ZANCO Journal of Pure and Applied Sciences Time-Dependent Multiplier for Load Test

Total Page:16

File Type:pdf, Size:1020Kb

ZANCO Journal of Pure and Applied Sciences Time-Dependent Multiplier for Load Test ZANCO Journal of Pure and Applied Sciences The official scientific journal of Salahaddin University-Erbil ZJPAS (2016), 28 (6); 1-7 http://doi.org/10.21271/ZJPAS.28.6.1 Time-Dependent Multiplier for Load Test Kanaan S. Youkhanna Civil Engineering Department, College of Engineering, University of Duhok, Duhok, IRAQ A R T I C L E I N F O A B S T R A C T Article History: The ACI Code does not provide information about the time-dependent Received: 30/08/2015 multiplier for the period (0≤ t ≤1 day). A Single span portal frame is cast to Accepted: 21/06/2016 perform load test. Load test is performed and the results indicate that time- Published: 10/1 /2017 dependent deflection takes place from the first hour after load application. The Keywords: frame passed the load test successfully. Theoretical formula to predict time- beam, dependent multiplier () for the period (0 ≤ t ≤ 1 day) is suggested. The suggested deflection, formula is to be used with the ACI code method in calculating long-term frame, deflection. The suggested formula gives logical value for t = 0 compared to other load test, formulas, also may be used in computer aided design. Time-dependent multiplier. *Corresponding Author: Kanaan S. Youkhanna, E-mail: [email protected] 1. Proof testing to show that a structure 1. INTRODUCTION can safely resist intended design loads 1.1 Load Test with an adequate factor of safety against failure. Concrete structures are designed to carry 2. Proof testing to show that a structure dead and live loads during construction and in can resist the working design loads in a service. The in-place strength of concrete will serviceable fashion where deflections not be equivalent to that measured on standard and cracking are within limits considered acceptable. cylinders (due to handling, placing, 3. Testing to failure to show the ultimate consolidation, and curing). Structural design capacity of a structural member. principles recognize this, and the ACI Code (ACI 2011) has a process of assuring the structural safety of the concrete construction. A general acceptance for the behavior ACI Code, chapter 20, provides provisions for under test load is that a member does not show the use of load testing as one means of strength evidence of failure. evaluation of existing concrete structures. ACI 1.2 Time-Dependent Deflection Committee 437 (ACI 437-2007) reported that the purpose of load testing should be divided Deflections must be controlled to ensure into three distinct categories: satisfactory performance of concrete structures. Considering serviceability of concrete systems, 2 Youkhanna, K. /ZJPAS: 2016, 28(6): 1-7 several reasons to control deflections arise, 2. SCOPE OF RESEARCH among them: In this study, an attempt is made to show 1. To prevent damage of attached that the time-dependent deflection takes place partitions or other construction during the first hours after the application of elements likely to be damaged by large loading. Also, an attempt is made to suggest a deflections. theoretical formula for time-dependent factor 2. To prevent deflections to be noticeable by occupants such as to convey a sense for the period (0 ≤ t ≤ 1 day). Since the load of inadequacy or safety concerns. test is consisted of four stages of load application, it is preferable to prove that time- dependent deflection takes place during the Simplified methods for predicting short- first hours after the application of loading. term and long-term deflections are mainly based on empirical equations that are based on experimental research, these approaches are 3. RESEARCH SIGNIFICANCE available in codes (ACI 2011) (Standard Australia 2009) (Notes on ACI 2008) (CEB – Serviceability requirements make it FIP 1993). An example of simplified imperative for the structural designer to possess approaches is that of Australian Standard for simple and reliable formulas to predict concrete structures (Standard Australia 2009). deflections (instantaneous and particularly According to Australian Standard AS 3600, the time-dependent). For the period (0 ≤ t ≤ 1 day), long-term deflection due to creep and the ACI Code does not provide values of time- shrinkage is derived by multiplying the short- dependent multiplier. So, in this study, a goal term deflection by a factor, Kcs which depends is to set a formula