Cassowaries Rainforest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Avifauna of Mt. Karimui, Chimbu Province, Papua New Guinea, Including Evidence for Long-Term Population Dynamics in Undisturbed Tropical Forest
Ben Freeman & Alexandra M. Class Freeman 30 Bull. B.O.C. 2014 134(1) The avifauna of Mt. Karimui, Chimbu Province, Papua New Guinea, including evidence for long-term population dynamics in undisturbed tropical forest Ben Freeman & Alexandra M. Class Freeman Received 27 July 2013 Summary.—We conducted ornithological feld work on Mt. Karimui and in the surrounding lowlands in 2011–12, a site frst surveyed for birds by J. Diamond in 1965. We report range extensions, elevational records and notes on poorly known species observed during our work. We also present a list with elevational distributions for the 271 species recorded in the Karimui region. Finally, we detail possible changes in species abundance and distribution that have occurred between Diamond’s feld work and our own. Most prominently, we suggest that Bicolored Mouse-warbler Crateroscelis nigrorufa might recently have colonised Mt. Karimui’s north-western ridge, a rare example of distributional change in an avian population inhabiting intact tropical forests. The island of New Guinea harbours a diverse, largely endemic avifauna (Beehler et al. 1986). However, ornithological studies are hampered by difculties of access, safety and cost. Consequently, many of its endemic birds remain poorly known, and feld workers continue to describe new taxa (Prat 2000, Beehler et al. 2007), report large range extensions (Freeman et al. 2013) and elucidate natural history (Dumbacher et al. 1992). Of necessity, avifaunal studies are usually based on short-term feld work. As a result, population dynamics are poorly known and limited to comparisons of diferent surveys or diferences noticeable over short timescales (Diamond 1971, Mack & Wright 1996). -
Eurylaimides Species Tree
Eurylaimides ⋆Velvet Asity, Philepitta castanea Schlegel’s Asity, Philepitta schlegeli ⋆ Philepittidae Common Sunbird-Asity, Neodrepanis coruscans Yellow-bellied Sunbird-Asity, Neodrepanis hypoxantha ⋆Grauer’s Broadbill, Pseudocalyptomena graueri ⋆Long-tailed Broadbill, Psarisomus dalhousiae ⋆ Eurylaimidae Dusky Broadbill, Corydon sumatranus Visayan Broadbill, Sarcophanops samarensis ⋆Wattled Broadbill, Sarcophanops steerii ⋆Silver-breasted Broadbill, Serilophus lunatus ⋆Black-and-red Broadbill, Cymbirhynchus macrorhynchos ⋆Banded Broadbill, Eurylaimus javanicus Black-and-yellow Broadbill, Eurylaimus ochromalus Gray-headed Broadbill, Smithornis sharpei Rufous-sided Broadbill, Smithornis rufolateralis Smithornithidae ⋆African Broadbill, Smithornis capensis Hose’s Broadbill, Calyptomena hosii ⋆Green Broadbill, Calyptomena viridis Calyptomenidae Whitehead’s Broadbill, Calyptomena whiteheadi ⋆Sapayoa, Sapayoa aenigma:0.1 Sapayoidae Blue-banded Pitta, Erythropitta arquata Garnet Pitta, Erythropitta granatina Graceful Pitta, Erythropitta venusta Black-crowned Pitta, Erythropitta ussheri Erythropitta Whiskered Pitta, Erythropitta kochi Philippine Pitta, Erythropitta erythrogaster Sula Pitta, Erythropitta dohertyi Sulawesi Pitta, Erythropitta celebensis Sangihe Pitta, Erythropitta caeruleitorques Siao Pitta, Erythropitta palliceps South Moluccan Pitta, Erythropitta rubrinucha North Moluccan Pitta, Erythropitta rufiventris Louisiade Pitta, Erythropitta meeki ⋆Papuan Pitta, Erythropitta macklotii Bismarck Pitta, Erythropitta novaehibernicae Pittidae -
Ratite Molecular Evolution, Phylogeny and Biogeography Inferred from Complete Mitochondrial Genomes
