Theory and Visible Dark Photons Primer

Total Page:16

File Type:pdf, Size:1020Kb

Theory and Visible Dark Photons Primer Dark Sectors 2016 ! Theory and Visible Dark Photons Primer Natalia Toro ! Prepared with Rouven Essig & Philip Schuster Welcome! 2 Looking Back In 2009, SLAC held a “Dark Forces” workshop. At that time… • Astrophysics data spurred renewed theoretical interest Dark Forces Workshop 2009 • Re-analysis of data from multi- purpose detectors opened window to the dark sector • First-generation experiments were starting to take shape. 3 Searching in Dumps Now is a greatdiscoverable with new, low- time! power beam dump 0.01 0.1 1 106 seconds @ 100 nA, 6 GeV 0.01 0.01 10-4 Scalar Thermal Relic DM Broad, one signal event per hour KLOE -3 10 LHC HADES KLOE -5 BaBar -4 3 3 10 a,5 APEX 10 10 10 PHENIX Test -5 LEP favored A1 10 * a,±2 NA48/2 E774 -6 10-6 10 ae international 4 4 4 E774 CRESST II 10 10 ) 10-7 BaBar E141(10cm, A' -7 m -8 10 / 10 XENON 10 5 .3 mC) 5 2 -9 ⇥ ⇥ 10 10 10 m activity ( -8 E141 -10 E137 10 D 10 E137 -11 Density 6 6 2 10 Relic (200m, 30 C) 10 10 -9 -12 LSND 10 = 10 +CERN, milli- y searching for -13 MegaWatt x Year 10 7 7 -10 x SIDM 10 charge 10 10 10-14 LSND lower limit Orsay U70 10-15 -11 dark sectors! 8 8 10 10-16 10 10 -3 -2 -1 (dump10 experiments10 also constrain10 1 1 10 102 103 0.01 0.1 1 longer-lived decaym modes,A' [GeV ] m (MeV) mA' GeV see Schuster, NT, Yavin to appear) *E774: 20cm, .3 mC 8 Many of the first-generation dedicated experiments are still ongoing. Their reach can be anticipated reliably, and it’s clear what limits they run into. It’s a perfect time to ask: Where do we go next?! That’s the focus of this workshop. Next 3 talks: assessing the state of the field today, to set stage for these discussions. 4 Where to now? • What new ideas will propel us past the obstacles found in designing the first-generation experiments? • What important possibilities are we overlooking, that we should be searching for? • What opportunities do we have with upcoming facilities and/or new technologies that didn’t exist 7 years ago? • What do we want this field to look like in 5-10 years? What is within reach? What should we focus on? 5 Outline • Why Dark Sectors? • Organizing Questions • Visibly Decaying Dark Photon Searches – Properties – Search Strategies – Outstanding Challenges 6 Why Dark Sectors? • Nature seems well described by SU(3)xSU(2)xU(1) gauge theory – We need to check this assumption!! • Precedent in Standard Model for rare/subtle effects to be important (Radioactivity, Rutherford scattering, neutrinos, parity violation…) • We already know we are missing something… 7 There is a dark sector! Baryons Dark energy Dark matter • What is it? • Where did it come from? 8 Theory Prejudice Least addition of new particles? ! Motivates SM weak multiplet or axion [SM itself is far from minimal in this sense] Theory Prejudice Least addition of new Parallel structure to particles? Standard Model ⇒ ! Motivates SM weak Motivates weak multiplet or axion coupling searches at modest energy [SM itself is far from minimal in this sense] Looking for Dark Sectors Whatever is in the dark sector, only three sizeable interactions allowed by Standard Model symmetries: 1 Y µν Vector Portal 2 Y Fµν F 0 2 2 Higgs Portal h ⇥ exotic rare Higgs decays h | | | | Neutrino Portal ⌫ (hL)⇥ not-so-sterile neutrinos 10 New gauge interactions ¯ µ Gauge Portal g qi iσ¯ iVµ i X A new vector can also couple to anomaly-free global symmetries of the Standard Model (or, with appropriate new matter, to anomalous symmetries) e.g. B-L, Lμ-Lτ, … Looking for Dark Sectors