Supplementary Notes to Accompany “Genome-Wide Association Study Results for Educational Attainment Aid in Identifying Genetic Heterogeneity of Schizophrenia”

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Notes to Accompany “Genome-Wide Association Study Results for Educational Attainment Aid in Identifying Genetic Heterogeneity of Schizophrenia” Supplementary notes to accompany “Genome-wide association study results for educational attainment aid in identifying genetic heterogeneity of schizophrenia” Table of contents 1 STATISTICAL CONSIDERATION 4 1.1 Genetic dependence under homogeneity 4 1.2 Heterogeneity 4 1.2.1 Genetic dependence of educational attainment and schizophrenia 5 1.2.2 Simulation study 6 1.3 Improved polygenic prediction of endophenotypes and symptoms 8 1.3.1 Improved polygenic prediction with GWAS results from genetically correlated traits 8 1.3.2 Detecting genetic heterogeneity among endophenotypes or symptoms 10 2 GWAS ON EDUCATIONAL ATTAINMENT 12 3 GWAS ON SCHIZOPHRENIA 13 4 QUALITY CONTROL 13 5 SELECTION OF EDUCATION-ASSOCIATED CANDIDATE SNPS 14 5.1 Setting the P value threshold for the proxy-based SNPs 14 6 LOOK-UP, SIGN CONCORDANCE AND ENRICHMENT 14 6.1 Look-up 14 6.2 Bayesian credibility of results 15 6.3 Sign concordance 17 6.4 Enrichment 17 6.4.1 Raw enrichment factor (not corrected for LD score of SNPs) 17 6.4.2 Raw enrichment P value (not corrected for LD score of SNPs) 18 6.5 Prediction of future genome-wide significant loci for schizophrenia 18 7 PLEIOTROPY BETWEEN EDUCATIONAL ATTAINMENT AND SCHIZOPHRENIA 19 8 BIOLOGICAL ANNOTATIONS 21 8.1 Prioritisation of genes, pathways, and tissues/cell types with DEPICT 21 1 8.2 GWAS catalog lookup 23 9 LD-AWARE ENRICHMENT TEST 24 10 THE GRAS DATA COLLECTION 26 10.1 Subjects 26 10.2 Genotyping 26 10.3 Imputation and estimation of genetic principal components 26 10.4 Phenotyping procedures 27 11 REPLICATION IN THE GRAS DATA COLLECTION 27 11.1 Polygenic score calculations 28 11.1.1 Schizophrenia scores 28 11.1.2 Educational attainment scores 29 11.1.3 Bipolar disorder score 29 11.1.4 Neuroticism score 29 11.2 Polygenic score correlations 30 11.3 Predicting case-control status using PGS 30 12 POLYGENIC PREDICTION OF SCHIZOPHRENIA SYMPTOMS 31 12.1 Phenotypic correlations 31 12.2 Based on the 132 EA lead SNPs 31 12.3 Co-dependent polygenic risk score prediction results 32 13 CONTROLLING FOR GENETIC OVERLAP BETWEEN SCHIZOPHRENIA AND BIPOLAR DISORDER 34 13.1 GWIS schizophrenia – bipolar disorder 34 13.2 Look-up in GWIS results schizophrenia – bipolar disorder 35 13.2.1 Sign concordance 36 13.2.1 Raw enrichment factor (not corrected for LD score of SNPs) 36 13.2.2 Raw enrichment P value (not corrected for LD score of SNPs) 36 13.3 GWIS bipolar disorder - schizophrenia 36 13.4 Genetic correlations of GWAS and GWIS results 36 14 SIMULATING ASSORTATIVE MATING 38 14.1 Simulations 38 14.1.1 Description 38 14.1.2 Power 38 2 14.2 Results 39 15 REFERENCES 40 16 ADDITIONAL ACKNOWLEDGMENTS 44 16.1 Individual author contributions: 44 17 SUPPLEMENTARY FIGURES 45 3 1 Statistical consideration 1.1 Genetic dependence under homogeneity The concept of genetic correlation is frequently used in the field of quantitative genetics and is typically defined as the correlation of the true effects of single nucleotide polymorphisms (SNPs) on two outcomes1,2. Although the true effects of SNPs are unknown, estimates of genetic correlation can be obtained from the noisy estimates of SNP effects obtained from GWAS1 or they can be inferred from the phenotypic similarity of individuals conditional on their (estimated) genetic similarity3. The broader concept of genetic dependence is, however, less well understood. In fact, for polygenic traits, a convincing definition of genetic dependence that resonates both with intuition and with the definition of dependence between random variables in probability theory is difficult to formulate. Here, we define genetic dependence in a manner that genetic dependence does not necessarily imply genetic correlation and, vice versa, that genetic correlation does not necessarily imply genetic dependence. More specifically, given two traits, A and B, with proportion πA (resp. πB) of independent variants associated with A (B), and πAB associated with both traits, we define genetic dependence as πAB > πAπB. Simply put, under this definition, two traits are considered genetically dependent in case they share more causal (or causal-loci tagging) variants than expected by chance. As a result, πAB = πAπB implies independence. Finally, πAB < πAπB is also a form of