RATITE MOLECULAR EVOLUTION, PHYLOGENY AND BIOGEOGRAPHY INFERRED FROM COMPLETE MITOCHONDRIAL GENOMES by Oliver Haddrath A thesis submitted in confonnity with the requirements for the Degree of Masters of Science Graduate Department of Zoology University of Toronto O Copyright by Oliver Haddrath 2000 National Library Biblioth&que nationale 191 .,,da du Canada uisitions and Acquisitions et Services services bibliographiques 395 Welington Street 395. rue WdKngton Ottawa ON KIA ON4 Otîâwâ ON K1A ûN4 Canada Canada The author has granted a non- L'auteur a accordé une iicence non exclusive licence allowing the exclusive permettant A la National Library of Canada to Bihliotheque nationale du Canada de reproduce, loan, distribute or sell reproduire, @ter, distribuer ou copies of diis thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/fïîm, de reproduction sur papier ou sur format 61ectronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette tbése. thesis nor substantial exûacts fiom it Ni la thèse ni des extraits substantiels may be priated or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract Ratite Molecular Evolution, Phylogeny and Biogeography Inferred fiom Complete Mitochoncîrial Genomes. Masters of Science. 2000. Oliver Haddrath Department of Zoology, University of Toronto. The relationships within the ratite birds and their biogeographic history has been debated for over a century. While the monophyly of the ratites has been established, consensus on the branching pattern within the ratite tree has not yet been reached. -
Chapter 02 Biogeography and Evolution in the Tropics
Chapter 02 Biogeography and Evolution in the Tropics (a) (b) PLATE 2-1 (a) Coquerel’s Sifaka (Propithecus coquereli), a lemur species common to low-elevation, dry deciduous forests in Madagascar. (b) Ring-tailed lemurs (Lemur catta) are highly social. PowerPoint Tips (Refer to the Microsoft Help feature for specific questions about PowerPoint. Copyright The Princeton University Press. Permission required for reproduction or display. FIGURE 2-1 This map shows the major biogeographic regions of the world. Each is distinct from the others because each has various endemic groups of plants and animals. FIGURE 2-2 Wallace’s Line was originally developed by Alfred Russel Wallace based on the distribution of animal groups. Those typical of tropical Asia occur on the west side of the line; those typical of Australia and New Guinea occur on the east side of the line. FIGURE 2-3 Examples of animals found on either side of Wallace’s Line. West of the line, nearer tropical Asia, one 3 nds species such as (a) proboscis monkey (Nasalis larvatus), (b) 3 ying lizard (Draco sp.), (c) Bornean bristlehead (Pityriasis gymnocephala). East of the line one 3 nds such species as (d) yellow-crested cockatoo (Cacatua sulphurea), (e) various tree kangaroos (Dendrolagus sp.), and (f) spotted cuscus (Spilocuscus maculates). Some of these species are either threatened or endangered. PLATE 2-2 These vertebrate animals are each endemic to the Galápagos Islands, but each traces its ancestry to animals living in South America. (a) and (b) Galápagos tortoise (Geochelone nigra). These two images show (a) a saddle-shelled tortoise and (b) a dome-shelled tortoise. -
High Metabolic Rates in Running Birds
scientific correspondence humidity and climate variations related to 9. Minnis, P., Ayers, J. K. & Weaver, S. P. Surface-Based Observations 40 11,12 of Contrail Occurrence Frequency over the U. S., April 1983–April the North Atlantic oscillation , showed Rhea that none of them, taken individually, is a 1994 (NASA Reference Publication 1404, 1997). Wolf 10.Jensen, E. J. & Toon, O. B. Geophys. Res. Lett. 19, 1759–1762 (1992). Coyote 30 good explanation for the observed positive 11.Hurrell, J. W. Science 269, 676–679 (1995). Pony trend in cirrus occurrence and its regional 12.Mächel, H., Kapala, A. & Flohn, H. Int. J. Climatol. 18, 1–22 (1998). Fox distribution. 13.Hartmann, D. L., Ockert-Bell, M. E. & Michelsen, M. L. J. Clim. Budgerigar d 5, 1281–1304 (1992). t 20 Ostrich s Raven · Humming- 14.Warren, S. G., Hahn, C. J., London, J., Chervin, R. M. & Jenne, E The trends in cirrus ‘amount when pre- / o bird R. L. Global Distribution of Total Cloud Cover and Cloud Type c o Emu sent’ over the previously defined regions of l · Pigeon E Turkey Amounts over the Ocean (NCAR Technical Note TN-317 + STR, 10 Most high fuel consumption are 11.9% and Boulder, Colorado, 1988). mammals Penguin 14.2% for land and ocean, respectively 15.Hahn, C. J., Warren, S. G. & London, J. J. Clim. 8, 1429–1446 Stork Penguin (1995). (Table 1). The combination of a large posi- 0 Supplementary information is available on Nature’s World-Wide 0.001 0.01 0.1 1 10 100 1,000 tive trend in cirrus occurrence associated Web site (http://www.nature.com) or as paper copy from the with a negative trend in the cirrus amount London editorial office of Nature. -