Whatever is in the dark sector, only three sizeable interactions allowed by Standard Model symmetries: focus for this talk – 1 Y µν Vector Portal 2 Y Fµν F 0 big opportunity for low- energy experiments 2 2 Higgs Portal h ⇥ exotic rare Higgs decays h | | | | Neutrino Portal ⌫ (hL)⇥ not-so-sterile neutrinos ¯ µ Gauge Portal g qi iσ¯ iVµ sometimes “bycatch” in vector portal searches, but i X some interesting cases 12 require dedicated searches! Sources and Sizes of Kinetic 1 Y µν Mixing 2 Y Fµν F 0 • If absent from fundamental theory, can still be generated by perturbative (or non-perturbative) quantum effects – Simplest case: one heavy particle ψ with both EM charge & dark charge ψ γ e gD A0 egD m 2 4 generates ✏ 2 log M 10− 10− ⇠ 16⇡ ⇤ ⇠ − 13 Sources and Sizes of Kinetic 1 F Y F µν Mixing 2 Y µν 0 • If absent from fundamental theory, can still be generated by perturbative (or non-perturbative) quantum effects – In Grand Unified Theory, symmetry forbids tree-level & 1-loop mechanisms. GUT-breaking enters at 2 loops ψ γ X e gD A0 3 5 generating ✏ 10− 10− 7 ⇠ − (→ 10 − if both U(1)’s are in unified groups) 14 Effects of Kinetic Mixing Regardless of where it comes from, kinetic mixing can always be re-interpreted as (mainly) giving matter of electric charge qe an A′ coupling ∝ qεe A′ e × + e− e µ,⇡,... Dark-sector matter can have an independent coupling gD to A′ Hints of Dark Forces? • High-energy cosmic ray anomalies • Direct detection anomalies • Muon g-2 • Muonic hydrogen Lamb shift • 8Be decay resonance • Astrophysical hints of dark matter self-interaction? • 511 keV line • keV γ-ray excess • Galactic center excess 16 Taxonomy of Dark Sectors A few simple questions about the new physics… 1. What is the mediator? Kinetically mixed dark photon? Scalar? Flavor gauge boson? SM dipole interaction? 2. Is it lighter or heavier than… – any dark matter in dark sector? (invisible decays) – relevant SM particles? 2 me (visible decays) – new unstable particles? (“rich” multi-body decays) 17 Taxonomy of Dark Sectors If dark matter is relevant… 3. How is it produced? – Thermally (through annihilation to SM)? – Asymmetric? – Other? May imply constraints/relations among dark-sector couplings 4. Fermion or scalar? 5. Elastic (mass-diagonal) or inelastic (mass-off-diagonal) interactions? Affect signals in various experiments and the comparisons among them 18 Taxonomy of Dark Sectors Kinetically mixed dark photon decays to SM Not produced on-shell * can still mediate dark sector production heavy Visible decays – 2 width Γ~αmAʹϵ 2 me Dark photon mass Long-lived Aʹ➝3γ 0 Dark sector millicharges Taxonomy of Dark Sectors Kinetically mixed dark photon decays to SM Not produced on-shell * can still mediate dark sector production heavy Visible decays – Visible & missing 2 width Γ~αmAʹϵ mass searches 2 me Cosmological & stellar Dark photon mass Long-lived Aʹ➝3γ bounds, solar production, light thru walls 0 Dark sector millicharges Taxonomy of Dark Sectors Kinetically mixed dark photon coupled to DM Not produced on-shell * can still mediate DM production heavy ⇒ invisible signal Aʹ DM Visible decays – m Decays mainlyD to 2 ʹ = 2 m width Γ~αmAʹϵ DM anti-DM pair, mA 2 me width Γ~ α + subleasing visible decay Long- Dark photon mass lived Aʹ➝3γ 0 Dark matter mass Taxonomy of Dark Sectors DM Signals at colliders Contact operator heavy DM production Resonant DM DM production ʹ = 2 m mA 2 me Near-threshold DM production Dark photon mass (off-shell light mediator) 0 Dark matter mass Sub-MeV Dark Photons [Figure from 2013 Intensity Frontier report – Javier Redondo] Sub-MeV Dark Photons Light thru walls