Novel Insights Into Megakaryopoiesis, Thrombopoiesis and Acute Coronary

Total Page:16

File Type:pdf, Size:1020Kb

Novel Insights Into Megakaryopoiesis, Thrombopoiesis and Acute Coronary Novel insights into megakaryopoiesis, thrombopoiesis and acute coronary thrombosis: transcriptome profiling of the haematopoietic stem cell, megakaryocyte and platelet Fizzah Aziz Choudry This dissertation is submitted to the University of Cambridge for the degree of Doctor of Philosophy September 2018 Hughes Hall, Cambridge SUMMARY Novel insights into megakaryopoiesis, thrombopoiesis and acute coronary thrombosis: transcriptome profiling of the haematopoietic stem cell, megakaryocyte and platelet Fizzah Aziz Choudry The aim of this project was to investigate the transcriptome of human haematopoietic stem cells (HSCs), megakaryocytes and platelets to gain insights into steady state and accelerated thrombopoiesis that occurs in states of haemostatic demand and in thrombosis by applying these findings to the pathological setting of acute coronary thrombosis. To investigate transcriptional heterogeneity within the human HSC population, single cell RNA sequencing was performed in human bone marrow HSCs. Transcriptionally distinct subpopulations were identified including two megakaryocyte biased subsets with potentially differing functional relevance. Both populations expressed megakaryocyte specific transcripts, one of which also co-expressed common myeloid and megakaryocyte-erythroid progenitor transcripts while the other did not. This study represents the first interrogation of the human bone marrow megakaryocyte transcriptome. Cells were collected from healthy human bone marrow and analysed by low input and single cell RNA sequencing. To identify novel drivers of megakaryocyte maturation, the human bone marrow megakaryocyte transcriptome was compared to that of megakaryocytes cultured from human CD34+ cells, a process known to generate immature megakaryocytes. Transcriptional signatures associated with increasing megakaryocyte ploidy were then investigated. Increasing megakaryocyte ploidy level was found to be associated with an upregulation of transcripts involved in translation and protein processing as well as expression of a number of transmembrane receptors which might have functional relevance. Finally, the pathological setting of acute coronary thrombosis was used as a model for accelerated thrombopoiesis. Megakaryocyte and platelet transcriptomes were compared between patients with acute myocardial infarction (AMI) as well as severe coronary disease and a control group. The transcriptional signature relating to disease compared to control in megakaryocytes included upregulation of platelet activation related transcripts in megakaryocytes isolated from patients with AMI and severe coronary artery disease. I DECLARATION This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared below and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared below and specified in the text It does not exceed the prescribed word limit for the relevant Degree Committee. The following collaborations have contributed to this work: 1. Nbeal2+/- mice used for megakaryocyte viability experiments were generated by the Wellcome Trust Sanger Institute and provided by Dr C Ghevaert’s group, Department of Haematology, University of Cambridge, UK. 2. NOD/LtSz-scidIL2Rgnull mice (Jackson Laboratory) used for xenotransplant experiments were provided by Dr E Laurenti’s group, Department of Haematology, University of Cambridge, UK. All xenotransplantation work was performed in collaboration with Dr E Laurenti’s group. 