Under the Canopy Worksheets
Rainforest WORKSHEET 3 What is the importance of Dorrigo National Park? In the World Heritage symbol what do the circle and the square mean? Research link: http://whc.unesco.org/en/emblem/ Define rainforest by mentioning the canopy. What word describes the type of rainforest seen near the Rainforest Centre in the park? Name three reasons why this rainforest can grow at Dorrigo: 1. 2. 3. 1 Rainforest WORKSHEET 3 (CONTINUED) On the diagram below, label the following: • A buttress • An epiphyte • A mid-layer tree • A vine • The canopy layer • Ground ferns • An emergent tree • A herb Where do the plants living in the rainforest get their nutrients? 2 Rainforest WORKSHEET 3 (CONTINUED) Number the plants from the list of names and describe what strategies they use to No. grow in the dense, shady rainforest. 1. King orchid 2. Vines No. 3. Strangler fig No. 4. Cunjevoi lily 5. Pothos No. No. 3 Rainforest WORKSHEET 3 (CONTINUED) What roles do insects play in the rainforest? For each of the birds below, what layer of the forest do they live in and what food do they eat? Brush turkey noisy pitta topknot pigeon Name these animals which might be found in the rainforest. Which animal should not be there and why? 4 Rainforest WORKSHEET 3 (CONTINUED) How did Aboriginal people use rainforest? Describe in your own words how rainforest on Dorrigo Plateau was reduced to what now survives along the escarpment. What are some of the ways NSW National Parks and Wildlife Service tries to protect rainforest from visitor impacts? What other actions can be taken to conserve rainforest? 5. -
Grounded Birds in New Zealand
Flightless Grounded Birds in New Zealand An 8th Grade Research Paper By Nathaniel Roth Hilltown Cooperative Charter Public School June 2014 1 More than half of the birds in New Zealand either can’t fly, can only partially fly, or don’t like to fly. (Te Ara) This is a fact. Although only sixteen species in New Zealand are technically flightless, with another sixteen that are extinct (TerraNature), a majority of more than 170 bird species will not fly unless their lives are threatened, or not even then. This is surprising, since birds are usually known for flying. A flightless bird is a bird that cannot fly, such as the wellknown ostrich and emu, not to mention penguins. The two main islands southeast of Australia that make up New Zealand have an unusually diverse population of these birds. I am personally very interested in New Zealand and know a lot about it because my mother was born there, and I still have family there. I was very intrigued by these birds in particular, and how different they are from most of the world’s birds. I asked myself, why New Zealand? What made this tiny little country have so many birds that can’t fly, while in the rest of the world, hardly any live in one place? My research has informed me that the population and diversity of flightless birds here is so large because it has been isolated for so long from other land masses. Almost no mammals, and no land predators, lived there in the millions of years after it split from the Australian continent, so flying birds didn’t have as much of an advantage during this time. -
Biogeography of the Llanos De Moxos Roberto Langstroth Plotkin 183
MF Geographica Helvetica Jg. 66 2011/Heft 3 Biogeography of the Llanos de Moxos Roberto Langstroth Plotkin 183 Biogeography of the Llanos de Moxos: natural and anthropogenic determinants Roberto Langstroth Plotkin, South Riding Bactris, Ceiba, Coccoloba, Ficus, Genipa, Guarea, Hura, Inga, Maclura, Margaritaria, Salacia, Spondias, Sterculia, Swartzia, Syagrus, Tabebuia, Trichilia, Tripla- 1 Introduction ris, and Vitex (Beck 1983; Langstroth 1996). Prior to the arrival of Europeans in the Americas, the Semialturas are levee backslopes and splays with human inhabitants of the Llanos de Moxos constructed brief, shallow inundations and vegetation