ADVANCED NUMERICAL DIFFERENTIAL EQUATION SOLVING in MATHEMATICA for Use with Wolfram Mathematica® 7.0 and Later
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  The Sagemanifolds ProjectTensor calculus with free softwares: the SageManifolds project Eric´ Gourgoulhon1, Micha l Bejger2 1Laboratoire Univers et Th´eories (LUTH) CNRS / Observatoire de Paris / Universit´eParis Diderot 92190 Meudon, France http://luth.obspm.fr/~luthier/gourgoulhon/ 2Centrum Astronomiczne im. M. Kopernika (CAMK) Warsaw, Poland http://users.camk.edu.pl/bejger/ Encuentros Relativistas Espa~noles2014 Valencia 1-5 September 2014 Eric´ Gourgoulhon, Micha l Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 1 / 44 Outline 1 Differential geometry and tensor calculus on a computer 2 Sage: a free mathematics software 3 The SageManifolds project 4 SageManifolds at work: the Mars-Simon tensor example 5 Conclusion and perspectives Eric´ Gourgoulhon, Micha l Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 2 / 44 Differential geometry and tensor calculus on a computer Outline 1 Differential geometry and tensor calculus on a computer 2 Sage: a free mathematics software 3 The SageManifolds project 4 SageManifolds at work: the Mars-Simon tensor example 5 Conclusion and perspectives Eric´ Gourgoulhon, Micha l Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 3 / 44 In 1969, during his PhD under Pirani supervision at King's College, Ray d'Inverno wrote ALAM (Atlas Lisp Algebraic Manipulator) and used it to compute the Riemann tensor of Bondi metric. The original calculations took Bondi and his collaborators 6 months to go. The computation with ALAM took 4 minutes and yield to the discovery of 6 errors in the original paper [J.E.F. Skea, Applications of SHEEP (1994)] In the early 1970's, ALAM was rewritten in the LISP programming language, thereby becoming machine independent and renamed LAM The descendant of LAM, called SHEEP (!), was initiated in 1977 by Inge Frick Since then, many softwares for tensor calculus have been developed..
- 
												  Using Macaulay2 Effectively in PracticeUsing Macaulay2 effectively in practice Mike Stillman ([email protected]) Department of Mathematics Cornell 22 July 2019 / IMA Sage/M2 Macaulay2: at a glance Project started in 1993, Dan Grayson and Mike Stillman. Open source. Key computations: Gr¨obnerbases, free resolutions, Hilbert functions and applications of these. Rings, Modules and Chain Complexes are first class objects. Language which is comfortable for mathematicians, yet powerful, expressive, and fun to program in. Now a community project Journal of Software for Algebra and Geometry (started in 2009. Now we handle: Macaulay2, Singular, Gap, Cocoa) (original editors: Greg Smith, Amelia Taylor). Strong community: including about 2 workshops per year. User contributed packages (about 200 so far). Each has doc and tests, is tested every night, and is distributed with M2. Lots of activity Over 2000 math papers refer to Macaulay2. History: 1976-1978 (My undergrad years at Urbana) E. Graham Evans: asked me to write a program to compute syzygies, from Hilbert's algorithm from 1890. Really didn't work on computers of the day (probably might still be an issue!). Instead: Did computation degree by degree, no finishing condition. Used Buchsbaum-Eisenbud \What makes a complex exact" (by hand!) to see if the resulting complex was exact. Winfried Bruns was there too. Very exciting time. History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) I tried to do \real mathematics" but Dave Bayer (basically) rediscovered Groebner bases, and saw that they gave an algorithm for computing all syzygies. I got excited, dropped what I was doing, and we programmed (in Pascal), in less than one week, the first version of what would be Macaulay.