3. Platelet activation and function work was performed in collaboration with Dr K Downes’ group, Department of Haematology, University of Cambridge, UK. 4. Statistical analysis of RNA sequencing data was performed by Dr F Bagger, European Bioinformatics Institute, Hinxton, UK, and Dr R Petersen and Dr L Grassi, Department of Haematology, University of Cambridge, UK. Supervisors: Willem Ouwehand (University of Cambridge) Anthony Mathur (Queen Mary, University of London) II ACKNOWLEDGEMENTS I would like to thank my supervisors Willem Ouwehand, Anthony Mathur and John Martin who not only inspired me to take on this exciting project in the first place but who have provided ongoing guidance and support throughout. Particular thanks must go to Mattia Frontini for the motivation, intellectual stimulation, continued encouragement and technical advice without which this work would not have been possible. I would also like to thank Iain Macaulay for taking me under his wing at the Sanger Institute, teaching me about the sequencing world and helping me take on the challenge of megakaryocyte single cell RNA-seq. Thanks also goes to Frederik Bagger for his tireless help with RNA-seq analysis. I must also thank all the members of Willem’s group and collaborators who have contributed time, materials and ideas to help with this work, in particular, Samantha Farrow, Kate Downes and Elisa Laurenti. I would like to thank Rakesh Uppal and the rest of the Cardiothoracic team at Barts for welcoming me to theatres so often for samples and to the Barts Research team for their support in my endeavours. And of course thanks goes to the patients and volunteers who consented to be in this study. A special thanks goes to my family who have lived every bit of this long journey with me. The long hours, the uncertainty of experiments, the endless writing and the time away from the world. They have looked after me and supported me in every way from the very beginning and this is as much their thesis as it is mine. Thank you for understanding, being patient and doing this with me. Finally, I would like to thank the Medical Research Council for their financial support. III ABBREVIATONS AND CONVENTIONS Abbreviations ACS Acute coronary syndrome ADP Adenosine diphosphate AMI Acute myocardial infarction APC Allophycocyanin B2M B2 microglobulin Bp Base pairs BV Brilliant violet CAD Coronary artery disease CD Cluster of differentiation cDNA Copy deoxyribonucleic acid CFU Colony-forming unit CLP Common lymphoid progenitor CMP Common myeloid progenitor CRP-XL Crosslinked collagen related peptide Cy Cyanine DAPI 4',6-Diamidino-2-Phenylindole DNA Deoxyribonucleic acid ECG Electrocardiogram ERCC External RNA Controls Consortium FACS Fluorescence activated cell sorting FITC Fluorescein isothyocyanate GAPDH Glyceraldehyde-3-phosphate dehydrogenase GFP Green fluorescent protein GMP Granulocyte-macrophage progenitor GO Gene ontology GP Glycoprotein G&T-seq Genome and transcriptome sequencing GWAS Genome-wide association study Hb Haemoglobin HGNC HUGO gene nomenclature committee HSA Human serum albumin HSC Haematopoietic stem cell IPF Immature platelet fraction iPSC Induced pluripotent stem cells LMPP Lymphoid primed multipotent progenitor LV Left ventricle IV MegE Megakaryocyte-Erythroid lineage MEP Megakaryocyte-erythroid progenitor MK Megakaryocyte MPL Myeloproliferative leukaemia protein MPP Multipotent progenitor MPV Mean platelet volume mRNA Messenger ribonucleic acid NSG NOD scid gamma NSTEMI Non ST-elevation myocardial infarction PBS Phosphate buffered saline PCA Principal component analysis PCT Plateletcrit PDW Platelet distribution width PE Phycoerythrin PerCP Peridinin-Chlorophyll-protein P-LCR Platelet large cell ratio Poly(A) Poly-adenylated Plt Platelet PLT Platelet count RNA Ribonucleic acid RNA-seq RNA sequencing rRNA Ribosomal ribonucleic acid RT-qPCR Real time quantitative