contingent diverse earthworks such as mounds and causeways, upon the fire regimes. Semialturas may support largely raised agricultural fields in the savannas and managed deciduous forest or woodland (genera such as Acroco- the landscape using fire and other tools (Denevan mia, Astronium, Coccoloba, Copernicia, Cordia, Cupa- 1966; Langstroth 1996; Lombardo & Prümers 2010; nia, Enterolobium, Geoffroea, Guazuma, Piptadenia, Lombardo et al. 2011). Erickson (2008) considers the Pithecellobium, Randia, Samanea, Sterculia, Tabebuia, Llanos de Moxos to be an example of an Amazonian and Zanthoxylum), Cerrado («campo cerrado» or «domesticated landscape» and, based on evidence «campo sujo», genera listed below), or pampa with from Moxos, claims that «nature in Amazonia more scattered fire tolerant trees Pseudobombax,( Tabe- closely resembles a garden than a pristine, natural buia) and Copernicia palms (Beck 1983; Langstroth wilderness.» These arguments presume that Moxos 1996). Termite mounds are frequent and present small is representative of Amazonia and also discount the woody islands with Celtis, Cereus, Coccoloba, Coper- roles of longer-term physical and biological processes nicia, Cordia, Machaerium, Rhamnidium, and Sorocea in play since the Miocene when extensive non-forest (Beck 1983; Langstroth 1996). -
Which Birds Can't Fly? a List of Birds That Are Flightless
Which Birds Can't Fly? A List of Birds That Are Flightless worldatlas.com/articles/flightless-birds-from-around-the-world.html May 17, 2016 An Australian Emu posing for the camera. Below we have listed a few notable flightless birds, though obviously not all of these largely land-restricted avian species. Other notable flightless bird species include emus, rheas, certain teals and scrubfowls, grebes, cormorants, and various rails, just to name a few. Cassowary 1/11 The flightless birds of Papua New Guinea, northeastern Australia, and some other islands of Oceania, the cassowaries are quite well known for their fierce reputation. Though they cannot fly they can definitely scare away their enemies with their violent nature and hidden claws. Many human and animal deaths have been reported to be caused by these birds. The birds are omnivorous in nature, feeding on fruits, fungi, insects and other species. Among the three species of cassowary, the southern cassowary is the third tallest bird in the world and is classified as vulnerable by the International Union for the Conservation of Nature (IUCN) due to its steadily decreasing numbers. Kakapo 2/11 The kakapo, a unique species of flightless parrot, is endemic to New Zealand and is almost on the verge of extinction, classified as critically endangered by the IUCN. The fact that kakapos are nocturnal in nature, flightless and do not exhibit any male parental care, makes them different from other parrots of the world. They are also the heaviest among the parrots and exhibit the lek system of mating. For years these birds have been hunted by the Maori tribes of New Zealand for meat and feathers. -
Phylogeny and Biogeography of Ratite Birds Inferred from DNA Sequences of the Mitochondrial Ribosomal Genes
Phylogeny and Biogeography of Ratite Birds Inferred from DNA Sequences of the Mitochondrial Ribosomal Genes Marcel van Tuinen,* Charles G. Sibley,² and S. Blair Hedges* *Department of Biology and Institute of Molecular Evolutionary Genetics, Pennsylvania State University; and ²Santa Rosa, California The origin of the ¯ightless ratite birds of the southern continents has been debated for over a century. Whether dispersal or vicariance (continental breakup) best explains their origin depends largely on their phylogenetic rela- tionships. No consensus has been reached on this issue despite many morphological and molecular studies. To address this question further we sequenced a 2.8-kb region of mitochondrial DNA containing the ribosomal genes in representative ratites and a tinamou. Phylogenetic analyses indicate that Struthio (Africa) is basal and Rhea (South America) clusters with living Australasian ratites. This phylogeny agrees with transferrin and DNA hybrid- ization studies but not with sequence