Underground Geological Storage 195 5
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Experimental Approach of Minimum Miscibility Pressure for CO2 Miscible Flooding: Application to Egyptian Oil Fields
International Journal of New Technology and Research (IJNTR) ISSN:2454-4116, Volume-2, Issue-5, May 2016 Pages 105-112 Experimental Approach of Minimum Miscibility Pressure for CO2 Miscible Flooding: Application to Egyptian Oil Fields E.M. Mansour, A.M. Al- Sabagh, S.M. Desouky, F.M. Zawawy, M.R. Ramzi The term of “Enhanced Oil Recovery” (EOR) is defined as Abstract— At the present time, carbon dioxide (CO2) miscible the oil that was recovered by any method beyond the primary flooding has become an important method in Enhanced Oil and secondary stage [2]. Enhanced oil recovery processes are Recovery (EOR) for recovering residual oil, and in addition it divided into three categories: gas miscible flooding, thermal may help in protection of the environment as carbon dioxide flooding and chemical flooding [3]. Figure (1) shows oil (CO2) is widely viewed as an important agent in global production from different (EOR) projects with an increasing warming. This paper presents a study of the effect of carbon dioxide (CO ) injection on miscible flooding performance for in the world oil percentage. [4-7]. 2 Egyptian oil fields and focuses on designing and constructing a new miscibility lab with low cost by setup a favorable system for carbon dioxide (CO2) injection to predict the minimum miscibility pressure (MMP) which was required for carbon dioxide (CO2) flooding projects where every reservoir oil sample has its own unique minimum miscibility pressure (MMP). Experimental data from different crude oil reservoirs carried out by slim tube test that is the most common and standard technique of determining minimum miscibility pressure (MMP) in the industry, but this method is expensive, there for we designed this kind of a favorable system (slim tube test) for carbon dioxide (CO2) injection. -
Blending Hydrogen Into Natural Gas Pipeline Networks: a Review of Key Issues
Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5600-51995 March 2013 Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5600-51995 Golden, Colorado 80401 March 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. -
A Review of Natural CO2 Occurrences and Their Relevance to CO2 Storage. British Geological Survey External Report, CR/05/104, 117Pp
A REVIEW OF NATURAL CO2 OCCURRENCES AND RELEASES AND THEIR RELEVANCE TO CO2 STORAGE Report Number 2005/8 September 2005 This document has been prepared for the Executive Committee of the Programme. It is not a publication of the Operating Agent, International Energy Agency or its Secretariat. A REVIEW OF NATURAL CO2 OCCURRENCES AND RELEASES AND THEIR RELEVANCE TO CO2 STORAGE Background to the Study The security of storage of CO2 in geological reservoirs is a key issue that has been, and will be increasingly, discussed as the technology moves closer to wide scale deployment. There are a number of ways through which the security of storage can be demonstrated. These include: • Development of standards and best practise guidelines that ensure that storage reservoirs are carefully selected and the environmental risks are minimised, • Development of risk assessment procedures that demonstrate long term safe storage is a realistic prospect, • Monitoring of injection projects to confirm the containment of injected CO2. All these activities are now underway in a number of countries worldwide. However it may be several more years before a credible data base is established that will allow the issue of security of storage to be resolved to everybody’s satisfaction. In the intervening period, this issue will represent a potential barrier to the introduction of CO2 storage technology. In that interim period, groups not necessarily supportive of geological storage of CO2, may emphasise the issue of storage security, through reference to natural geological events. In particular, natural events such as Lake Nyos in Cameroon that have resulted in deaths due to an uncontrolled CO2 release may well be those that are focused upon in any debate. -
Hydrogen Storage for Mobility: a Review