polymerase chain reaction STEMI ST-elevation myocardial infarction SVM Support vector machine TPO Thrombopoietin TRAP-6 Thrombin receptor activating peptide - 6 WC White cell count Gene, transcript and protein nomenclature Where possible the HUGO Gene Nomenclature Committee (HGNC) gene symbols and guidelines have been used to describe genes and gene products. Human gene and transcript symbols are capitalised and italicised (e.g., ITGA2B) and proteins are represented in standard fonts (e.g., TPO). V TABLE OF CONTENTS SUMMARY…………………………………………………………………………………………I DECLARATION………………………………………………………………………………….. II ACKNOWLEDGEMENTS………………………………………………………………………. III ABBREVIATIONS AND CONVENTIONS…………………………………………………….. IV Abbreviations...................................................................................................................... IV Gene, transcript and protein nomenclature.........................................................................V TABLE OF CONTENTS………………………………………………………………………… VI CHAPTER 1………………………………………………………………………………………. 1 INTRODUCTION 1.1 Megakaryopoiesis………………………………………………………………………. 1 1.1.1 Haematopoietic stem cells…………………………………………………… 1 1.1.2 Early megakaryocyte lineage commitment from the HSC………………... 3 1.1.3 Megakaryocyte-biased HSC population……………………………………. 4 1.1.4 Similarities between HSCs and megakaryocytes and interaction within the stem cell niche…………………………………………………………….. 6 1.1.5 Terminal megakaryopoiesis………………………………………………….. 9 1.1.6 Polyploidisation by endomitosis……………………………………………... 9 1.1.7 Cytoplasmic maturation………………………………………………………. 11 1.1.8 Platelet formation………………………………………………………………
Recommended publications
  • Megakaryocyte Growth and Platelet Production (Blood Platelet/Hematopoleflc Growth Factor/Thrombocyoena/B~Usfan) DAVID J
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 11104-11108, November 1994 Physiology The purification of megapoietin: A physiological regulator of megakaryocyte growth and platelet production (blood platelet/hematopoleflc growth factor/thrombocyoena/b~usfan) DAVID J. KUTER*tt§, DAVID L. BEELER*, AND ROBERT D. ROSENBERGt1¶ *Hematology Unit, Massachusetts General Hospital, Boston, MA; tHarvard Medical School, Boston, MA; tDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA; and 'Department of Medicine, Beth Israel Hospital, Boston, MA Communicated by Laszlo Lorand, July 8, 1994 (receivedfor review June 3, 1994) ABSTRACT The circulating blood platelet is produced by To characterize this putative thrombopoietic factor, we the bone marrow megkarocyte. In response to a decrease in have analyzed the physiological relationship between the the platelet count, megryocytes increase in number and bone marrow megakaryocytes and the circulating platelets. ploidy. Although this feedback loop has long been thought to be We have found that the magnitude of the changes in the medlated by a circulating hematopoletic factor, no such factor number and ploidy of megakaryocytes was inversely and has been purified. Using a model ofthrombocytopenia in sheep, proportionally related to the circulating platelet mass (3) and we have identified an active substance called megapoetin, that megakaryocyte number and ploidy were therefore mark- which simulated an increase in the number and ploldy of ers of this feedback loop in vivo. We next developed a bone meg-karyocytes in bone marrow culture. Circulating levels of marrow assay in which increases in the number and ploidy of this factor could be quantified with this assay and were found megakaryocytes in vitro (6) were used to identify an active to be Inversely proportional to the platelet count of the sheep.
    [Show full text]
  • Pulmonary Megakaryocytes: "Missing Link" Between Cardiovascular and Respiratory Disease?