dependence, where an increase in probability of a variant being associated with A, decreases the chance of that variant also being also associated with B. This definition of genetic dependence, however, says very little about how the genetic value of A influences the distribution of the genetic value of B. Consider, for example, the case where A and B are both highly heritable and genetically dependent (i.e., πAB > πAπB) and where the effects of the shared loci follow a random-effects model, but in which the effects of these shared loci are not correlated across traits. In this scenario, the genetic correlation between these traits is zero. Nevertheless, an individual for whom A takes on a rather extreme value is also likely to have an extreme value for B, yet we do not know anything about the direction in which B will go given A. This example reveals that true independence, as it is defined in probability theory, may be a rare event in the context of complex trait genetics. Moreover, under our definition of independence (i.e., πAB = πAπB), traits A and B can still be genetically correlated, viz., when the effects of the shared loci are correlated across traits. Hence, under our definition, genetic dependence is not equal to genetic correlation; genetic correlation does not imply dependence, and genetic dependence does not imply correlation. 1.2 Heterogeneity Up until this point, we have implicitly considered genetically homogeneous traits, where a subset of variants is shared among traits, and the effects of these shared variants have a uniform correlation across traits. However, a trait can be genetically heterogeneous in the sense that it aggregates over several endophenotypes or symptoms that are not genetically identical (i.e. their genetic correlation is not 1). One can imagine a scenario where several endophenotypes are affecting traits A and B, where some of the endophenotypes affect both 4 traits positively or both negatively, some endophenotypes affect one trait positively and the other trait negatively, and other endophenotypes affect only either of the two traits. For example, consider the following structural model for A and B: 퐴 = 퐺1 + 퐺2 + 퐺3 + 퐸퐴, 퐵 = 퐺1 − 퐺2 + 퐺4 + 퐸퐵, where G1 and G2 are endophenotypes affecting both traits, with G1 affecting A and B sign- concordantly and G2 affecting A and B with a different sign, G3 and G4 are endophenotypes both affecting only one trait, and E denotes the environmental component of a given trait, denoted by its subscript. Obviously, when the variants involved in the four endophenotypes are not overlapping, the total effects of the variants shaping G1 on A and B are positively correlated at +1, whereas the effects of variants shaping G2 on A and B are negatively correlated at −1. Moreover, if Var(G1) = Var(G2) the genetic correlation of A and B will be zero, even when a disproportionate amount of variants shape G1 and G2 (i.e., disproportionate in the sense that πAB > πAπB). Hence, we have devised a simple model where two traits are highly genetically dependent (i.e., πAB > πAπB) and have strongly correlated effects for subsets of shared loci, whilst the total genetic correlation between the traits is zero. 1.2.1 Genetic dependence of educational attainment and schizophrenia In the particular case of schizophrenia (SZ) and educational attainment (EA), a small, 1,2 positive genetic correlation (휌퐸퐴,푆푍 ≈ 0.08) and genetic dependence between both traits have been previously reported2,4. In particular, given that a variant is robustly associated with either trait, it significantly increases the chances of that variant also being associated with the other trait. To illustrate this, Supplementary Fig. 1 shows a scatter plot of all Z-statistics from the GWASs on EA and SZ in non-overlapping samples that we describe in Supplementary Notes 2-4. As can be seen, there is inflation in the test statistics along both the horizontal and the vertical axes, highlighting variants that are likely to be associated with one of the two traits. However, there are also variants that reach marginal nominal genome-wide significance for both traits on both diagonal axes. In Supplementary Note 6, we formally show that SNPs associated with EA are more likely to be associated with SZ than expected by chance, given the overall distribution of Z-statistics for SZ. Yet, the sign of association with one trait is not very informative of the sign of association with the other trait. It seems, though, as if there are more SNPs with the same sign for both traits that reach marginal significance than there are SNPs that