Cavity searches Solar+scatter 4 4 frequency Hz kHz MHz GHz !4 1 inside the detector. Given the significant enhancement 10 Jupiter Earth 0.1 in the low-energy part of the solar dark photon spec- Coulomb ALPS CROWS CROWS 10[Figure-2 from 2013Coulomb Intensity Frontiertrum, report Fig. 1, a detector– Javier with a Redondo] low threshold energy of !6 limit 10 CAST 10-3 O(100) eV will have a clear advantage. To date, the only using published 10-4 longitudinal work that considers limits on dark photons from direct !8 -5 10 10 limit DM detection is by HPGe collaboration, Ref. [9]. How- Sun mode 10-6 CMB ever, it used incomplete calculations of the solar flux, and HB this Κ ∂ Future HB ! XENON10 10-7 work as we will show in the following, the low-energy ioniza- 10 10 high CoGeNT - Sun 10 8 -Q H tion signals by the XENON10 [10] and CoGeNT [11, 12] microwave -9 collaborations yield far more stringent limits. 10 L ALPS II !12 cavity 10 10-10 The XENON10 collaboration has published a study experiment 10-11 on low-energy ionization events in [10]. With 12.1 eV !14 10-12 ionization energy, the absorption of a dark photon with 10 10-13 300 eV energy can produce about 25 electrons. To get a -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 ! ! ! 10 10 10 10 10 10 10 10 10 10 10 10 10 10 conservative constraint we count all the ionization events 10 6 10 4 10 2 100 102 104 mg' eV within 20 keV nuclear recoil equivalent in Ref. [10], which mV !eV" FIG. 2: The reach of cavity searches for hidden photons, taking advantage of the improved transmissioncorresponds of the to a signal of about 80 electrons. The total @ D longitudinal modes. The solid blue region is the published limit from the CROWS experiment [29],number calculated of using events is 246, which indicates a 90% C.L up- FIG. 2: Constraints on κ as functions of mV .Thesolid, the results of [25].
Recommended publications
  • Dark Energy and Dark Matter As Inertial Effects Introduction
    Dark Energy and Dark Matter as Inertial Effects Serkan Zorba Department of Physics and Astronomy, Whittier College 13406 Philadelphia Street, Whittier, CA 90608 [email protected] ABSTRACT A disk-shaped universe (encompassing the observable universe) rotating globally with an angular speed equal to the Hubble constant is postulated. It is shown that dark energy and dark matter are cosmic inertial effects resulting from such a cosmic rotation, corresponding to centrifugal (dark energy), and a combination of centrifugal and the Coriolis forces (dark matter), respectively. The physics and the cosmological and galactic parameters obtained from the model closely match those attributed to dark energy and dark matter in the standard Λ-CDM model. 20 Oct 2012 Oct 20 ph] - PACS: 95.36.+x, 95.35.+d, 98.80.-k, 04.20.Cv [physics.gen Introduction The two most outstanding unsolved problems of modern cosmology today are the problems of dark energy and dark matter. Together these two problems imply that about a whopping 96% of the energy content of the universe is simply unaccounted for within the reigning paradigm of modern cosmology. arXiv:1210.3021 The dark energy problem has been around only for about two decades, while the dark matter problem has gone unsolved for about 90 years. Various ideas have been put forward, including some fantastic ones such as the presence of ghostly fields and particles. Some ideas even suggest the breakdown of the standard Newton-Einstein gravity for the relevant scales. Although some progress has been made, particularly in the area of dark matter with the nonstandard gravity theories, the problems still stand unresolved.