    J Clin Pathol: first published as 10.1136/jcp.39.9.969 on 1 September 1986. Downloaded from J Clin Pathol 1986;39:969-976 Pulmonary megakaryocytes: "missing link" between cardiovascular and respiratory disease? G K SHARMA, I C TALBOT From the Department ofPathology, University ofLeicester, Leicester Royal Infirmary SUMMARY Pulmonary megakaryocytes were quantitated in a series of 30 consecutive hospital nec- ropsies using a two stage immunoperoxidase stain for factor VIII related antigen. In all 30 cases they were found with a mean density of 14 65 megakaryocytes/cm2 in lung sections of 5 gm in thickness. The maximum concentration of intrapulmonary megakaryocytes was consistently found to be in the central zone of the right upper lobe. Less than 22% of the observed cells possessed abundant cytoplasm, the rest appearing as effete, naked, and seminaked nuclei. The mean megakaryocyte count was found to be increased in association with both respiratory pathology (positive smoking history and impaired lung function) and cardiovascular disease states-shock; thromboembolism; myocardial infarction; and severe atheroma in the abdominal aorta, the coronary circulation, and the circle of Willis. Pulmonary megakaryocytes probably embolise from bone marrow. This may reflect stimulated thrombopoiesis, caused by increased platelet consumption in association with atherosclerotic disease, but it cannot be taken to confirm that the lung is the principal site of platelet production. copyright. The megakaryocyte is now firmly established as the 2 Intact megakaryocytes
    [Show full text]
  • Downregulation of Salivary Proteins, Protective Against Dental Caries, in Type 1 Diabetes
    proteomes Article Downregulation of Salivary Proteins, Protective against Dental Caries, in Type 1 Diabetes Eftychia Pappa 1,* , Konstantinos Vougas 2, Jerome Zoidakis 2 , William Papaioannou 3, Christos Rahiotis 1 and Heleni Vastardis 4 1 Department of Operative Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; [email protected] 2 Proteomics Laboratory, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; [email protected] (K.V.); [email protected] (J.Z.) 3 Department of Preventive and Community Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; [email protected] 4 Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; [email protected] * Correspondence: effi[email protected] Abstract: Saliva, an essential oral secretion involved in protecting the oral cavity’s hard and soft tissues, is readily available and straightforward to collect. Recent studies have analyzed the sali- vary proteome in children and adolescents with extensive carious lesions to identify diagnostic and prognostic biomarkers. The current study aimed to investigate saliva’s diagnostic ability through proteomics to detect the potential differential expression of proteins specific for the occurrence of carious lesions. For this study, we performed bioinformatics and functional analysis of proteomic datasets, previously examined by our group, from samples of adolescents with regulated and unreg- ulated type 1 diabetes, as they compare with healthy controls. Among the differentially expressed Citation: Pappa, E.; Vougas, K.; proteins relevant to caries pathology, alpha-amylase 2B, beta-defensin 4A, BPI fold containing family Zoidakis, J.; Papaioannou, W.; Rahiotis, C.; Vastardis, H.
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Lost Pigs and Broken Genes: The search for causes of embryonic loss in the pig and the assembly of a more contiguous reference genome Amanda Warr A thesis submitted for the degree of Doctor of Philosophy at the University of Edinburgh 2019 Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Declaration I declare that the work contained in this thesis has been carried out, and the thesis composed, by the candidate Amanda Warr. Contributions by other individuals have been indicated throughout the thesis. These include contributions from other authors and influences of peer reviewers on manuscripts as part of the first chapter, the second chapter, and the fifth chapter. Parts of the wet lab methods including DNA extractions and Illumina sequencing were carried out by, or assistance was provided by, other researchers and this too has been indicated throughout the thesis.
    [Show full text]
  • Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data
    INTEROPERABILITY IN TOXICOLOGY: CONNECTING CHEMICAL, BIOLOGICAL, AND COMPLEX DISEASE DATA Sean Mackey Watford A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Gillings School of Global Public Health (Environmental Sciences and Engineering). Chapel Hill 2019 Approved by: Rebecca Fry Matt Martin Avram Gold David Reif Ivan Rusyn © 2019 Sean Mackey Watford ALL RIGHTS RESERVED ii ABSTRACT Sean Mackey Watford: Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data (Under the direction of Rebecca Fry) The current regulatory framework in toXicology is expanding beyond traditional animal toXicity testing to include new approach methodologies (NAMs) like computational models built using rapidly generated dose-response information like US Environmental Protection Agency’s ToXicity Forecaster (ToXCast) and the interagency collaborative ToX21 initiative. These programs have provided new opportunities for research but also introduced challenges in application of this information to current regulatory needs. One such challenge is linking in vitro chemical bioactivity to adverse outcomes like cancer or other complex diseases. To utilize NAMs in prediction of compleX disease, information from traditional and new sources must be interoperable for easy integration. The work presented here describes the development of a bioinformatic tool, a database of traditional toXicity information with improved interoperability, and efforts to use these new tools together to inform prediction of cancer and complex disease. First, a bioinformatic tool was developed to provide a ranked list of Medical Subject Heading (MeSH) to gene associations based on literature support, enabling connection of compleX diseases to genes potentially involved.
