
    DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2016 Constructing a Computer Algebra System Capable of Generating Pedagogical Step-by-Step Solutions DMITRIJ LIOUBARTSEV KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION Constructing a Computer Algebra System Capable of Generating Pedagogical Step-by-Step Solutions DMITRIJ LIOUBARTSEV Examenrapport vid NADA Handledare: Mårten Björkman Examinator: Olof Bälter Abstract For the problem of producing pedagogical step-by-step so- lutions to mathematical problems in education, standard methods and algorithms used in construction of computer algebra systems are often not suitable. A method of us- ing rules to manipulate mathematical expressions in small steps is suggested and implemented. The problem of creat- ing a step-by-step solution by choosing which rule to apply and when to do it is redefined as a graph search problem and variations of the A* algorithm are used to solve it. It is all put together into one prototype solver that was evalu- ated in a study. The study was a questionnaire distributed among high school students. The results showed that while the solutions were not as good as human-made ones, they were competent. Further improvements of the method are suggested that would probably lead to better solutions. Referat Konstruktion av ett datoralgebrasystem kapabelt att generera pedagogiska steg-för-steg-lösningar För problemet att producera pedagogiska steg-för-steg lös- ningar till matematiska problem inom utbildning, är vanli- ga metoder och algoritmer som används i konstruktion av datoralgebrasystem ofta inte lämpliga. En metod som an- vänder regler för att manipulera matematiska uttryck i små steg föreslås och implementeras.
    [Show full text]
  • Methods of Using Mobile Internet Devices in the Formation of The
    217 Methods of using mobile Internet devices in the formation of the general scientific component of bachelor in electromechanics competency in modeling of technical objects Yevhenii O. Modlo1[0000-0003-2037-1557], Serhiy O. Semerikov2,3,4[0000-0003-0789-0272], Stanislav L. Bondarevskyi3[0000-0003-3493-0639], Stanislav T. Tolmachev3[0000-0002-5513-9099], Oksana M. Markova3[0000-0002-5236-6640] and Pavlo P. Nechypurenko2[0000-0001-5397-6523] 1 Kryvyi Rih Metallurgical Institute of the National Metallurgical Academy of Ukraine, 5, Stephana Tilhy Str., Kryvyi Rih, 50006, Ukraine [email protected] 2 Kryvyi Rih State Pedagogical University, 54, Gagarina Ave., Kryvyi Rih, 50086, Ukraine [email protected], [email protected] 3 Kryvyi Rih National University, 11, Vitaliy Matusevych Str., Kryvyi Rih, 50027, Ukraine [email protected], [email protected], [email protected] 3 Institute of Information Technologies and Learning Tools of NAES of Ukraine, 9, M. Berlynskoho Str., Kyiv, 04060, Ukraine Abstract. An analysis of the experience of professional training bachelors of electromechanics in Ukraine and abroad made it possible to determine that one of the leading trends in its modernization is the synergistic integration of various engineering branches (mechanical, electrical, electronic engineering and automation) in mechatronics for the purpose of design, manufacture, operation and maintenance electromechanical equipment. Teaching mechatronics provides for the meaningful integration of various disciplines of professional and practical training bachelors of electromechanics based on the concept of modeling and technological integration of various organizational forms and teaching methods based on the concept of mobility. Within this approach, the leading learning tools of bachelors of electromechanics are mobile Internet devices (MID) – a multimedia mobile devices that provide wireless access to information and communication Internet services for collecting, organizing, storing, processing, transmitting, presenting all kinds of messages and data.
    [Show full text]