    [Show full text]
  • Arxiv:1712.01768V1 [Hep-Ex] 5 Dec 2017
    Prospects of the SHiP and NA62 experiments at CERN for hidden sector searches Philippe Mermod∗, on behalf of the SHiP Collaboration Particle Physics Department, Faculty of Science, University of Geneva, Geneva, Switzerland E-mail: [email protected] High-intensity proton beams impinging on a fixed target or beam dump allow to probe new physics via the production of new weakly-coupled particles in hadron decays. The CERN SPS provides opportunities to do so with the running NA62 experiment and the planned SHiP ex- periment. Reconstruction of kaon decay kinematics (beam mode) allows NA62 to probe for the existence of right-handed neutrinos and dark photons with masses below 0.45 GeV. Direct recon- struction of displaced vertices from the decays of new neutral particles (dump mode) will allow NA62 and SHiP to probe right-handed neutrinos with masses up to 5 GeV and mixings down to several orders of magnitude smaller than current constraints, in regions favoured in models which explain at once neutrino masses, matter-antimatter asymmetry and dark matter. arXiv:1712.01768v1 [hep-ex] 5 Dec 2017 The 19th International Workshop on Neutrinos from Accelerators-NUFACT2017 25-30 September, 2017 Uppsala University, Uppsala, Sweden ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Hidden sector searches with SHiP and NA62 Philippe Mermod 1. Introduction The LHC experiments have been running for several years without finding new physics at the TeV scale. A complementary approach is to probe the presence of new particles at lower energy scales with couplings to the Standard Model so weak that they have escaped detection in previous searches.
    [Show full text]
  • Dark Matter and the Early Universe: a Review Arxiv:2104.11488V1 [Hep-Ph
    Dark matter and the early Universe: a review A. Arbey and F. Mahmoudi Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, UMR 5822, 69622 Villeurbanne, France Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France Abstract Dark matter represents currently an outstanding problem in both cosmology and particle physics. In this review we discuss the possible explanations for dark matter and the experimental observables which can eventually lead to the discovery of dark matter and its nature, and demonstrate the close interplay between the cosmological properties of the early Universe and the observables used to constrain dark matter models in the context of new physics beyond the Standard Model. arXiv:2104.11488v1 [hep-ph] 23 Apr 2021 1 Contents 1 Introduction 3 2 Standard Cosmological Model 3 2.1 Friedmann-Lema^ıtre-Robertson-Walker model . 4 2.2 A quick story of the Universe . 5 2.3 Big-Bang nucleosynthesis . 8 3 Dark matter(s) 9 3.1 Observational evidences . 9 3.1.1 Galaxies . 9 3.1.2 Galaxy clusters . 10 3.1.3 Large and cosmological scales . 12 3.2 Generic types of dark matter . 14 4 Beyond the standard cosmological model 16 4.1 Dark energy . 17 4.2 Inflation and reheating . 19 4.3 Other models . 20 4.4 Phase transitions . 21 5 Dark matter in particle physics 21 5.1 Dark matter and new physics . 22 5.1.1 Thermal relics . 22 5.1.2 Non-thermal relics .