- 
												  Python – an IntroductionPython { AN IntroduCtion . default parameters . self documenting code Example for extensions: Gnuplot Hans Fangohr, [email protected], CED Seminar 05/02/2004 ² The wc program in Python ² Summary Overview ² Outlook ² Why Python ² Literature: How to get started ² Interactive Python (IPython) ² M. Lutz & D. Ascher: Learning Python Installing extra modules ² ² ISBN: 1565924649 (1999) (new edition 2004, ISBN: Lists ² 0596002815). We point to this book (1999) where For-loops appropriate: Chapter 1 in LP ² ! if-then ² modules and name spaces Alex Martelli: Python in a Nutshell ² ² while ISBN: 0596001886 ² string handling ² ¯le-input, output Deitel & Deitel et al: Python { How to Program ² ² functions ISBN: 0130923613 ² Numerical computation ² some other features Other resources: ² . long numbers www.python.org provides extensive . exceptions ² documentation, tools and download. dictionaries Python { an introduction 1 Python { an introduction 2 Why Python? How to get started: The interpreter and how to run code Chapter 1, p3 in LP Chapter 1, p12 in LP ! Two options: ! All sorts of reasons ;-) interactive session ² ² . Object-oriented scripting language . start Python interpreter (python.exe, python, . power of high-level language double click on icon, . ) . portable, powerful, free . prompt appears (>>>) . mixable (glue together with C/C++, Fortran, . can enter commands (as on MATLAB prompt) . ) . easy to use (save time developing code) execute program ² . easy to learn . Either start interpreter and pass program name . (in-built complex numbers) as argument: python.exe myfirstprogram.py Today: . ² Or make python-program executable . easy to learn (Unix/Linux): . some interesting features of the language ./myfirstprogram.py . use as tool for small sysadmin/data . Note: python-programs tend to end with .py, processing/collecting tasks but this is not necessary.
- 
												  Rapid Research with Computer Algebra Systemsdoi: 10.21495/71-0-109 25th International Conference ENGINEERING MECHANICS 2019 Svratka, Czech Republic, 13 – 16 May 2019 RAPID RESEARCH WITH COMPUTER ALGEBRA SYSTEMS C. Fischer* Abstract: Computer algebra systems (CAS) are gaining popularity not only among young students and schol- ars but also as a tool for serious work. These highly complicated software systems, which used to just be regarded as toys for computer enthusiasts, have reached maturity. Nowadays such systems are available on a variety of computer platforms, starting from freely-available on-line services up to complex and expensive software packages. The aim of this review paper is to show some selected capabilities of CAS and point out some problems with their usage from the point of view of 25 years of experience. Keywords: Computer algebra system, Methodology, Wolfram Mathematica 1. Introduction The Wikipedia page (Wikipedia contributors, 2019a) defines CAS as a package comprising a set of algo- rithms for performing symbolic manipulations on algebraic objects, a language to implement them, and an environment in which to use the language. There are 35 different systems listed on the page, four of them discontinued. The oldest one, Reduce, was publicly released in 1968 (Hearn, 2005) and is still available as an open-source project. Maple (2019a) is among the most popular CAS. It was first publicly released in 1984 (Maple, 2019b) and is still popular, also among users in the Czech Republic. PTC Mathcad (2019) was published in 1986 in DOS as an engineering calculation solution, and gained popularity for its ability to work with typeset mathematical notation in combination with automatic computations.
- 
												  Introduction to GNU OctaveIntroduction to GNU Octave Hubert Selhofer, revised by Marcel Oliver updated to current Octave version by Thomas L. Scofield 2008/08/16 line 1 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 8 6 4 2 -8 -6 0 -4 -2 -2 0 -4 2 4 -6 6 8 -8 Contents 1 Basics 2 1.1 What is Octave? ........................... 2 1.2 Help! . 2 1.3 Input conventions . 3 1.4 Variables and standard operations . 3 2 Vector and matrix operations 4 2.1 Vectors . 4 2.2 Matrices . 4 1 2.3 Basic matrix arithmetic . 5 2.4 Element-wise operations . 5 2.5 Indexing and slicing . 6 2.6 Solving linear systems of equations . 7 2.7 Inverses, decompositions, eigenvalues . 7 2.8 Testing for zero elements . 8 3 Control structures 8 3.1 Functions . 8 3.2 Global variables . 9 3.3 Loops . 9 3.4 Branching . 9 3.5 Functions of functions . 10 3.6 Efficiency considerations . 10 3.7 Input and output . 11 4 Graphics 11 4.1 2D graphics . 11 4.2 3D graphics: . 12 4.3 Commands for 2D and 3D graphics . 13 5 Exercises 13 5.1 Linear algebra . 13 5.2 Timing . 14 5.3 Stability functions of BDF-integrators . 14 5.4 3D plot . 15 5.5 Hilbert matrix . 15 5.6 Least square fit of a straight line . 16 5.7 Trapezoidal rule . 16 1 Basics 1.1 What is Octave? Octave is an interactive programming language specifically suited for vectoriz- able numerical calculations.