have discordant signs. This is consistent with the idea that both traits are genetically dependent (i.e., more shared loci than expected by chance) with a subtle positive genetic correlation. However, clearly there are also outliers which seem to defy expectations under a positive genetic correlation between both traits, i.e., we see SNPs that are robustly associated with both traits, but with opposing signs in the effect estimates. Nevertheless, if we assume for now that both traits do actually have a homogenous co- architecture, then the ‘effective genetic correlation’ (i.e., correlation as inferred from genome-wide data; ρG) is expected to be given by the product of πAB and the correlation in the 5 effects of shared loci (denoted by ρ), ρG = ρπAB . 5 However, even when ρ is large (e.g., ρ = 1) and when both πA and πB are relatively small (e.g., πA = πB = 10%), it holds that a relatively small πAB (e.g., πAB = 2%) may still be in excess of πAπB, hence, constituting genetic dependence, whilst the effective genetic correlation remains small (e.g., ρG = 0.02).
Recommended publications
  • Gene Expression Studies: from Case-Control to Multiple-Population-Based Studies
    From the Institute of Human Genetics, Helmholtz Zentrum Munchen,¨ Deutsches Forschungszentrum fur¨ Gesundheit und Umwelt (GmbH) Head: Prof. Dr. Thomas Meitinger Gene expression studies: From case-control to multiple-population-based studies Thesis Submitted for a Doctoral Degree in Natural Sciences at the Faculty of Medicine, Ludwig-Maximilians-Universitat¨ Munchen¨ Katharina Schramm Dachau, Germany 2016 With approval of the Faculty of Medicine Ludwig-Maximilians-Universit¨atM ¨unchen Supervisor/Examiner: Prof. Dr. Thomas Illig Co-Examiners: Prof. Dr. Roland Kappler Dean: Prof. Dr. med. dent. Reinhard Hickel Date of oral examination: 22.12.2016 II Dedicated to my family. III Abstract Recent technological developments allow genome-wide scans of gene expression levels. The reduction of costs and increasing parallelization of processing enable the quantification of 47,000 transcripts in up to twelve samples on a single microarray. Thereby the data collec- tion of large population-based studies was improved. During my PhD, I first developed a workflow for the statistical analyses of case-control stu- dies of up to 50 samples. With large population-based data sets generated I established a pipeline for quality control, data preprocessing and correction for confounders, which re- sulted in substantially improved data. In total, I processed more than 3,000 genome-wide expression profiles using the generated pipeline. With 993 whole blood samples from the population-based KORA (Cooperative Health Research in the Region of Augsburg) study we established one of the largest population-based resource. Using this data set we contributed to a number of transcriptome-wide association studies within national (MetaXpress) and international (CHARGE) consortia.
    [Show full text]
  • Supporting Information
    Supporting Information Muro et al. 10.1073/pnas.0807813105 SI Text (Fig. S1) showed for 10 of the PAS variants a marked tendency 1. Algorithm for Automated Recognition of EST End Clusters. To to lie 10–30 nt upstream of EST ends, whereas no strong trend determine the coordinates of genomic EST alignments we used was seen for 3 additional variants. Based on this simple analysis the UCSC genome annotation (1), a regularly updated database we chose to accept only 10 of the variants as functional PAS which includes mouse and human EST sequences and their (Table S1), and only EST ends validated by a PAS 10–30 nt positions in the genome. The UCSC Golden Path version was upstream. Furthermore, we considered all EST ends validated by mm6 for mouse (equivalent to NCBI build 34, March 2005) and the same PAS and ending within 20 nt of one another to hg18 for human (NCBI Build 36.1, March 2006). The UCSC represent the same transcript end and to be clustered together, mapping database is based on alignments of ESTs to the as others have also proposed (6). corresponding genome using the BLAT program (2). Because of Next, we studied the distribution of individual EST ends the relatively low accuracy of EST sequencing and recent around our predicted rough ends (Fig. S2). The graph indicates genomic duplications (3), some ESTs can be aligned to more that in a range of Ϫ200 to ϩ150 nt around these rough ends the than 1 genomic position. To avoid possible misidentifications, frequency of EST ends is distinguishable from the surrounding ambiguously aligning ESTs were excluded from our analysis.