    [Show full text]
  • Effective Description of Dark Matter As a Viscous Fluid
    Motivation Framework Perturbation theory Effective viscosity Results FRG improvement Conclusions Effective Description of Dark Matter as a Viscous Fluid Nikolaos Tetradis University of Athens Work with: D. Blas, S. Floerchinger, M. Garny, U. Wiedemann . N. Tetradis University of Athens Effective Description of Dark Matter as a Viscous Fluid Motivation Framework Perturbation theory Effective viscosity Results FRG improvement Conclusions Distribution of dark and baryonic matter in the Universe Figure: 2MASS Galaxy Catalog (more than 1.5 million galaxies). N. Tetradis University of Athens Effective Description of Dark Matter as a Viscous Fluid Motivation Framework Perturbation theory Effective viscosity Results FRG improvement Conclusions Inhomogeneities Inhomogeneities are treated as perturbations on top of an expanding homogeneous background. Under gravitational attraction, the matter overdensities grow and produce the observed large-scale structure. The distribution of matter at various redshifts reflects the detailed structure of the cosmological model. Define the density field δ = δρ/ρ0 and its spectrum hδ(k)δ(q)i ≡ δD(k + q)P(k): . N. Tetradis University of Athens Effective Description of Dark Matter as a Viscous Fluid 31 timation method in its entirety, but it should be equally valid. 7.3. Comparison to other results Figure 35 compares our results from Table 3 (modeling approach) with other measurements from galaxy surveys, but must be interpreted with care. The UZC points may contain excess large-scale power due to selection function effects (Padmanabhan et al. 2000; THX02), and the an- gular SDSS points measured from the early data release sample are difficult to interpret because of their extremely broad window functions.
    [Show full text]
  • Review of Dark Matter
    Review of Dark Matter Leonard S. Kisslinger Department of Physics, Carnegie Mellon University, Pittsburgh PA 15213 USA. Debasish Das Saha Institute of Nuclear Physics,1/AF, Bidhan Nagar, Kolkata 700064, INDIA. PACS Indices:11.30.Er,14.60.Lm,13.15.+g Keywords: dark matter, sterile neutrinos, dark photons Abstract In this review of Dark Matter we review dark matter as sterile neutrinos, fermions, with their present and possibly future detection via neutrino Oscillations. We review the creation of Dark Matter via interactions with the Dark Energy (quintesence) field. We also review bosons as dark matter, discussing a proposed search for dark photons. Since photons are vector bosons, if dark photons exist at least part of dark matter are vector bosons. Ongoing experimental detection of Dark Matter is reviewed. 1 Introduction The most important experiments which have estimated the amount of Dark Matter in the present universe are Cosmic Microwave Background Radiation (CMBR) experiments, discussed in the section 2. There have been a number of theoretical models for the creation of Dark Matter, which is reviewed in section 3. It is almost certain that sterile nuetrinos are part of Dark Matter. Experiments detecting sterile nuetrinos via neutrino oscillation and a theoretical study of neutrino oscil- lations with 3 active and 3 sterile neutrinos with the present results are discussed in section 4. Also a recent search for sub-Gev Dark Matter by the MiniBooNE-DM Collaboration is briefly discussed in section 4. Neutrinos are fermions with quantum spin 1/2. It is possible that some Dark Matter particle are vector bosons with quantum spin 1, like the photon.