    [Show full text]
  • The Potential Role of Recombinant Activated FVII in the Management of Critical Hemato-Oncological Bleeding: a Systematic Review
    Bone Marrow Transplantation (2007) 39, 729–735 & 2007 Nature Publishing Group All rights reserved 0268-3369/07 $30.00 www.nature.com/bmt REVIEW The potential role of recombinant activated FVII in the management of critical hemato-oncological bleeding: a systematic review M Franchini1, D Veneri2 and G Lippi3 1Servizio di Immunoematologia e Trasfusione – Centro Emofilia, Azienda Ospedaliera di Verona, Verona, Italy; 2Dipartimento di Medicina Clinica e Sperimentale, Sezione di Ematologia, Universita` di Verona, Verona, Italy and 3Dipartimento di Scienze Biomediche e Morfologiche, Istituto di Chimica e Microscopia Clinica, Universita` di Verona, Verona, Italy Recombinant activated factor VII (rFVIIa) is an hemo- situations unresponsive to conventional therapy to control static agent that was originally developed for the excessive bleeding and reduce exposure to allogeneic blood. treatment of hemorrhage in patients with hemophilia and These include intracerebral hemorrhage, oral anticoagu- inhibitors.However, in the last few years rFVIIa has been lant-induced hemorrhage, thrombocytopenia, bleeding employed with success in a broad spectrum of congenital associated with hepatic failure, major surgery, trauma and acquired bleeding conditions.In this systematic review and life-threatening obstetrical, and gynecologic hemor- we present the current knowledge on the use of this drug in rhagic complications.5–9 patients suffering from hemato-oncological disorders, In this systematic review we have collected the available which are quite commonly complicated by severe hemor- data from the literature on the use of rFVIIa in hemato- rhage.On the whole, data in the literature suggest a oncological patients with severe bleeding, unresponsive to potential role for rFVIIa in the management of bleeding standard therapy.
    [Show full text]
  • Aplicación De La Biología De Sistemas Al Estudio De La Malaria Y Búsqueda De Biomarcadores Y Dianas Terapéuticas
    Aplicación de la biología de sistemas al estudio de la malaria y búsqueda de biomarcadores y dianas terapéuticas Autora: Mireia Ferrer Almirall Máster en Bioinformática y Bioestadística Area 1-Bioinformática farmacéutica Tutores: Melchor Sánchez Martínez y Alex Sánchez Pla Profesor responsable de la asignatura: Carles Ventura Royo 02/01/2019 Esta obra está sujeta a una licencia de Reconocimiento-NoComercial- SinObraDerivada 3.0 España de Creative Commons FICHA DEL TRABAJO FINAL Aplicación de la biología de sistemas al Título del trabajo: estudio de la malaria y búsqueda de biomarcadores y dianas terapéuticas Nombre del autor: Mireia Ferrer Almirall Melchor Sánchez Martínez y Nombre del consultor/a: Alex Sánchez Pla Nombre del PRA: Carles Ventura Royo Fecha de entrega (mm/aaaa): 01/2019 Titulación: Máster en Bioinformática y Bioestadística Área del Trabajo Final: 1-Bioinformática farmacéutica Idioma del trabajo: castellano Malaria, Biología-de-sistemas, Palabras clave dianas-terapéuticas Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de aplicación, metodología, resultados i conclusiones del trabajo. La finalidad de este trabajo es aplicar herramientas de biología de sistemas para investigar los mecanismos implicados en la infección por el parásito de la malaria e identificar posibles biomarcadores y dianas terapéuticas. Se ha partido de una serie temporal de datos de microarrays del bazo de ratones infectados con dos cepas del parásito (NL y L) para determinar los genes que se encuentran diferencialmente expresados (DEG) respecto a ratones control. A partir de las listas de DEG obtenidas, se han utilizado herramientas de biología de sistemas en combinación con análisis de significación biológica para obtener una visión integrada de los procesos biológicos que se encuentran alterados en la enfermedad e identificar posibles biomarcadores/dianas terapéuticas.