- 
												  Books About Computing ToolsBooks about Programming and Computing Tools Separate Section of: Books about Computing, Programming, Algorithms, and Software Development Collection of References edited by Stanislav Sýkora Permalink via DOI: 10.3247/SL6Refs16.001 Stan's LIBRARY and its Programming Section Extra Byte | Stan's HUB Free online texts Forward a missing book reference Site Plan & SEARCH This growing compilation includes titles yet to be released (they have a month specified in the release date). The entries are sorted by publication year and the first Author. Green-color titles indicate educational texts. You can download a PDF version of this document for off-line use. But keep coming back, the list is growing! Many of the books are available from Amazon. Entering Amazon from here helps this site at no cost to you. F Other Lists: Popular Science F Mathematics F Physics F Chemistry Visitor # Patents+IP F Electronics | DSP | Tinkering F Computing Spintronics F Materials ADVERTISE with us WWW issues F Instruments / Measurements Quantum Computing F NMR | ESR | MRI F Spectroscopy Extra Byte Hint: the F symbols above, where present, are links to free online texts (books, courses, theses, ...) Advance notices (years ≥ 2016) and, at page bottom, Related Works: Link Directories: SCIENCE | Edu+Fun 1. Garvan Frank, MATH | COMPUTING The Maple Book, PHYSICS | CHEMISTRY 2nd Edition, Chapman and Hall/CRC, February 2016. ISBN 978-1439898286. Hardcover >>. NMR-MRI-ESR-NQR 2. Green Dale, ELECTRONICS Procedural Content Generation for C++ Game Development, PATENTS+IP Packt Publishing, March 2016. Kindle >>. WWW stuff 3. Guido Sarah, Introduction to Machine Learning with Python, Other resources: O'Reilly Media, January 2016.
- 
												  Solving Equations; Patterns, Functions, and Algebra; 8.15AMathematics Enhanced Scope and Sequence – Grade 8 Solving Equations Reporting Category Patterns, Functions, and Algebra Topic Solving equations in one variable Primary SOL 8.15a The student will solve multistep linear equations in one variable with the variable on one and two sides of the equation. Materials • Sets of algebra tiles • Equation-Solving Balance Mat (attached) • Equation-Solving Ordering Cards (attached) • Be the Teacher: Solving Equations activity sheet (attached) • Student whiteboards and markers Vocabulary equation, variable, coefficient, constant (earlier grades) Student/Teacher Actions (what students and teachers should be doing to facilitate learning) 1. Give each student a set of algebra tiles and a copy of the Equation-Solving Balance Mat. Lead students through the steps for using the tiles to model the solutions to the following equations. As you are working through the solution of each equation with the students, point out that you are undoing each operation and keeping the equation balanced by doing the same thing to both sides. Explain why you do this. When students are comfortable with modeling equation solutions with algebra tiles, transition to writing out the solution steps algebraically while still using the tiles. Eventually, progress to only writing out the steps algebraically without using the tiles. • x + 3 = 6 • x − 2 = 5 • 3x = 9 • 2x + 1 = 9 • −x + 4 = 7 • −2x − 1 = 7 • 3(x + 1) = 9 • 2x = x − 5 Continue to allow students to use the tiles whenever they wish as they work to solve equations. 2. Give each student a whiteboard and marker. Provide students with a problem to solve, and as they write each step, have them hold up their whiteboards so you can ensure that they are completing each step correctly and understanding the process.
- 
												  Singular Value Decomposition and Its Numerical ComputationsSingular Value Decomposition and its numerical computations Wen Zhang, Anastasios Arvanitis and Asif Al-Rasheed ABSTRACT The Singular Value Decomposition (SVD) is widely used in many engineering fields. Due to the important role that the SVD plays in real-time computations, we try to study its numerical characteristics and implement the numerical methods for calculating it. Generally speaking, there are two approaches to get the SVD of a matrix, i.e., direct method and indirect method. The first one is to transform the original matrix to a bidiagonal matrix and then compute the SVD of this resulting matrix. The second method is to obtain the SVD through the eigen pairs of another square matrix. In this project, we implement these two kinds of methods and develop the combined methods for computing the SVD. Finally we compare these methods with the built-in function in Matlab (svd) regarding timings and accuracy. 1. INTRODUCTION The singular value decomposition is a factorization of a real or complex matrix and it is used in many applications. Let A be a real or a complex matrix with m by n dimension. Then the SVD of A is: where is an m by m orthogonal matrix, Σ is an m by n rectangular diagonal matrix and is the transpose of n ä n matrix. The diagonal entries of Σ are known as the singular values of A. The m columns of U and the n columns of V are called the left singular vectors and right singular vectors of A, respectively. Both U and V are orthogonal matrices.