    [Show full text]
  • Mouse Wdr37 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Wdr37 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Wdr37 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Wdr37 gene (NCBI Reference Sequence: NM_001039388 ; Ensembl: ENSMUSG00000021147 ) is located on Mouse chromosome 13. 14 exons are identified, with the ATG start codon in exon 2 and the TAA stop codon in exon 14 (Transcript: ENSMUST00000054251). Exon 3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Wdr37 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-90H23 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 3 starts from about 9.34% of the coding region. The knockout of Exon 3 will result in frameshift of the gene. The size of intron 2 for 5'-loxP site insertion: 4159 bp, and the size of intron 3 for 3'-loxP site insertion: 2736 bp. The size of effective cKO region: ~597 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 3 14 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Wdr37 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Genome Wide Association of Chronic Kidney Disease Progression: the CRIC Study (Author List and Affiliations Listed at End of Document)
    SUPPLEMENTARY MATERIALS Genome Wide Association of Chronic Kidney Disease Progression: The CRIC Study (Author list and affiliations listed at end of document) Genotyping information page 2 Molecular pathway analysis information page 3 Replication cohort acknowledgments page 4 Supplementary Table 1. AA top hit region gene function page 5-6 Supplementary Table 2. EA top hit region gene function page 7 Supplementary Table 3. GSA pathway results page 8 Supplementary Table 4. Number of molecular interaction based on top candidate gene molecular networks page 9 Supplementary Table 5. Results of top gene marker association in AA, based on EA derived candidate gene regions page 10 Supplementary Table 6. Results of top gene marker association in EA, based on AA derived candidate gene regions page 11 Supplementary Table 7. EA Candidate SNP look up page 12 Supplementary Table 8. AA Candidate SNP look up page 13 Supplementary Table 9. Replication cohorts page 14 Supplementary Table 10. Replication cohort study characteristics page 15 Supplementary Figure 1a-b. Boxplot of eGFR decline in AA and EA page 16 Supplementary Figure 2a-l. Regional association plot of candidate SNPs identified in AA groups pages 17-22 Supplementary Figure 3a-f. Regional association plot of candidate SNPs identified in EA groups pages 23-25 Supplementary Figure 4. Molecular Interaction network of candidate genes for renal, cardiovascular and immunological diseases pages 26-27 Supplementary Figure 5. Molecular Interaction network of candidate genes for renal diseases pages 28-29 Supplementary Figure 6. ARRDC4 LD map page 30 Author list and affiliations page 31 1 Supplemental Materials Genotyping Genotyping was performed on a total of 3,635 CRIC participants who provided specific consent for investigations of inherited genetics (of a total of 3,939 CRIC participants).
    [Show full text]
  • Chromatin Conformation Links Distal Target Genes to CKD Loci
    BASIC RESEARCH www.jasn.org Chromatin Conformation Links Distal Target Genes to CKD Loci Maarten M. Brandt,1 Claartje A. Meddens,2,3 Laura Louzao-Martinez,4 Noortje A.M. van den Dungen,5,6 Nico R. Lansu,2,3,6 Edward E.S. Nieuwenhuis,2 Dirk J. Duncker,1 Marianne C. Verhaar,4 Jaap A. Joles,4 Michal Mokry,2,3,6 and Caroline Cheng1,4 1Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus University Medical Center, Rotterdam, The Netherlands; and 2Department of Pediatrics, Wilhelmina Children’s Hospital, 3Regenerative Medicine Center Utrecht, Department of Pediatrics, 4Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, 5Department of Cardiology, Division Heart and Lungs, and 6Epigenomics Facility, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ABSTRACT Genome-wide association studies (GWASs) have identified many genetic risk factors for CKD. However, linking common variants to genes that are causal for CKD etiology remains challenging. By adapting self-transcribing active regulatory region sequencing, we evaluated the effect of genetic variation on DNA regulatory elements (DREs). Variants in linkage with the CKD-associated single-nucleotide polymorphism rs11959928 were shown to affect DRE function, illustrating that genes regulated by DREs colocalizing with CKD-associated variation can be dysregulated and therefore, considered as CKD candidate genes. To identify target genes of these DREs, we used circular chro- mosome conformation capture (4C) sequencing on glomerular endothelial cells and renal tubular epithelial cells. Our 4C analyses revealed interactions of CKD-associated susceptibility regions with the transcriptional start sites of 304 target genes. Overlap with multiple databases confirmed that many of these target genes are involved in kidney homeostasis.
