Phd and Mphil Thesis Classes

Total Page:16

File Type:pdf, Size:1020Kb

Phd and Mphil Thesis Classes Inference of gene networks from time series expression data and application to type 1 Diabetes Miguel Lopes Machine Learning Group (Faculte´ des Sciences, Department´ d’Informatique) ULB Center for Diabetes Research Universite´ Libre de Bruxelles A thesis submitted for the degree of Doctor of Philosophy (PhD) 2015 ii This thesis has been written under the supervision of the Prof. Gianluca Bontempi and Decio´ Eizirik. The members of the jury are: • Prof. Gianluca Bontempi (Universite´ Libre de Bruxelles) • Prof. Decio´ Eizirik (Universite´ Libre de Bruxelles) • Prof. Tom Lenaerts (Universite´ Libre de Bruxelles) • Prof. Maarten Jansen (Universite´ Libre de Bruxelles) • Prof. Kris Laukens (Universiteit Antwerpen)) This thesis has been written by the author, containing original work of his. Some described work is a product of a collaborative effort, whose contributors are acknowledged. iii iv Abstract The inference of gene regulatory networks (GRN) is of great importance to medical research, as causal mechanisms responsible for phenotypes are unravelled and potential therapeutical targets identified. In type 1 diabetes, insulin producing pancreatic beta-cells are the target of an auto-immune attack leading to apoptosis (cell suicide). Although key genes and regulations have been identified, a precise characterization of the process leading to beta-cell apoptosis has not been achieved yet. The inference of relevant molecular pathways in type 1 diabetes is then a crucial research topic. GRN inference from gene expression data (obtained from microarrays and RNA- seq technology) is a causal inference problem which may be tackled with well- established statistical and machine learning concepts. In particular, the use of time series facilitates the identification of the causal direction in cause-effect gene pairs. However, inference from gene expression data is a very challenging problem due to the large number of existing genes (in human, over twenty thousand) and the typical low number of samples in gene expression datasets. In this context, it is important to correctly assess the accuracy of network inference methods. The contributions of this thesis are on three distinct aspects. The first is on inference assessment using precision-recall curves, in particular using the area under the curve (AUPRC). The typical approach to assess AUPRC significance is using Monte Carlo, and a parametric alternative is proposed. It consists on deriving the mean and variance of the null AUPRC and then using these parameters to fit a beta distribution approximating the true distribution. The second contribution is an investigation on network inference from time series. Several state of the art strategies are experimentally assessed and novel heuristics are proposed. One is a fast approximation of first order Granger causality scores, suited for GRN inference in the large variable case. Another identifies co-regulated genes (ie. regulated by the same genes). Both are experimentally validated using microarray and simulated time series. The third contribution of this thesis is on the context of type 1 diabetes and is a study on beta cell gene expression after exposure to cytokines, emulating the mechanisms leading to apoptosis. 8 datasets of beta cell gene expression were used to identify differentially expressed genes before and after 24h, which were functionally characterized using bioinformatics tools. The two most differentially expressed genes, previously unknown in the type 1 Diabetes literature (RIPK2 and ELF3) were found to modulate cytokine induced apoptosis. A regulatory network was then inferred using a dynamic adaptation of a state of the art network inference method. Three out of four predicted regulations (involving RIPK2 and ELF3) were experimentally confirmed, providing a proof of concept for the adopted approach. Resum´ e´ L’inference´ des reseaux´ de regulation´ de genes` (GRN) est d’une grande impor- tante pour la recherche medicale,´ car les mecanismes´ de causalite´ responsable des phenotypes´ sont detect´ es´ et les cibles therapeutiques´ potentielles identifiees.´ Dans le diabete` de type 1, les cellules beta du pancreas´ qui produisent l’insuline sont la cible d’une attaque auto-immune conduisant a` l’apoptose (suicide cellulaire). Bien que des genes` et regulateurs´ cles´ ont et´ e´ identifies,´ une caracterisation´ precise´ du processus conduisant a` l’apoptose des cellules beta n’a pas encore et´ e´ accomplie. L’inference´ des voies moleculaires´ importantes pour le diabete` de type 1 est un sujet crucial de recherche. L’inference´ des GRN a` partir des donnees´ d’expression de genes` (obtenues par mi- croarray et par la technologie du RNA-seq) est un probleme` d’inference´ causale qui pourrait tre resolue´ par des concepts bien etablis´ de statistiques et de apprentissage automatique. En particulier, l’usage des series´ temporelles facilite l’identification de la direction causal dans les paires de genes` cause-effet. Cependant, l’inference´ a` partir des donnes´ d’expression de gene` est un probleme` tres` difficile du au large nombre de genes` existants (plus de 20000 chez l’homme) et le probleme` typique du peu d’echantillons´ disponible. Dans ce contexte, il est important d’evaluer´ correctement la prcision des methodes´ d’inference´ des reseaux.