- 
												  An Alternative Algorithm for Computing the Betti Table of a Monomial Ideal 3AN ALTERNATIVE ALGORITHM FOR COMPUTING THE BETTI TABLE OF A MONOMIAL IDEAL MARIA-LAURA TORRENTE AND MATTEO VARBARO Abstract. In this paper we develop a new technique to compute the Betti table of a monomial ideal. We present a prototype implementation of the resulting algorithm and we perform numerical experiments suggesting a very promising efficiency. On the way of describing the method, we also prove new constraints on the shape of the possible Betti tables of a monomial ideal. 1. Introduction Since many years syzygies, and more generally free resolutions, are central in purely theo- retical aspects of algebraic geometry; more recently, after the connection between algebra and statistics have been initiated by Diaconis and Sturmfels in [DS98], free resolutions have also become an important tool in statistics (for instance, see [D11, SW09]). As a consequence, it is fundamental to have efficient algorithms to compute them. The usual approach uses Gr¨obner bases and exploits a result of Schreyer (for more details see [Sc80, Sc91] or [Ei95, Chapter 15, Section 5]). The packages for free resolutions of the most used computer algebra systems, like [Macaulay2, Singular, CoCoA], are based on these techniques. In this paper, we introduce a new algorithmic method to compute the minimal graded free resolution of any finitely generated graded module over a polynomial ring such that some (possibly non- minimal) graded free resolution is known a priori. We describe this method and we present the resulting algorithm in the case of monomial ideals in a polynomial ring, in which situ- ation we always have a starting nonminimal graded free resolution.
- 
												  Diffman: an Object-Oriented MATLAB Toolbox for Solving Differential Equations on ManifoldsApplied Numerical Mathematics 39 (2001) 323–347 www.elsevier.com/locate/apnum DiffMan: An object-oriented MATLAB toolbox for solving differential equations on manifolds Kenth Engø a,∗,1, Arne Marthinsen b,2, Hans Z. Munthe-Kaas a,3 a Department of Informatics, University of Bergen, N-5020 Bergen, Norway b Department of Mathematical Sciences, NTNU, N-7491 Trondheim, Norway Abstract We describe an object-oriented MATLAB toolbox for solving differential equations on manifolds. The software reflects recent development within the area of geometric integration. Through the use of elements from differential geometry, in particular Lie groups and homogeneous spaces, coordinate free formulations of numerical integrators are developed. The strict mathematical definitions and results are well suited for implementation in an object- oriented language, and, due to its simplicity, the authors have chosen MATLAB as the working environment. The basic ideas of DiffMan are presented, along with particular examples that illustrate the working of and the theory behind the software package. 2001 IMACS. Published by Elsevier Science B.V. All rights reserved. Keywords: Geometric integration; Numerical integration of ordinary differential equations on manifolds; Numerical analysis; Lie groups; Lie algebras; Homogeneous spaces; Object-oriented programming; MATLAB; Free Lie algebras 1. Introduction DiffMan is an object-oriented MATLAB [24] toolbox designed to solve differential equations evolving on manifolds. The current version of the toolbox addresses primarily the solution of ordinary differential equations. The solution techniques implemented fall into the category of geometric integrators— a very active area of research during the last few years. The essence of geometric integration is to construct numerical methods that respect underlying constraints, for instance, the configuration space * Corresponding author.
- 
												  Computations in Algebraic Geometry with Macaulay 2Computations in algebraic geometry with Macaulay 2 Editors: D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels Preface Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re- cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith- mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv- ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi- mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all.
- 
												  Gretl User's GuideGretl User’s Guide Gnu Regression, Econometrics and Time-series Allin Cottrell Department of Economics Wake Forest university Riccardo “Jack” Lucchetti Dipartimento di Economia Università Politecnica delle Marche December, 2008 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation (see http://www.gnu.org/licenses/fdl.html). Contents 1 Introduction 1 1.1 Features at a glance ......................................... 1 1.2 Acknowledgements ......................................... 1 1.3 Installing the programs ....................................... 2 I Running the program 4 2 Getting started 5 2.1 Let’s run a regression ........................................ 5 2.2 Estimation output .......................................... 7 2.3 The main window menus ...................................... 8 2.4 Keyboard shortcuts ......................................... 11 2.5 The gretl toolbar ........................................... 11 3 Modes of working 13 3.1 Command scripts ........................................... 13 3.2 Saving script objects ......................................... 15 3.3 The gretl console ........................................... 15 3.4 The Session concept ......................................... 16 4 Data files 19 4.1 Native format ............................................. 19 4.2 Other data file formats ....................................... 19 4.3 Binary databases ..........................................