    [Show full text]
  • Light Dark Matter Searches with Positrons
    Eur. Phys. J. A manuscript No. (will be inserted by the editor) Light dark matter searches with positrons M. Battaglieri1,2, A. Bianconi3,4, P. Bisio5, M. Bondì1, A. Celentano1, G. Costantini3,4, P.L. Cole6, L. Darmé7, R. De Vita1, A. D’Angelo8,9, M. De Napoli10, L. El Fassi11, V. Kozhuharov7,12, A. Italiano10, G. Krnjaic13,14, L. Lanza8, M. Leali3,4, L. Marsicano1,a, V. Mascagna4,15, S. Migliorati3,4, E. Nardi7, M. Raggi16,17,a, N. Randazzo10, E. Santopinto1, E. Smith2, M. Spreafico5, S. Stepanyan2, M. Ungaro2, P. Valente17, L. Venturelli3,4, M.H. Wood18 1Istituto Nazionale di Fisica Nucleare, Sezione di Genova, 16146 Genova, Italy 2Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 3Università degli Studi di Brescia, 25123 Brescia, Italy 4INFN, Sezione di Pavia, 27100 Pavia, Italy 5Università degli Studi di Genova, 16146 Genova, Italy 6Lamar University, 4400 MLK Blvd, PO Box 10046, Beaumont, Texas 77710 7Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi 54, Frascati, Italy 8INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy 9Università di Roma Tor Vergata, 00133 Rome Italy 10Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 95125 Catania, Italy 11Mississippi State University, Mississippi State, Mississippi 39762-5167, USA 12Faculty of physics, University of Sofia, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria 13Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 14Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA 15Università degli Studi dell’Insubria, 22100 Como, Italy 16Sapienza Università di Roma, piazzale Aldo Moro 5 Roma, Italy 17Istituto Nazionale di Fisica Nucleare, Sezione di Roma, piazzale Aldo Moro 5 Roma, Italy 18Canisius College, Buffalo, NY 14208, USA Draft : May 27, 2021 Abstract We discuss two complementary strategies to 1 Introduction and motivations search for light dark matter (LDM) exploiting the posi- tron beam possibly available in the future at Jefferson One of the most compelling arguments motivating the Laboratory.
    [Show full text]
  • Modified Newtonian Dynamics
    J. Astrophys. Astr. (December 2017) 38:59 © Indian Academy of Sciences https://doi.org/10.1007/s12036-017-9479-0 Modified Newtonian Dynamics (MOND) as a Modification of Newtonian Inertia MOHAMMED ALZAIN Department of Physics, Omdurman Islamic University, Omdurman, Sudan. E-mail: [email protected] MS received 2 February 2017; accepted 14 July 2017; published online 31 October 2017 Abstract. We present a modified inertia formulation of Modified Newtonian dynamics (MOND) without retaining Galilean invariance. Assuming that the existence of a universal upper bound, predicted by MOND, to the acceleration produced by a dark halo is equivalent to a violation of the hypothesis of locality (which states that an accelerated observer is pointwise inertial), we demonstrate that Milgrom’s law is invariant under a new space–time coordinate transformation. In light of the new coordinate symmetry, we address the deficiency of MOND in resolving the mass discrepancy problem in clusters of galaxies. Keywords. Dark matter—modified dynamics—Lorentz invariance 1. Introduction the upper bound is inferred by writing the excess (halo) acceleration as a function of the MOND acceleration, The modified Newtonian dynamics (MOND) paradigm g (g) = g − g = g − gμ(g/a ). (2) posits that the observations attributed to the presence D N 0 of dark matter can be explained and empirically uni- It seems from the behavior of the interpolating function fied as a modification of Newtonian dynamics when the as dictated by Milgrom’s formula (Brada & Milgrom gravitational acceleration falls below a constant value 1999) that the acceleration equation (2) is universally −10 −2 of a0 10 ms .
    [Show full text]
  • Axion Dark Matter from Higgs Inflation with an Intermediate H∗
    Axion dark matter from Higgs inflation with an intermediate H∗ Tommi Tenkanena and Luca Visinellib;c;d aDepartment of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA bDepartment of Physics and Astronomy, Uppsala University, L¨agerhyddsv¨agen1, 75120 Uppsala, Sweden cNordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden dGravitation Astroparticle Physics Amsterdam (GRAPPA), Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands E-mail: [email protected], [email protected], [email protected] Abstract. In order to accommodate the QCD axion as the dark matter (DM) in a model in which the Peccei-Quinn (PQ) symmetry is broken before the end of inflation, a relatively low scale of inflation has to be invoked in order to avoid bounds from DM isocurvature 9 fluctuations, H∗ . O(10 ) GeV. We construct a simple model in which the Standard Model Higgs field is non-minimally coupled to Palatini gravity and acts as the inflaton, leading to a 8 scale of inflation H∗ ∼ 10 GeV. When the energy scale at which the PQ symmetry breaks is much larger than the scale of inflation, we find that in this scenario the required axion mass for which the axion constitutes all DM is m0 . 0:05 µeV for a quartic Higgs self-coupling 14 λφ = 0:1, which correspond to the PQ breaking scale vσ & 10 GeV and tensor-to-scalar ratio r ∼ 10−12. Future experiments sensitive to the relevant QCD axion mass scale can therefore shed light on the physics of the Universe before the end of inflation.