´ La contribution de cette these` porte sur trois aspects distincts. La premiere` porte sur l’evaluation´ de l’inference´ en utilisant les precision-recall curves, en particulier en utilisant l’aire sous la courbe (AUPRC). L’approche typique pour evaluer´ la significativite´ du AUPRC est d’utiliser Monte Carlo et une alternative parametrique´ est proposee.´ Il consiste a` deriver´ la moyennes et la variance de l’hypothese` nulle de l’AURPC et ensuite de les utiliser pour construire une distribution beta qui estime la vraie distribution. La deuxieme` contribution est une investigation sur les l’inference´ des reseaux´ a` partir des series´ temporelles. Plusieurs strategies´ actuelles sont experimentalement´ evalu´ ees´ et de nouveau heuristiques sont proposees.´ L’une est une approximation rapide des scores de causalites´ de Granger du premier ordre, appropriee´ pour l’inference´ des GRN dans le cas de large variable. Une autre identifie les genes` co-regul´ es´ (i.e regul´ es´ par les mmes genes).` Les deux sont experimentalement´ validees´ en utilisant les donnees´ de microarray et les series´ temporelles simulees.´ La troisieme` contribution de cette these` porte sur le diabetes` de type 1 et est une etude´ sur l’expression des cellules beta exposees´ aux cytokines, qui simulent les mecanismes´ conduisant a` l’apoptose. Huit jeux de donnees´ d’expression de genes` des cellules beta ont et´ e´ utilises´ pour identifier les genes` differentiellement´ exprimes´ avant et apres` 24 heures qui ont ensuite ont et´ e´ caracteris´ es´ fonctionnellement en utilisant les outils bioinformatiques. Les 2 genes` les plus differentiellement´ exprimes,´ prec´ edemment´ inconnus dans la litterature´ sur le diabetes` de type 1 (RIPK2 et ELF3) ont et´ e´ analyses´ et jouent un rle dans l’apoptose induite par les cytokines. Un reseau´ de regulation´ a et´ e´ inferre´ en utilisant une adaptation dynamique des methodes´ actuelles d’inference´ de reseaux.´ Trois sur quatre de regulations´ predites´ (impliquant RIPK2 et ELF3) ont et´ e´ experimentalement´ confirmees,´ donnant ainsi une proof of concept de l’approche que nous avons adoptee.´ To my dear family, old friends and new. ii Acknowledgements This thesis was funded by the ARC project Discovery of the molecular pathways regulating pancreatic beta cell dysfunction and apoptosis in diabetes using func- tional genomics and bioinformatics, based on a collaboration between the Machine Learning Group (Computer Science Department, ULB) and the ULB Center for Diabetes Research. The objectives of the project are the identification of relevant genes and regulatory pathways in β-cell apoptosis in diabetes; characterization of their role on cell function and fate; and experimental validation of predicted hypothesis, through bioinformatics and molecular biology techniques. The work here presented was supervised by the Professors Gianluca Bontempi and Decio´ Eizirik. I would like to thank my supervisors Gianluca and Decio´ for the invaluable guid- ance throughout these years as a PhD candidate; my friends and colleagues at the Machine Learning Group and the Center for Diabetes Research for all the enriching personal and professional interactions; Andrea, Elisa and Catharina for comments and suggestions regarding this thesis; and the members of the jury for kindly accepting to read and critically assess this work. Finally, I would also like to thank all my family and friends for all the support, availability, friendship and love. ii Contents List of Figures ix List of Tables xiii I Introduction 1 1 Introduction 3 1.1 Type 1 diabetes . .6 1.2 Transcription and translation . .7 1.3 Gene regulatory networks . .9 1.4 Measuring gene expression . 10 1.5 Machine learning . 11 1.6 The bias-variance trade off . 12 1.7 GRN inference . 13 1.7.1 The high variable to sample ratio in GRN inference . 14 1.7.2 Strategies for GRN inference . 15 1.8 Variable selection . 15 1.9 Statistical dependence and causal inference . 17 1.9.1 On causality . 17 1.9.2 Causal inference . 20 1.10 GRN inference assessment . 20 1.11 Thesis contributions . 23 1.11.1 On the null distribution of the precision-recall curve . 23 1.11.2 GRN inference from time series . 23 1.11.3 Knowledge inference in Type 1 Diabetes . 26 1.11.4 Publications used in this thesis . 26 1.11.5 Data and software . 28 iii CONTENTS 1.12 Structure of the thesis . 28 II Preliminaries and state of the art of network inference 29 2 Preliminaries 31 2.1 Basics of information theory . 31 2.1.1 Introduction . 31 2.1.2 Entropy and the mutual information . 32 2.1.3 Estimation of entropy and mutual information . 34 2.2 Estimation of linear dependences . 36 2.2.1 Linear regression . 36 2.2.2 Linear correlation . 37 2.2.3 Linear regression and partial correlation .