    [Show full text]
  • Network-Based Integrative Analysis of Genomics, Epigenomics and Transcriptomics in Autism Spectrum Disorders
    International Journal of Molecular Sciences Article Network-Based Integrative Analysis of Genomics, Epigenomics and Transcriptomics in Autism Spectrum Disorders Noemi Di Nanni 1,2, Matteo Bersanelli 3,4, Francesca Anna Cupaioli 1 , Luciano Milanesi 1, Alessandra Mezzelani 1 and Ettore Mosca 1,* 1 Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy 2 Department of Industrial and Information Engineering, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy 3 Department of Physics and Astronomy, University of Bologna, Via B. Pichat 6/2, 40127 Bologna, Italy 4 National Institute of Nuclear Physics (INFN), 40127 Bologna, Italy * Correspondence: [email protected]; Tel.: +39-02-26-42-2614 Received: 14 June 2019; Accepted: 6 July 2019; Published: 9 July 2019 Abstract: Current studies suggest that autism spectrum disorders (ASDs) may be caused by many genetic factors. In fact, collectively considering multiple studies aimed at characterizing the basic pathophysiology of ASDs, a large number of genes has been proposed. Addressing the problem of molecular data interpretation using gene networks helps to explain genetic heterogeneity in terms of shared pathways. Besides, the integrative analysis of multiple omics has emerged as an approach to provide a more comprehensive view of a disease. In this work, we carry out a network-based meta-analysis of the genes reported as associated with ASDs by studies that involved genomics, epigenomics, and transcriptomics. Collectively, our analysis provides a prioritization of the large number of genes proposed to be associated with ASDs, based on genes’ relevance within the intracellular circuits, the strength of the supporting evidence of association with ASDs, and the number of different molecular alterations affecting genes.
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]
  • Supplementary Material
    Supplementary material Gene Expression (mRNA) Markers for Differentiating between Malignant and Benign Follicular Thyroid Tumours Bartosz Wojtas 1,2,†, Aleksandra Pfeifer 1,3,†, Malgorzata Oczko-Wojciechowska 1, Jolanta Krajewska 1, Agnieszka Czarniecka 4, Aleksandra Kukulska 1, Markus Eszlinger 5, Thomas Musholt 6, Tomasz Stokowy 1,3,7, Michal Swierniak 1,8, Ewa Stobiecka 9, Ewa Chmielik 9, Dagmara Rusinek 1, Tomasz Tyszkiewicz 1, Monika Halczok 1, Steffen Hauptmann 10, Dariusz Lange 9, Michal Jarzab 11, Ralf Paschke 12 and Barbara Jarzab 1,* 1 Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute— Oncology Center, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland; 2 Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland 3 Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland 4 The Oncologic and Reconstructive Surgery Clinic, Maria Sklodowska-Curie Institute—Oncology Center, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland; 5 Department of Oncology & Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1 6 Department of General, Visceral, and Transplantation Surgery, University Medical Center of the Johannes Gutenberg University, D55099 Mainz, Germany 7 Department of Clinical Science, University of Bergen, 5020 Bergen, Norway 8 Genomic Medicine, Department
    [Show full text]
  • Genomic Approaches to Identify Important Traits in Avian Species Bhuwan Khatri University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2018 Genomic Approaches to Identify Important Traits in Avian Species Bhuwan Khatri University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Bioinformatics Commons, Large or Food Animal and Equine Medicine Commons, and the Poultry or Avian Science Commons Recommended Citation Khatri, Bhuwan, "Genomic Approaches to Identify Important Traits in Avian Species" (2018). Theses and Dissertations. 2901. http://scholarworks.uark.edu/etd/2901 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Genomic Approaches to Identify Important Traits in Avian Species A dissertation submitted in partial fulfillment of the requirements for degree of Doctor of Philosophy in Poultry Science by Bhuwan Khatri Tribhuvan University Bachelor in Science in Microbiology, 2005 Tribhuvan University Master in Science in Medical Microbiology, 2008 August 2018 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ________________________ Byungwhi Caleb Kong, Ph.D. Dissertation Director ____________________ ____________________ Walter G. Bottje, Ph.D. Young M. Kown, Ph.D. Committee Member Committee Member ___________________________ Charles F. Rosenkrans Jr., Ph.D. Committee Member ABSTRACT ABSTRACT This dissertation focusses on identifying different molecular markers that have impact on overall poultry production. Chapter one reviews microRNA (miRNA), copy number variation (CNV) and single nucleotide polymorphism (SNP) as markers suggested in different avian species by various studies. It reviews modern genomic approaches that are employed for next generation sequencing data analysis and verification.