analyses of some protein-coding genes. These results also require reevaluation of the phylogenetic position of the extinct moas of New Zealand. We propose a new hypothesis for the origin of ratites that combines elements of dispersal and vicariance. Introduction The living ratites include two species of ostriches cause a UPGMA tree joined Rhea and Struthio, whereas (Struthio) in Africa and formerly in Asia, the Australian trees constructed with the Fitch-Margoliash (1967) al- emu (Dromaius), three species of cassowaries (Casuar- gorithm joined Rhea with the Australasian clade (Sibley ius) in New Guinea and northeastern Australia, three and Ahlquist 1990). In contrast, mitochondrial DNA se- species of forest-dwelling kiwis (Apteryx) in New Zea- quence data (12S rRNA; 400 bp) supported a basal po- land, and two rheas (Rhea) in South America (Sibley sition for Rhea (Cooper et al. -
Convergent Regulatory Evolution and the Origin of Flightlessness in Palaeognathous Birds
bioRxiv preprint doi: https://doi.org/10.1101/262584; this version posted February 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Convergent regulatory evolution and the origin of flightlessness in palaeognathous birds Timothy B. Sackton* (1,2), Phil Grayson (2,3), Alison Cloutier (2,3), Zhirui Hu (4), Jun S. Liu (4), Nicole E. Wheeler (5,6), Paul P. Gardner (5,7), Julia A. Clarke (8), Allan J. Baker (9,10), Michele Clamp (1), Scott V. Edwards* (2,3) Affiliations: 1) Informatics Group, Harvard University, Cambridge, USA 2) Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA 3) Museum of Comparative Zoology, Harvard University, Cambridge, USA 4) Department of Statistics, Harvard University, Cambridge, USA 5) School of Biological Sciences, University of Canterbury, New Zealand 6) Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK 7) Department of Biochemistry, University of Otago, New Zealand 8) Jackson School of Geosciences, The University of Texas at Austin, Austin, USA 9) Department of Natural History, Royal Ontario Museum, Toronto, Canada 10) Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada *correspondence to: TBS ([email protected]) or SVE ([email protected]) bioRxiv preprint doi: https://doi.org/10.1101/262584; this version posted February 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The relative roles of regulatory and protein evolution in the origin and loss of convergent phenotypic traits is a core question in evolutionary biology. -
The Endangered Kiwi: a Review
REVIEW ARTICLE Folia Zool. – 54(1–2): 1–20 (2005) The endangered kiwi: a review James SALES Bosman street 39, Stellenbosch 7600, South Africa; e-mail: [email protected] Received 13 December 2004; Accepted 1 May 2005 A b s t r a c t . Interest in ratites has necessitated a review of available information on the unique endangered kiwi (Apteryx spp.). Five different species of kiwis, endemic to the three islands of New Zealand, are recognized by the Department of Conservation, New Zealand, according to genetic and biological differences: the North Island Brown Kiwi (Apteryx mantelli), Okarito Brown Kiwi/Rowi (A. rowi), Tokoeka (A. australis), Great Spotted Kiwi/Roroa (A. haastii), and Little Spotted Kiwi (A owenii). As predators were found to be the main reason for declining kiwi numbers, predator control is a main objective of management techniques to prevent kiwis becoming extinct in New Zealand. Further considerations include captive breeding and release, and establishment of kiwi sanctuaries. Body size and bill measurements are different between species and genders within species. Kiwis have the lowest basal rates of metabolism compared with all avian standards. A relative low body temperature (38 ºC), burrowing, a highly developed sense of smell, paired ovaries in females, and a low growth rate, separate kiwis from other avian species. Kiwis have long-term partnerships. Females lay an egg that is approximately 400 % above the allometrically expected value, with an incubation period of 75–85 days. Kiwis mainly feed on soil invertebrate, with the main constituent being earthworms, and are prone to parasites and diseases found in other avian species.