Recommended publications
  • Small Cell Ovarian Carcinoma: Genomic Stability and Responsiveness to Therapeutics
    Gamwell et al. Orphanet Journal of Rare Diseases 2013, 8:33 http://www.ojrd.com/content/8/1/33 RESEARCH Open Access Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics Lisa F Gamwell1,2, Karen Gambaro3, Maria Merziotis2, Colleen Crane2, Suzanna L Arcand4, Valerie Bourada1,2, Christopher Davis2, Jeremy A Squire6, David G Huntsman7,8, Patricia N Tonin3,4,5 and Barbara C Vanderhyden1,2* Abstract Background: The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. Method: The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. Results: BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing.
    [Show full text]
  • Neuronal Pentraxin 2: a Synapse-Derived CSF Biomarker in Genetic Frontotemporal Dementia
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2019-322493 on 9 April 2020. Downloaded from Neurodegeneration ORIGINAL RESEARCH Neuronal pentraxin 2: a synapse- derived CSF biomarker in genetic frontotemporal dementia Emma L van der Ende ,1 Meifang Xiao,2 Desheng Xu,2 Jackie M Poos ,1 Jessica L Panman,1,3 Lize C Jiskoot ,1,4 Lieke H Meeter,1 Elise GP Dopper,1 Janne M Papma,1 Carolin Heller ,5 Rhian Convery ,4 Katrina Moore,4 Martina Bocchetta ,4 Mollie Neason,4 Georgia Peakman,4 David M Cash,4 Charlotte E Teunissen,6 Caroline Graff,7,8 Matthis Synofzik,9,10 Fermin Moreno,11 Elizabeth Finger ,12 Raquel Sánchez- Valle,13 Rik Vandenberghe,14 Robert Laforce Jr,15 Mario Masellis,16 Maria Carmela Tartaglia,17 James B Rowe ,18 Christopher R Butler,19 Simon Ducharme,20 Alex Gerhard,21,22 Adrian Danek,23 Johannes Levin,23,24,25 Yolande AL Pijnenburg,26 Markus Otto ,27 Barbara Borroni ,28 Fabrizio Tagliavini,29 Alexandre de Mendonca,30 Isabel Santana,31 Daniela Galimberti,32,33 Harro Seelaar,1 Jonathan D Rohrer,4 Paul F Worley,2,34 John C van Swieten ,1 on behalf of the Genetic Frontotemporal Dementia Initiative (GENFI) ► Additional material is ABSTRACT INTRODUCTION published online only. To view Introduction Synapse dysfunction is emerging as an Frontotemporal dementia (FTD), a common form please visit the journal online (http:// dx. doi. org/ 10. 1136/ early pathological event in frontotemporal dementia of early-onset dementia, has an autosomal dominant jnnp- 2019- 322493). (FTD), however biomarkers are lacking. We aimed inheritance in 20%–30% of patients, most often to investigate the value of cerebrospinal fluid (CSF) due to mutations in granulin (GRN), chromosome For numbered affiliations see neuronal pentraxins (NPTXs), a family of proteins 9 open reading frame 72 (C9orf72) or microtubule- end of article.
    [Show full text]
  • Rasgrp3 (C33A3) Rabbit Mab A
    Revision 1 C 0 2 - t RasGRP3 (C33A3) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 4 3 Web: [email protected] 3 www.cellsignal.com 3 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB H M Endogenous 78 Rabbit IgG Q8IV61 25780 Product Usage Information Application Dilution Western Blotting 1:1000 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity RasGRP3 (C33A3) Rabbit mAb detects endogenous levels of total RasGRP3 protein. Species Reactivity: Human, Mouse Species predicted to react based on 100% sequence homology: Monkey Source / Purification Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy teminus of human RasGRP3. Background Lymphocyte activation occurs in part through activation of the Ras signaling pathway following lymphocyte receptor stimulation. The RasGRP family of guanine nucleotide exchange factors (GEFs) catalyzes the exchange of GDP for GTP on Ras family small GTPases, promoting their active GTP-bound form. Diacylglycerol (DAG) or phorbol ester binding to RasGRP family members causes their translocation to the cell membrane and stimulates their activity (1,2). While T-Cells express RasGRP1, B-cells express both RasGRP1 and RasGRP3. RasGRP3 is important in linking B-cell receptor (BCR) activation to Ras signaling (3).