materials Review Hydrogen Storage for Mobility: A Review Etienne Rivard * , Michel Trudeau and Karim Zaghib * Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Quebec, 1806, boul. Lionel-Boulet, Varennes J3X 1S1, Canada; [email protected] * Correspondence: [email protected] (E.R.); [email protected] (K.Z.) Received: 18 April 2019; Accepted: 11 June 2019; Published: 19 June 2019 Abstract: Numerous reviews on hydrogen storage have previously been published. However, most of these reviews deal either exclusively with storage materials or the global hydrogen economy. This paper presents a review of hydrogen storage systems that are relevant for mobility applications. The ideal storage medium should allow high volumetric and gravimetric energy densities, quick uptake and release of fuel, operation at room temperatures and atmospheric pressure, safe use, and balanced cost-effectiveness. All current hydrogen storage technologies have significant drawbacks, including complex thermal management systems, boil-off, poor efficiency, expensive catalysts, stability issues, slow response rates, high operating pressures, low energy densities, and risks of violent and uncontrolled spontaneous reactions. While not perfect, the current leading industry standard of compressed hydrogen offers a functional solution and demonstrates a storage option for mobility compared to other technologies. Keywords: hydrogen mobility; hydrogen storage; storage systems assessment; Kubas-type hydrogen storage; hydrogen economy 1. Introduction According to the Intergovernmental Panel on Climate Change (IPCC), it is almost certain that the unusually fast global warming is a direct result of human activity [1]. The resulting climate change is linked to significant environmental impacts that are connected to the disappearance of animal species [2,3], decreased agricultural yield [4–6], increasingly frequent extreme weather events [7,8], human migration [9–11], and conflicts [12–14]. -
Oil and Gas Industry Engagement on Climate Change Drivers, Actions, and Path Forward
OCTOBER 2019 Oil and Gas Industry Engagement on Climate Change Drivers, Actions, and Path Forward AUTHOR Stephen Naimoli Sarah Ladislaw A Report of the CSIS ENERGY AND NATIONAL SECURITY PROGRAM OCTOBER 2019 Oil and Gas Industry Engagement on Climate Change Drivers, Actions, and Path Forward AUTHORS Stephen Naimoli Sarah Ladislaw A Report of the CSIS Energy and National Security Program About CSIS Established in Washington, D.C., over 50 years ago, the Center for Strategic and International Studies (CSIS) is a bipartisan, nonprofit policy research organization dedicated to providing strategic in sights and policy solutions to help decisionmakers chart a course toward a better world. In late 2015, Thomas J. Pritzker was named chairman of the CSIS Board of Trustees. Mr. Pritzker succeeded former U.S. senator Sam Nunn (D-GA), who chaired the CSIS Board of Trustees from 1999 to 2015. CSIS is led by John J. Hamre, who has served as president and chief executive officer since 2000. Founded in 1962 by David M. Abshire and Admiral Arleigh Burke, CSIS is one of the world’s preeminent international policy in stitutions focused on defense and security; regional study; and transnational challenges ranging from energy and trade to global development and economic integration. For eight consecutive years, CSIS has been named the world’s number one think tank for defense and national security by the University of Pennsylvania’s “Go To Think Tank Index.” The Center’s over 220 full-time staff and large network of affiliated scholars conduct research and analysis and develop policy initiatives that look to the future and anticipate change. -
Storing Syngas Lowers the Carbon Price for Profitable Coal Gasification
Carnegie Mellon Electricity Industry Center Working Paper CEIC-07-10 www.cmu.edu/electricity Storing syngas lowers the carbon price for profitable coal gasification ADAM NEWCOMER AND JAY APT Carnegie Mellon Electricity Industry Center, Tepper School of Business, and Department of Engineering and Public Policy, 254 Posner Hall, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Integrated gasification combined cycle (IGCC) electric power generation systems with carbon capture and sequestration have desirable environmental qualities, but are not profitable when the carbon dioxide price is less than approximately $50 per metric ton. We examine whether an IGCC facility that operates its gasifier continuously but stores the syngas and produces electricity only when daily prices are high may be profitable at significantly lower CO2 prices. Using a probabilistic analysis, we have calculated the plant-level return on investment (ROI) and the value of syngas storage for IGCC facilities located in the US Midwest using a range of storage configurations. Adding a second turbine to use the stored syngas to generate electricity at peak hours and implementing 12 hours of above ground high pressure syngas storage significantly increases the ROI and net present value. Storage lowers the carbon price at which IGCC enters the US generation mix by approximately 25%. 1 Carnegie Mellon Electricity Industry Center Working Paper CEIC-07-10 www.cmu.edu/electricity Introduction Producing electricity from coal-derived synthesis gas (syngas) in an integrated gasification combined cycle (IGCC) facility can improve criteria pollutant performance over other coal-fueled technologies such as pulverized coal (PC) facilities [1-5] and can be implemented with carbon capture and sequestration. -