    [Show full text]
  • Analyzing the Mirna-Gene Networks to Mine the Important Mirnas Under Skin of Human and Mouse
    Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 5469371, 9 pages http://dx.doi.org/10.1155/2016/5469371 Research Article Analyzing the miRNA-Gene Networks to Mine the Important miRNAs under Skin of Human and Mouse Jianghong Wu,1,2,3,4,5 Husile Gong,1,2 Yongsheng Bai,5,6 and Wenguang Zhang1 1 College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China 2Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China 3Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot 010031, China 4State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China 5Department of Biology, Indiana State University, Terre Haute, IN 47809, USA 6The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA Correspondence should be addressed to Yongsheng Bai; [email protected] and Wenguang Zhang; [email protected] Received 11 April 2016; Revised 15 July 2016; Accepted 27 July 2016 Academic Editor: Nicola Cirillo Copyright © 2016 Jianghong Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Genetic networks provide new mechanistic insights into the diversity of species morphology. In this study, we have integrated the MGI, GEO, and miRNA database to analyze the genetic regulatory networks under morphology difference of integument of humans and mice. We found that the gene expression network in the skin is highly divergent between human and mouse.
    [Show full text]
  • Reciprocal Perspective Improves Mirna Targeting Prediction Daniel G
    www.nature.com/scientificreports OPEN RPmirDIP: Reciprocal Perspective improves miRNA targeting prediction Daniel G. Kyrollos1, Bradley Reid1, Kevin Dick1,2 & James R. Green1,2* MicroRNAs (miRNAs) are short, non-coding RNAs that interact with messenger RNA (mRNA) to accomplish critical cellular activities such as the regulation of gene expression. Several machine learning methods have been developed to improve classifcation accuracy and reduce validation costs by predicting which miRNA will target which gene. Application of these predictors to large numbers of unique miRNA–gene pairs has resulted in datasets comprising tens of millions of scored interactions; the largest among these is mirDIP. We here demonstrate that miRNA target prediction can be signifcantly improved ( p < 0.001 ) through the application of the Reciprocal Perspective (RP) method, a cascaded, semi-supervised machine learning method originally developed for protein- protein interaction prediction. The RP method, aptly named RPmirDIP, augments the original mirDIP prediction scores by leveraging local thresholds from the two complimentary views available to each miRNA–gene pair, rather than apply a traditional global decision threshold. Application of this novel RPmirDIP predictor promises to help identify new, unexpected miRNA–gene interactions. A dataset of RPmirDIP-scored interactions are made available to the scientifc community at cu-bic.ca/RPmirDIP and https ://doi.org/10.5683/SP2/LD8JK J. MicroRNAs (miRNAs) represent a class of short (18–28 nucleotide [nt]) non-coding RNA molecules. Tey achieve post-transcriptional and translational regulation of protein expression via base-pairing with comple- mentary sequences of messenger RNA (mRNA) molecules. Gene regulation by miRNAs does not adhere to a simple one miRNA–one target gene mapping.
    [Show full text]