    [Show full text]
  • Modified Newtonian Dynamics, an Introductory Review
    Modified Newtonian Dynamics, an Introductory Review Riccardo Scarpa European Southern Observatory, Chile E-mail [email protected] Abstract. By the time, in 1937, the Swiss astronomer Zwicky measured the velocity dispersion of the Coma cluster of galaxies, astronomers somehow got acquainted with the idea that the universe is filled by some kind of dark matter. After almost a century of investigations, we have learned two things about dark matter, (i) it has to be non-baryonic -- that is, made of something new that interact with normal matter only by gravitation-- and, (ii) that its effects are observed in -8 -2 stellar systems when and only when their internal acceleration of gravity falls below a fix value a0=1.2×10 cm s . Being completely decoupled dark and normal matter can mix in any ratio to form the objects we see in the universe, and indeed observations show the relative content of dark matter to vary dramatically from object to object. This is in open contrast with point (ii). In fact, there is no reason why normal and dark matter should conspire to mix in just the right way for the mass discrepancy to appear always below a fixed acceleration. This systematic, more than anything else, tells us we might be facing a failure of the law of gravity in the weak field limit rather then the effects of dark matter. Thus, in an attempt to avoid the need for dark matter many modifications of the law of gravity have been proposed in the past decades. The most successful – and the only one that survived observational tests -- is the Modified Newtonian Dynamics.
    [Show full text]
  • Lectures on BSM and Dark Matter Theory (2Nd Class)
    Lectures on BSM and Dark Matter theory (2nd class) Stefania Gori UC Santa Cruz 15th annual Fermilab - CERN Hadron Collider Physics Summer School August 10-21, 2020 Twin Higgs models & the hierarchy problem SMA x SMB x Z2 Global symmetry of the scalar potential (e.g. SU(4)) The SM Higgs is a (massless) Nambu-Goldstone boson ~SM Higgs doublet Twin Higgs doublet S.Gori 23 Twin Higgs models & the hierarchy problem SMA x SMB x Z2 Global symmetry of the scalar potential (e.g. SU(4)) The SM Higgs is a (massless) Nambu-Goldstone boson ~SM Higgs doublet Twin Higgs doublet Loop corrections to the Higgs mass: HA HA HB HB yA yA yB yB top twin-top Loop corrections to mass are SU(4) symmetric no quadratically divergent corrections! S.Gori 23 Twin Higgs models & the hierarchy problem SMA x SMB x Z2 Global symmetry of the scalar potential (e.g. SU(4)) The SM Higgs is a (massless) Nambu-Goldstone boson ~SM Higgs doublet Twin Higgs doublet Loop corrections to the Higgs mass: HA HA HB HB SU(4) and Z2 are (softly) broken: yA yA yB yB top twin-top Loop corrections to mass are SU(4) symmetric no quadratically divergent corrections! S.Gori 23 Phenomenology of the twin Higgs A typical spectrum: Htwin Twin tops Twin W, Z SM Higgs Twin bottoms Twin taus Glueballs S.Gori 24 Phenomenology of the twin Higgs 1. Production of the twin Higgs The twin Higgs will mix with the 125 GeV Higgs with a mixing angle ~ v2 / f2 Because of this mixing, it can be produced as a SM Higgs boson (reduced rates!) A typical spectrum: Htwin Twin tops Twin W, Z SM Higgs Twin bottoms Twin taus Glueballs S.Gori 24 Phenomenology of the twin Higgs 1.