to predict values of time- upon the steel area provided in the member dependent multiplier (ξ) for periods less or cross section at compression and tension zones. equal to 1 day. Nowadays, mathematical This empirical factor for a reinforced concrete formulas, as simple as possible, are required beam or slab is given as for computer aided design. This is another A significant point from the present study. sc K cs 2 1.2 0.8 . Analytical model Ast is proposed (AL-Nu’man 2007) for the 4. Prediction of Deflection According to the calculation of long-term deflections of ACI Code 318 - 2011 reinforced concrete two-way slabs. Mechanism Generally, instantaneous deflection may be of creep and shrinkage in concrete are of a predicted by: similar nature and both are due to the M .L2 movement of moisture from cement gel of 5 a i K. (1) hardened concrete (Lenczner 1981). 48 Ec .I e Where There is lack of information regarding time – dependent multiplier for load test. 3 3 M M I cr (I ) 1 cr (I ) (2) e M g M cr a a f r .I g M cr (3) yt 3 Youkhanna, K. /ZJPAS: 2016, 28(6): 1-7 ' It can be seen from Table (1) and Fig. (1), f 0.62 f c (4) r that there are no values given to time- dependent multiplier ξ for periods less or equal Where I is the effective moment of inertia, e to 1 day. Ig is the gross moment of inertia, Icr is the cracked moment of inertia, Mcr is the cracking moment of the section, Ma is the applied 5. Experimental Work – Model for Load moment, fr is modulus of rupture of concrete, yt Test is the distance from the section's centroidal axis Single span portal frame F1 was cast as (neglecting reinforcement) to the extreme fiber case study for load test. General configuration in tension. Additional time-dependent ’ of frame F1 is shown in Fig. (2). Concrete: fc = deflection, Δ(cp+sh) may be estimated as: 23 MPa. Steel: fy = 700 MPa, Footing: (350x350x100)mm, 4–φ5 mm. Cement fineness is 290 m2/kg (Blaine), initial and final (cpsh) .(i )sust (5) setting times (Vicat) are 150 min and 320 min respectively. Specific Gravity of sand is 2.61 and absorption is 0.69 %. Specific Gravity of ' (6) 1 50 sand is 2.59 and absorption is 0.71 %. Based on the ACI Code, calculating Where ξ is the time-dependent multiplier given in Table (1) and Fig. (1) (ACI 2011). bending capacity of beam section, then equating this bending capacity to suitable moment coefficient formula, the load to be Table (1) Time-dependent multiplier . applied as follows: Duration According to support moment: w = 10.19 kN/m According to mid-span moment: w = 8.91 3 months 1.0 kN/m 6 months 1.2 12 months 1.4 5 years or more 2.0 Figure 2: Detail of frame (F1) To ensure safety, the smaller load value w = 8.91 kN/m (0.61 k/ft) is chosen. To ensure that the beam will not reach failure during load test, the applied test load for frame F1 is taken less than 8.91 kN/m assumed to be 6.0 kN/m Figure 1: Time-dependent multiplier . (0.41 k/ft). This is due to the requirements of safety and practical considerations for load application. Dead and live loads are assumed 4 Youkhanna, K. /ZJPAS: 2016, 28(6): 1-7 approximately (depending on load factors) as follows: 1.2 DL (6.0) 2.57kN / m(0.18k / ft) 1.2 1.6 1.6 LL (6.0) 3.43kN / m(0.24k / ft) 1.2 1.6 Dead load (2.57 kN/m) (0.18 k/ft) was applied for a period of 35 days, after which a test load is performed applying live load of Figure 4: Load-deflection relationship of the load test for Frame F1. 3.43 kN/m (0.24 k/ft) in four increments (stages). Dead and live loads were applied Table (2) Load test results for portal frame F1. experimentally using concrete blocks and sacks Increment Load Time Deflection filled with gravel and hanged on steel pipes, Type (hr) Load (mm) Fig. (3). For load test, live load increment is (kN/m) equal to 3.43 / 4 = 0.8575 kN/m, and Table (2) DL 0 2.57 0.000 A gives the results of the load test for the portal B frame F1, and the load-deflection relation of 1 DL + 0 3.43 0.071 the load test performed is shown in Fig (4). % LL 0.5 0.076 C From Table (2), it is obvious that the 2 0.5 4.29 0.242 duration of each stage is half an hour. At the beginning of each stage (load increment), the 1.0 0.251 value of deflection is less than the deflection at 3 1.0 5.14 0.441 the end of same stage. This is a very good indication that time-dependent deflection takes 1.5 0.460 place even for a small period of time (hours) 4 1.5 6.00 0.675 after the application of the load. 2.0 0.720 24.0 0.765 D DL 48.0 2.57 0.401 A The reading for dead load is considered as datum value.