    [Show full text]
  • Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data
    INTEROPERABILITY IN TOXICOLOGY: CONNECTING CHEMICAL, BIOLOGICAL, AND COMPLEX DISEASE DATA Sean Mackey Watford A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Gillings School of Global Public Health (Environmental Sciences and Engineering). Chapel Hill 2019 Approved by: Rebecca Fry Matt Martin Avram Gold David Reif Ivan Rusyn © 2019 Sean Mackey Watford ALL RIGHTS RESERVED ii ABSTRACT Sean Mackey Watford: Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data (Under the direction of Rebecca Fry) The current regulatory framework in toXicology is expanding beyond traditional animal toXicity testing to include new approach methodologies (NAMs) like computational models built using rapidly generated dose-response information like US Environmental Protection Agency’s ToXicity Forecaster (ToXCast) and the interagency collaborative ToX21 initiative. These programs have provided new opportunities for research but also introduced challenges in application of this information to current regulatory needs. One such challenge is linking in vitro chemical bioactivity to adverse outcomes like cancer or other complex diseases. To utilize NAMs in prediction of compleX disease, information from traditional and new sources must be interoperable for easy integration. The work presented here describes the development of a bioinformatic tool, a database of traditional toXicity information with improved interoperability, and efforts to use these new tools together to inform prediction of cancer and complex disease. First, a bioinformatic tool was developed to provide a ranked list of Medical Subject Heading (MeSH) to gene associations based on literature support, enabling connection of compleX diseases to genes potentially involved.
    [Show full text]
  • CD56+ T-Cells in Relation to Cytomegalovirus in Healthy Subjects and Kidney Transplant Patients
    CD56+ T-cells in Relation to Cytomegalovirus in Healthy Subjects and Kidney Transplant Patients Institute of Infection and Global Health Department of Clinical Infection, Microbiology and Immunology Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Mazen Mohammed Almehmadi December 2014 - 1 - Abstract Human T cells expressing CD56 are capable of tumour cell lysis following activation with interleukin-2 but their role in viral immunity has been less well studied. The work described in this thesis aimed to investigate CD56+ T-cells in relation to cytomegalovirus infection in healthy subjects and kidney transplant patients (KTPs). Proportions of CD56+ T cells were found to be highly significantly increased in healthy cytomegalovirus-seropositive (CMV+) compared to cytomegalovirus-seronegative (CMV-) subjects (8.38% ± 0.33 versus 3.29%± 0.33; P < 0.0001). In donor CMV-/recipient CMV- (D-/R-)- KTPs levels of CD56+ T cells were 1.9% ±0.35 versus 5.42% ±1.01 in D+/R- patients and 5.11% ±0.69 in R+ patients (P 0.0247 and < 0.0001 respectively). CD56+ T cells in both healthy CMV+ subjects and KTPs expressed markers of effector memory- RA T-cells (TEMRA) while in healthy CMV- subjects and D-/R- KTPs the phenotype was predominantly that of naïve T-cells. Other surface markers, CD8, CD4, CD58, CD57, CD94 and NKG2C were expressed by a significantly higher proportion of CD56+ T-cells in healthy CMV+ than CMV- subjects. Functional studies showed levels of pro-inflammatory cytokines IFN-γ and TNF-α, as well as granzyme B and CD107a were significantly higher in CD56+ T-cells from CMV+ than CMV- subjects following stimulation with CMV antigens.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Extensive Variation Between Inbred Mouse Strains Due to Endogenous L1 Retrotransposition
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Extensive variation between inbred mouse strains due to endogenous L1 retrotransposition Keiko Akagi,1,5 Jingfeng Li,2,5 Robert M. Stephens,3,5 Natalia Volfovsky,3 and David E. Symer2,4,6 1Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA; 2Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA; 3Advanced Biomedical Computing Center, Advanced Technology Program, SAIC-Frederick, Inc., Frederick, Maryland 21702, USA; 4Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA Numerous inbred mouse strains comprise models for human diseases and diversity, but the molecular differences between them are mostly unknown. Several mammalian genomes have been assembled, providing a framework for identifying structural variations. To identify variants between inbred mouse strains at a single nucleotide resolution, we aligned 26 million individual sequence traces from four laboratory mouse strains to the C57BL/6J reference genome. We discovered and analyzed over 10,000 intermediate-length genomic variants (from 100 nucleotides to 10 kilobases), distinguishing these strains from the C57BL/6J reference. Approximately 85% of such variants are due to recent mobilization of endogenous retrotransposons, predominantly L1 elements, greatly exceeding that reported in humans. Many genes’ structures and expression are altered directly by polymorphic L1 retrotransposons, including Drosha (also called Rnasen), Parp8, Scn1a, Arhgap15, and others, including novel genes. L1 polymorphisms are distributed nonrandomly across the genome, as they are excluded significantly from the X chromosome and from genes associated with the cell cycle, but are enriched in receptor genes.
