Uniqueness of the Helicoid and the Classical Theory of Minimal Surfaces
Uniqueness of the helicoid and the classical theory of minimal surfaces William H. Meeks III∗ Joaqu´ın P´erez ,† September 4, 2006 Abstract We present here a survey of recent spectacular successes in classical minimal surface theory. We highlight this article with the theorem that the plane and the helicoid are the unique simply-connected, complete, embedded minimal surfaces in R3; the proof of this result depends primarily on work of Meeks and Rosenberg and of Colding and Minicozzi. Rather than culminating and ending the theory with this uniqueness result, significant advances continue to be made as we enter a new golden age for classical minimal surface theory. Through our telling of the story of the uniqueness of the helicoid, we hope to pass on to the general mathematical public a glimpse of the intrinsic beauty of classical minimal surface theory, and our own excitement and perspective of what is happening at this historical moment in a very classical subject. Mathematics Subject Classification: Primary 53A10, Secondary 49Q05, 53C42. Key words and phrases: Minimal surface, minimal lamination, locally simply-connected, finite total curvature, conformal structure, harmonic function, recurrence, transience, parabolic Riemann surface, harmonic measure, universal superharmonic function, Ja- cobi function, stability, index of stability, curvature estimates, maximum principle at infinity, limit tangent cone at infinity, limit tangent plane at infinity, parking garage, blow-up on the scale of topology, minimal planar domain, isotopy class. ∗This material is based upon work for the NSF under Award No. DMS - 0405836. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the NSF.
[Show full text]