Recommended publications
  • Insecta Mundi a Journal of World Insect Systematics 0282
    INSECTA A Journal of World Insect Systematics MUNDI 0282 An annotated list of the centipedes (Chilopoda) in the National Collection of Arachnids, Instituto de Biología, Universidad Nacional Autónoma de México. Addendum: Scutigeromorpha and Scolopendromorpha Fabio Germán Cupul-Magaña Centro Universitario de la Costa, Universidad de Guadalajara Av. Universidad de Guadalajara No. 203, Delegación Ixtapa, C.P. 48280, Puerto Vallarta, Jalisco, México [email protected] Date of Issue: February 28, 2013 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Fabio Germán Cupul-Magaña An annotated list of the centipedes (Chilopoda) in the National Collection of Arach- nids, Instituto de Biología, Universidad Nacional Autónoma de México. Addendum: Scutigeromorpha and Scolopendromorpha Insecta Mundi 0282: 1–10 ZooBank Registered urn:lsid:zoobank.org:pub:0717E921-18F7-414B-A7E6-2D697FBCF3B2 Published in 2013 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 USA http://www.centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. In- secta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number.
    [Show full text]
  • Chilopoda) in the National Collection of Arachnids, Instituto De Biología, Universidad Nacional Autónoma De México
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 6-2010 An annotated list of the centipedes (Chilopoda) in the National Collection of Arachnids, Instituto de Biología, Universidad Nacional Autónoma de México Fabio Germán Cupul-Magaña Centro Universitario de la Costa, Universidad de Guadalajara, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Cupul-Magaña, Fabio Germán, "An annotated list of the centipedes (Chilopoda) in the National Collection of Arachnids, Instituto de Biología, Universidad Nacional Autónoma de México" (2010). Insecta Mundi. 645. https://digitalcommons.unl.edu/insectamundi/645 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0125 An annotated list of the centipedes (Chilopoda) in the National Collection of Arachnids, Instituto de Biología, Universidad Nacional Autónoma de México Fabio Germán Cupul-Magaña Centro Universitario de la Costa Universidad de Guadalajara Av. Universidad de Guadalajara No. 203 Delegación Ixtapa, C.P. 48280 Puerto Vallarta, Jalisco, México Date of Issue: June 18, 2010 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Fabio Germán Cupul-Magaña An annotated list of the centipedes (Chilopoda) in the National Collection of Arachnids, Instituto de Biología, Universidad Nacional Autónoma de México Insecta Mundi 0125: 1-10 Published in 2010 by Center for Systematic Entomology, Inc.
    [Show full text]
  • A Guide to Arthropods Bandelier National Monument
    A Guide to Arthropods Bandelier National Monument Top left: Melanoplus akinus Top right: Vanessa cardui Bottom left: Elodes sp. Bottom right: Wolf Spider (Family Lycosidae) by David Lightfoot Compiled by Theresa Murphy Nov 2012 In collaboration with Collin Haffey, Craig Allen, David Lightfoot, Sandra Brantley and Kay Beeley WHAT ARE ARTHROPODS? And why are they important? What’s the difference between Arthropods and Insects? Most of this guide is comprised of insects. These are animals that have three body segments- head, thorax, and abdomen, three pairs of legs, and usually have wings, although there are several wingless forms of insects. Insects are of the Class Insecta and they make up the largest class of the phylum called Arthropoda (arthropods). However, the phylum Arthopoda includes other groups as well including Crustacea (crabs, lobsters, shrimps, barnacles, etc.), Myriapoda (millipedes, centipedes, etc.) and Arachnida (scorpions, king crabs, spiders, mites, ticks, etc.). Arthropods including insects and all other animals in this phylum are characterized as animals with a tough outer exoskeleton or body-shell and flexible jointed limbs that allow the animal to move. Although this guide is comprised mostly of insects, some members of the Myriapoda and Arachnida can also be found here. Remember they are all arthropods but only some of them are true ‘insects’. Entomologist - A scientist who focuses on the study of insects! What’s bugging entomologists? Although we tend to call all insects ‘bugs’ according to entomology a ‘true bug’ must be of the Order Hemiptera. So what exactly makes an insect a bug? Insects in the order Hemiptera have sucking, beak-like mouthparts, which are tucked under their “chin” when Metallic Green Bee (Agapostemon sp.) not in use.