Opportunities for Geologic Carbon Sequestration in Washington State
Opportunities for Geologic Carbon Sequestration in Washington State Contributors: Jacob R. Childers, Ryan W. Daniels, Leo F. MacLeod, Jonathan D. Rowe, and Chrisopher R. Walker Faculty Advisor: Juliet G. Crider Department of Earth and Space Sciences University of Washington, Seattle May 2020 ESS Special Topics Task Force Report 001 Preface and Acknowledgment This report is the product of reading, conversation, writing and revision by a group of undergraduate student authors during 10 weeks of March, April and May 2020. Our intent is to review the basic processes and state of current scientific understanding of geologic carbon sequestration relevant to Washington State. We would like to thank Dr. Thomas L. Doe (Golder Associates) for reading the final report and asking us challenging questions. i I. Introduction Anthropogenic emissions of greenhouse gasses like CO2 are raising global temperatures at an unprecedented rate. According to the most recent United Nations Intergovernmental Panel on Climate Change report, global emissions have caused ~1°C global warming above pre-industrial levels, with impacts such as rising sea level and changing weather patterns (IPCC 2018). The IPCC states that the current rate of emissions will lead to global warming of 1.5°C sometime between 2030 to 2052, and that temperature will continue to rise above that if emissions are not halted. They state that impacts of global warming, such as drought or extreme precipitation, will increase with a 1.5°C temperature increase. However, these effects will be less than the impacts of global temperature increase of beyond 2°C. The IPCC also projects that global sea level rise will be 0.1 m lower at 1.5°C warming than at 2°C warming, exposing 10 million fewer people to risks related to sea level rise. -
Assessment of Innovative and Automated Freight Strategies and Technologies—Phase I Final Report
Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/TX-17/0-6837-1 4. Title and Subtitle 5. Report Date ASSESSMENT OF INNOVATIVE AND AUTOMATED FREIGHT February 2017 STRATEGIES AND TECHNOLOGIES—PHASE I FINAL REPORT 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Curtis Morgan, Jeffery Warner, Allan Rutter, Dahye Lee, C. James Report 0-6837-1 Kruse, Dong Hun Kang, Mario Monsreal, Jolanda Prozzi, Juan Carlos Villa, Jeffrey Borowiec, Leslie Olson, David Bierling, and Edwin Varela 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Texas A&M Transportation Institute The Texas A&M University System 11. Contract or Grant No. College Station, Texas 77843-3135 Project 0-6837 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Technical Report: Research and Technology Implementation Office March 2016 125 E. 11th Street 14. Sponsoring Agency Code Austin, Texas 78701-2483 15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Assessment of Innovative and Automated Freight Systems and Development of Evaluation Tools URL: http://tti.tamu.edu/documents/0-6837-1.pdf 16. Abstract Many innovative freight delivery strategies and technologies have been proposed to address the future freight needs of Texas’s growing population. Changes in both buying habits and a shift toward direct home package delivery threaten to dramatically change distribution patterns and increase the number of intercity and local delivery trucks on Texas Department of Transportation (TxDOT) roadways. -
How Old Is Old? (.Pdf)
How Old is Old? Purpose: This lesson will help students visualize the geologic time scale and identify when and where regional features were formed in the Rogue Valley. Objectives: Time Required: 1.5 hours (can be Students will: broken into 2 class periods) Identify the point in time when their assigned Appropriate grades: 6th-8th geological formation was formed by calculating NGSS and Common Core Standards: how many centimeters from the end of the MS-ESS2-2: Construct an explanation based ribbon their tag should be placed. on evidence for how geoscience processes Teach the class about their assigned geological have changed Earth's surface at varying time formations by conducting research about when and spatial scales. they were formed, how they were formed, CCSS.ELA-LITERACY.SL.6-8.4: Present claims where they are located, and what they are made and findings, emphasizing salient points in a of, and preparing visual presentations in small focused, coherent manner with pertinent groups. descriptions, facts, details, and examples; use appropriate eye contact, adequate Materials: volume, and clear pronunciation. CCSS.ELA-LITERACY.SL.6-8.5: Include Time scale ribbon (1) multimedia components and visual displays Time period tags (19) in presentations to clarify claims and “Geology of Jackson County, Oregon” booklets findings and emphasize salient points. (5) Geological formation half sheets (1 for each group with the name of their formation on it) Poster boards (not provided) Markers (not provided) Activity: Introduction Prep: cut the geological formation half sheets along the solid line in the middle of the page. Each group of students will get a half sheet with the name of their geological formation. -