    [Show full text]
  • Arxiv:2107.07524V1 [Hep-Ph] 15 Jul 2021
    Sterile neutrino dark matter catalyzed by a very light dark photon Gonzalo Alonso-Alvarez´ ∗ and James M. Cliney McGill University, Department of Physics, 3600 University St., Montr´eal,QC H3A2T8 Canada Sterile neutrinos (νs) that mix with active neutrinos (νa) are interesting dark matter candidates with a rich cosmological and astrophysical phenomenology. In their simplest incarnation, their production is severely constrained by a combination of structure formation observations and X-ray searches. We show that if active neutrinos couple to an oscillating condensate of a very light Lµ Lτ − gauge field, resonant νa-νs oscillations can occur in the early universe, consistent with νs constituting all of the dark matter, while respecting X-ray constraints on νs νaγ decays. Interesting deviations from standard solar and atmospheric neutrino oscillations can! persist to the present. I. INTRODUCTION the expansion of the universe eventually shuts off the resonance at late times. 1 The possibility that sterile neutrinos νs constitute the The formation of bosonic condensates is conjectured dark matter (DM) of the universe has attracted steady to be possible in the early universe. The most well-known interest since its inception long ago. Supposing that the examples are those of the QCD axion [30{32] and ul- νs abundance is initially negligible, its relic density can tralight scalar dark matter [33], but an analogous phe- be generated by nonresonant oscillations with an active nomenon is possible for light vector bosons [34]. The con- neutrino species νa though mass mixing [1], with a mixing densate can be described in terms of the classical bosonic −6 angle as small as θ 10 for mνs 100 keV [2].
    [Show full text]
  • Supersymmetric Dark Matter Candidates in Light of Constraints from Collider and Astroparticle Observables
    THESE` Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE´ DE GRENOBLE Specialit´ e´ : Physique Theorique´ Arretˆ e´ ministeriel´ : 7 aoutˆ 2006 Present´ ee´ par Jonathan DA SILVA These` dirigee´ par Genevieve` BELANGER´ prepar´ ee´ au sein du Laboratoire d’Annecy-le-Vieux de Physique Theorique´ (LAPTh) et de l’Ecole´ Doctorale de Physique de Grenoble Supersymmetric Dark Matter candidates in light of constraints from collider and astroparticle observables These` soutenue publiquement le 3 juillet 2013, devant le jury compose´ de : arXiv:1312.0257v1 [hep-ph] 1 Dec 2013 Dr. Rohini GODBOLE Professeur, CHEP Bangalore, Inde, Presidente´ Dr. Farvah Nazila MAHMOUDI Maˆıtre de Conferences,´ LPC Clermont, Rapporteur Dr. Ulrich ELLWANGER Professeur, LPT Orsay, Rapporteur Dr. Celine´ BŒHM Charge´ de recherche, Durham University, Royaume-Uni, Examinatrice Dr. Anupam MAZUMDAR Professeur, Lancaster University, Royaume-Uni, Examinateur Dr. Genevieve` BELANGER´ Directeur de Recherche, LAPTh, Directeur de these` A meus av´os. Contents Acknowledgements - Remerciements vii List of Figures xi List of Tables xvii List of Abbreviations xix List of Publications xxiii Introduction1 I Status of particle physics and cosmology ... and beyond5 1 From the infinitely small : the Standard Model of particle physics ...7 1.1 Building of the model : gauge sector . .8 1.2 Matter sector . 10 1.2.1 Leptons . 10 1.2.2 Quarks . 12 1.3 The Higgs mechanism . 13 1.4 Full standard picture . 16 1.5 Successes of the SM . 18 1.6 SM issues . 19 1.6.1 Theoretical problems . 19 1.6.2 Experimental discrepancies . 20 1.6.3 Cosmological connexion . 22 2 ... To the infinitely large : the Lambda Cold Dark Matter model 23 2.1 Theoretical framework .
    [Show full text]