    [Show full text]
  • The Centipede <I>Scolopendra Morsitans</I> L., 1758, New to The
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2014 The centipede Scolopendra morsitans L., 1758, new to the Hawaiian fauna, and potential representatives of the “S. subspinipes Leach, 1815, complex” (Scolopendromorpha: Scolopendridae: Scolopendrinae) Rowland Shelley North Carolina State Museum of Natural Sciences, [email protected] William D. Perreira [email protected] Dana Anne Yee [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Shelley, Rowland; Perreira, William D.; and Yee, Dana Anne, "The ec ntipede Scolopendra morsitans L., 1758, new to the Hawaiian fauna, and potential representatives of the “S. subspinipes Leach, 1815, complex” (Scolopendromorpha: Scolopendridae: Scolopendrinae)" (2014). Insecta Mundi. 843. http://digitalcommons.unl.edu/insectamundi/843 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0338 The centipede Scolopendra morsitans L., 1758, new to the Hawaiian fauna, and potential representatives of the “S. subspinipes Leach, 1815, complex” (Scolopendromorpha: Scolopendridae: Scolopendrinae) Rowland M. Shelley Research Laboratory North Carolina State Museum of Natural Sciences MSC #1626 Raleigh, NC 27699-1626 USA William D. Perreira P.O. Box 61547 Honolulu, HI 96839-1547 USA Dana Anne Yee 1717 Mott Smith Drive #904 Honolulu, HI 96822 USA Date of Issue: January 31, 2014 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Rowland M. Shelley, William D.
    [Show full text]
  • Pinyon Pine Mortality Alters Communities of Ground-Dwelling Arthropods
    Western North American Naturalist 74(2), © 2014, pp. 162–184 PINYON PINE MORTALITY ALTERS COMMUNITIES OF GROUND-DWELLING ARTHROPODS Robert J. Delph1,2,6, Michael J. Clifford2,3, Neil S. Cobb2, Paulette L. Ford4, and Sandra L. Brantley5 ABSTRACT.—We documented the effect of drought-induced mortality of pinyon pine (Pinus edulis Engelm.) on com- munities of ground-dwelling arthropods. Tree mortality alters microhabitats utilized by ground-dwelling arthropods by increasing solar radiation, dead woody debris, and understory vegetation. Our major objectives were to determine (1) whether there were changes in community composition, species richness, and abundance of ground-dwelling arthro- pods associated with pinyon mortality and (2) whether specific habitat characteristics and microhabitats accounted for these changes. We predicted shifts in community composition and increases in arthropod diversity and abundance due to the presumed increased complexity of microhabitats from both standing dead and fallen dead trees. We found signifi- cant differences in arthropod community composition between high and low pinyon mortality environments, despite no differences in arthropod abundance or richness. Overall, 22% (51 taxa) of the arthropod community were identified as being indicators of either high or low mortality. Our study corroborates other research indicating that arthropods are responsive to even moderate disturbance events leading to changes in the environment. These arthropod responses can be explained in part due to the increase in woody debris and reduced canopy cover created by tree mortality. RESUMEN.—Documentamos el efecto de la mortalidad causada por la sequía del pino piñonero (Pinus edulis Engelm.) sobre comunidades de artrópodos subterráneos. Utilizamos tres variantes en el microhábitat de los artrópodos incrementando la radiación solar, desechos de madera muerta y vegetación baja.