Geological Formation Educational Hand Sample Collection Content Last Updated 06/30/2010
CT Geological Survey Geological Formation Educational Hand Sample Collection Content last updated 06/30/2010 TOWN Sample Numer Geological Description Formation Barkhamsted 19-9-1 Єh Cambrian "Waramaug Formation", Hoosac Schist, West Hill Road, New Hartford, 2 samples. Quartzplagioclase- biotite schist and gneissic schist. Bethel 92-4-1 Og Collected from Huntington State Park, site of large tourmaline 76-9-1 OCs Inwood? Marble from W side of stream just below Cameron's Line 76-9-2 Or Sheared Hartland? from E side of stream just above Cameron's Line Bozrah 71-5 Otay Collected from intersection of South and Bishop Rds, Bozrah Branford 97-1 Zsc & Pn Stony Creek Quarry Granite 97-6 Zp, Zsc & Pn From Red Hill Quarry, Stony Creek Preserve, Branford Bridgeport 109-1 Ohb Collected in Beardsley Park, Bridgeport Burlington 35-5-1 DSt Straits Schist, collected on road cut for entrance of side road on W side of Maine Rd Canterbury 57-6-1 Dc Canterbury Gneiss, Note Muskovite and garnet? 57-6-2 SOh Meta siltstone/Hornfels? Mapped as hCS on GQ 392, Collected just W of pond, low outcrops Canterbury is just to the W of the outcrop, inclusions of this rock and a very fine grained biotite schist are found in Canterbury. This rock is quite massive with n Chester 84-7 Dc In woods SW of Chester Elementary School, Ridge Rd, Chester 84-1 b SOh Biotite Gneiss and schist, E side of northbound entrance ramp intersection of Rt 9 and 148 84-1 c SOh Biotite Gneiss and schist, E side of northbound entrance ramp intersection of Rt 9 and 148 84-1 a SOh Biotite Gneiss -
Fundamentals of Carbon Dioxide-Enhanced Oil Recovery (CO2-EOR)
Fundamentals of Carbon Dioxide-Enhanced Oil Recovery (CO2-EOR)—A Supporting Document of the Assessment Methodology for Hydrocarbon Recovery Using CO2-EOR Associated with Carbon Sequestration By Mahendra K. Verma Open-File Report 2015–1071 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Verma, M.K., 2015, Fundamentals of carbon dioxide-enhanced oil recovery (CO2-EOR)—A supporting document of the assessment methodology for hydrocarbon recovery using CO2-EOR associated with carbon sequestration: U.S. Geological Survey Open-File Report 2015–1071, 19 p., http://dx.doi.org/10.3133/ofr20151071. ISSN 2331-1258 (online) ii Contents Introduction ................................................................................................................................................................ -
Researcher, Environmental Defense Fund Shanda Fisher, Researcher, Environmental Defense Fund
Policy Recommendations for Selection & Development of Offshore Geologic Carbon Sequestration Projects Within Texas State Waters Gulf of Mexico Miocene CO2 Site Characterization Mega Transect: Environmental Risks and Regulatory Considerations for Site Selection December 2, 2011 Principal Authors: Timothy O’Connor, Director, California Climate and Energy Initiative, Environmental Defense Fund Scott Anderson, Senior Energy Advisor, Environmental Defense Fund Daniel Carlin, Researcher, Environmental Defense Fund Shanda Fisher, Researcher, Environmental Defense Fund Abstract: This report evaluates the potential environmental impact of geologic carbon sequestration projects in the state waters of Texas and makes recommendations for decisions that can be followed during the site selection phase to alleviate risk and mitigate potential harm. This report also makes related recommendations for consideration during the project development and operations phase related to site-specific monitoring, verification, accounting and reporting, and response planning. Gulf of Mexico Miocene CO2 Site Characterization Mega Transect: Environmental Risks and Regulatory Considerations for Site Selection DISCLAIMER Environmental Defense Fund (EDF) prepared this report to support the University of Texas Bureau of Economic Geology’s Gulf of Mexico Miocene CO2 Site Characterization Mega Transect project, related to identifying and choosing a suitable sequestration site or site(s), and as funded by the U.S. Department of Energy. This report is intended to serve as a