    [Show full text]
  • 1 UST College of Science Department of Biological Sciences
    UST College of Science Department of Biological Sciences 1 Pharmacogenomics of Myofascial Pain Syndrome An Undergraduate Thesis Submitted to the Department of Biological Sciences College of Science University of Santo Tomas In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Biology Jose Marie V. Lazaga Marc Llandro C. Fernandez May 2021 UST College of Science Department of Biological Sciences 2 PANEL APPROVAL SHEET This undergraduate research manuscript entitled: Pharmacogenomics of Myofascial Pain Syndrome prepared and submitted by Jose Marie V. Lazaga and Marc Llandro C. Fernandez, was checked and has complied with the revisions and suggestions requested by panel members after thorough evaluation. This final version of the manuscript is hereby approved and accepted for submission in partial fulfillment of the requirements for the degree of Bachelor of Science in Biology. Noted by: Asst. Prof. Marilyn G. Rimando, PhD Research adviser, Bio/MicroSem 602-603 Approved by: Bio/MicroSem 603 panel member Bio/MicroSem 603 panel member Date: Date: UST College of Science Department of Biological Sciences 3 DECLARATION OF ORIGINALITY We hereby affirm that this submission is our own work and that, to the best of our knowledge and belief, it contains no material previously published or written by another person nor material to which a substantial extent has been accepted for award of any other degree or diploma of a university or other institute of higher learning, except where due acknowledgement is made in the text. We also declare that the intellectual content of this undergraduate research is the product of our work, even though we may have received assistance from others on style, presentation, and language expression.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Macropinocytosis Requires Gal-3 in a Subset of Patient-Derived Glioblastoma Stem Cells
    ARTICLE https://doi.org/10.1038/s42003-021-02258-z OPEN Macropinocytosis requires Gal-3 in a subset of patient-derived glioblastoma stem cells Laetitia Seguin1,8, Soline Odouard2,8, Francesca Corlazzoli 2,8, Sarah Al Haddad2, Laurine Moindrot2, Marta Calvo Tardón3, Mayra Yebra4, Alexey Koval5, Eliana Marinari2, Viviane Bes3, Alexandre Guérin 6, Mathilde Allard2, Sten Ilmjärv6, Vladimir L. Katanaev 5, Paul R. Walker3, Karl-Heinz Krause6, Valérie Dutoit2, ✉ Jann N. Sarkaria 7, Pierre-Yves Dietrich2 & Érika Cosset 2 Recently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3high glio- 1234567890():,; blastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3- mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion, in vitro and in vivo. Mechanistically, we demonstrate that Gal-3 binds to RAB10, a member of the RAS superfamily of small GTPases, and β1 integrin, which are both required for macro- pinocytosis activity and cell survival. Finally, by defining a Gal-3/macropinocytosis molecular signature, we could predict sensitivity to this dependency pathway and provide proof-of- principle for innovative therapeutic strategies to exploit this Achilles’ heel for a significant and unique subset of GBM patients. 1 University Côte d’Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging (IRCAN), Nice, France. 2 Laboratory of Tumor Immunology, Department of Oncology, Center for Translational Research in Onco-Hematology, Swiss Cancer Center Léman (SCCL), Geneva University Hospitals, University of Geneva, Geneva, Switzerland.
    [Show full text]
  • WO 2014/135655 Al 12 September 2014 (12.09.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/135655 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/EP2014/054384 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 6 March 2014 (06.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13305253.0 6 March 2013 (06.03.2013) EP (84) Designated States (unless otherwise indicated, for every (71) Applicants: INSTITUT CURIE [FR/FR]; 26 rue d'Ulm, kind of regional protection available): ARIPO (BW, GH, F-75248 Paris cedex 05 (FR). CENTRE NATIONAL DE GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, LA RECHERCHE SCIENTIFIQUE [FR/FR]; 3 rue UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Michel Ange, F-75016 Paris (FR).
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]