    [Show full text]
  • Pinyon Pine Mortality Alters Communities of Ground-Dwelling Arthropods
    Western North American Naturalist Volume 74 Number 2 Article 3 8-27-2014 Pinyon pine mortality alters communities of ground-dwelling arthropods Robert J. Delph Dugway Proving Ground, Dugway, UT, [email protected] Michael J. Clifford Northern Arizona University, Flagstaff, AZ, [email protected] Neil S. Cobb Northern Arizona University, Flagstaff, AZ, [email protected] Paulette L. Ford USDA Forest Service, Albuquerque, NM, [email protected] Sandra L. Brantley University of New Mexico, Albuquerque, NM, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Delph, Robert J.; Clifford, Michael J.; Cobb, Neil S.; Ford, Paulette L.; and Brantley, Sandra L. (2014) "Pinyon pine mortality alters communities of ground-dwelling arthropods," Western North American Naturalist: Vol. 74 : No. 2 , Article 3. Available at: https://scholarsarchive.byu.edu/wnan/vol74/iss2/3 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 74(2), © 2014, pp. 162–184 PINYON PINE MORTALITY ALTERS COMMUNITIES OF GROUND-DWELLING ARTHROPODS Robert J. Delph1,2,6, Michael J. Clifford2,3, Neil S. Cobb2, Paulette L. Ford4, and Sandra L. Brantley5 ABSTRACT.—We documented the effect of drought-induced mortality of pinyon pine (Pinus edulis Engelm.) on com- munities of ground-dwelling arthropods.
    [Show full text]
  • Chilopoda: Scolopendromorpha: Scolopendridae)
    Research Article ISSN 2336-9744 (online) | ISSN 2337-0173 (print) The journal is available on line at www.biotaxa.org/em On the true identity of Scolopendra aztecorum Verhoeff, 1934 (Chilopoda: Scolopendromorpha: Scolopendridae) CARLOS A. MARTÍNEZ-MUÑOZ1, PETR DOLEJŠ2 & CHRISTIAN KRONMÜLLER3 1Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Ernst-Moritz-Arndt-Universität Greifswald, Soldmannstrasse 23, D-17487 Greifswald, Germany. E-mail: [email protected] 2Department of Zoology, National Museum – Natural History Museum, Cirkusová 1740, 193 00 Praha 9, Czech Republic. E-mail: [email protected] 3Bavarian State Collection of Zoology, Münchhausenstrasse 21, D-81247 Munich, Germany. E-mail: [email protected] Received 30 August 2016 │ Accepted 4 October 2016 │ Published online 7 October 2016. Abstract The genus Scolopendra Linnaeus, 1758 currently comprises 13 valid species in Mexico. One of the species, Scolopendra aztecorum Verhoeff, 1934 has been considered a potential synonym of S. viridis Say, 1821, S. polymorpha Wood, 1861, or Arthrorhabdus pygmaeus (Pocock, 1895). To shed light on its true status, five of the six syntype specimens were examined, redescribed and illustrated for the first time. Scolopendra aztecorum is diagnosable from all other Mexican species and remains in the genus Scolopendra as a valid species. Key words: Scolopendra, redescription, Mexico, endemic. Introduction Bücherl (1942) published a comprehensive catalog of the chilopods from the Neotropical region. In his work, he regarded as doubtful the new forms of the viridis group from Mexico described by Verhoeff (1934), with the exceptions of Scolopendra octodentata and “perhaps” S. aztecorum. Bücherl (1942) was the first author to question the validity of Scolopendra aztecorum, noticing its closeness to Scolopendra polymorpha Wood, 1861 (as Scolopendra viridis polymorpha sensu Attems (1930)) and the lack of a comparison in the original treatment by Verhoeff (1934).
    [Show full text]
  • Do It Yourself SAFE and EFFECTIVE PEST MANAGEMENT for YOUR HOME, BUSINESS OR SCHOOL Richard
    Do It Yourself SAFE AND EFFECTIVE PEST MANAGEMENT FOR YOUR HOME, BUSINESS OR SCHOOL Richard “Bugman” Fagerlund All rights reserved including the right of reproduction in whole or in part in any form. FORWARD Every year, approximately 5.1 billion pounds of pesticides are used in the United States alone. Pesticides are intentionally toxic substances associated with birth defects, mutations, reproductive effects and cancer. Exposing our families to these pesticides makes them especially vulnerable to loss of brain function, damage to their reproductive systems, childhood leukemia, soft tissue sarcoma, neuroblastoma, Wilms' tumor, Ewing's sarcoma, non­Hodgkins lymphoma, brain cancer, colorectal cancer and testes cancer. Many "inert" ingredients found in pesticides are suspected carcinogens and have been linked to central nervous system disorders, liver and kidney damage, birth defects and many other serious threats to our health. The warning label on Roundup is 10 pages alone! So why do we continue to use them? Is it possible the loss of brain function associated with pesticide use is what is driving our decision to continue using them? 5.1 billion pounds are being dumped on our gardens, lawns, trees, shrubs, and making their way into our rivers, our water supply, our food supply and our bodies. We are slowly poisoning ourselves and our environment. 96% of all fish analyzed in major rivers and streams contain residues of one or several pesticides. 100% of all surface water contains one or more pesticides. Pesticides, and especially herbicides, are contaminating our water supply. Removal is costly and difficult, and not always 100% effective. Pesticides are suspected to be the cause of amphibian declines and mutations as well as the rapid decline of our most important pollinator, the honey bee.