    [Show full text]
  • Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
    ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Recent Developments in the Understanding and Management of Paroxysmal Nocturnal Haemoglobinuria
    review Recent developments in the understanding and management of paroxysmal nocturnal haemoglobinuria Anita Hill, Stephen J. Richards and Peter Hillmen Department of Haematology, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds, UK Summary only one G6PD variant enzyme was present in the PNH red cells whereas both variants were present in the residual normal red Paroxysmal nocturnal haemoglobinuria (PNH) has been rec- cells, provided conclusive evidence of the clonal nature of PNH ognised as a discrete disease entity since 1882. Approximately a (Oni et al, 1970). It was clear by the 1980s that PNH cells were half of patients will eventually die as a result of having PNH. deficient in a large number of cell surface proteins, but it was Many of the symptoms of PNH, including recurrent abdominal unclear how this related to either the monoclonal nature of PNH pain, dysphagia, severe lethargy and erectile dysfunction, result or the haemolysis. The development of immortalised cell lines from intravascular haemolysis with absorption of nitric oxide with the PNH abnormality (both B- and T-cells lines) facilitated by free haemoglobin from the plasma. These symptoms, as well the rapid elucidation of the defect (Schubert et al, 1990; Hillmen as the occurrence of thrombosis and aplasia, significantly affect et al,1992;Nakakumaet al,1994).Itbecameclearthatavarietyof patients’ quality of life; thrombosis is the leading cause of proteins normally attached to the cell membrane by a glycolipid premature mortality. The syndrome of haemolytic-anaemia- structure, were found to be abnormal, and that this was due to a associated pulmonary hypertension has been further identified disruption in the glycosylphosphatidylinositol (GPI) biosyn- in PNH patients.
    [Show full text]
  • Structural Variant Calling by Assembly in Whole Human Genomes: Applications in Hypoplastic Left Heart Syndrome by Matthew Kendzi
    STRUCTURAL VARIANT CALLING BY ASSEMBLY IN WHOLE HUMAN GENOMES: APPLICATIONS IN HYPOPLASTIC LEFT HEART SYNDROME BY MATTHEW KENDZIOR THESIS Submitted in partial FulFillment oF tHe requirements for the degree of Master of Science in BioinFormatics witH a concentration in Crop Sciences in the Graduate College of the University oF Illinois at Urbana-Champaign, 2019 Urbana, Illinois Master’s Committee: ProFessor MattHew Hudson, CHair ResearcH Assistant ProFessor Liudmila Mainzer ProFessor SaurabH SinHa ABSTRACT Variant discovery in medical researcH typically involves alignment oF sHort sequencing reads to the human reference genome. SNPs and small indels (variants less than 50 nucleotides) are the most common types oF variants detected From alignments. Structural variation can be more diFFicult to detect From short-read alignments, and thus many software applications aimed at detecting structural variants From short read alignments have been developed. However, these almost all detect the presence of variation in a sample using expected mate-pair distances From read data, making them unable to determine the precise sequence of the variant genome at the speciFied locus. Also, reads from a structural variant allele migHt not even map to the reference, and will thus be lost during variant discovery From read alignment. A variant calling by assembly approacH was used witH tHe soFtware Cortex-var for variant discovery in Hypoplastic Left Heart Syndrome (HLHS). THis method circumvents many of the limitations oF variants called From a reFerence alignment: unmapped reads will be included in a sample’s assembly, and variants up to thousands of nucleotides can be detected, with the Full sample variant allele sequence predicted.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]