    [Show full text]
  • Geographic Patterns of Ground-Dwelling Arthropods Across an Ecoregional Transition in the North American Southwest
    Western North American Naturalist Volume 68 Number 1 Article 11 3-28-2008 Geographic patterns of ground-dwelling arthropods across an ecoregional transition in the North American Southwest David C. Lightfoot University of New Mexico, Albuquerque Sandra L. Brantley University of New Mexico, Albuquerque Craig D. Allen U.S. Geological Survey, Biological Resources Discipline, Jemez Mountains Field Station, Los Alamos, New Mexico Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Lightfoot, David C.; Brantley, Sandra L.; and Allen, Craig D. (2008) "Geographic patterns of ground-dwelling arthropods across an ecoregional transition in the North American Southwest," Western North American Naturalist: Vol. 68 : No. 1 , Article 11. Available at: https://scholarsarchive.byu.edu/wnan/vol68/iss1/11 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 68(1), © 2008, pp. 83–102 GEOGRAPHIC PATTERNS OF GROUND-DWELLING ARTHROPODS ACROSS AN ECOREGIONAL TRANSITION IN THE NORTH AMERICAN SOUTHWEST David C. Lightfoot1,3, Sandra L. Brantley1, and Craig D. Allen2 ABSTRACT.—We examined the biogeographic patterns of ground-dwelling arthropod communities across a heteroge- neous semiarid region of the
    [Show full text]
  • Sex-Based Venom Variation in the Eastern Bark Centipede (Hemis- 2 Colopendra Marginata)
    1 Sex-based venom variation in the eastern bark centipede (Hemis- 2 colopendra marginata) a a a a;∗ 3 Gunnar S. Nystrom , Micaiah J. Ward , Schyler A. Ellsworth , and Darin R. Rokyta a 4 Department of Biological Science, Florida State University, Tallahassee, Florida 32306 ∗ 5 Corresponding author: [email protected] 6 Running title: Sex-based variation in Hemiscolopendra marginata venom 7 Keywords: centipede, venom, proteome, transcriptome 8 Corresponding author: 9 Darin R. Rokyta 10 Florida State University 11 Department of Biological Science 12 319 Stadium Dr. 13 Tallahassee, FL USA 32306-4295 14 email: [email protected] 15 phone: (850) 645-8812 1 16 Abstract 17 Sexually dimorphic traits are widespread across metazoans and are often the result of sex- 18 specific inheritance or sex-based differences in gene expression. Intersexual differences 19 have even been observed in invertebrate venoms, although the identification of these dif- 20 ferences has been limited to the more well-studied groups, such as scorpions and spiders, 21 where sex-based differences in morphology and behavior are apparent. Recent studies 22 on centipede venom have identified evidence of intraspecific variation, but intersexual 23 differences have not been reported. To investigate the potential for sex-based differences 24 in centipede venom composition, we performed reversed-phase high performance liquid 25 chromatography (RP-HPLC) analyses on five male and 15 female eastern bark centipedes 26 (Hemiscolopendra marginata) from the Apalachicola National Forest in northern Florida. 27 After detecting a significant sex-based difference in H. marginata venom composition, we 28 completed a high-throughput venom-gland transcriptomic and venom proteomic analy- 29 sis of one male and one female to determine the genetic basis for differences in venom 30 composition.
    [Show full text]
  • Chilopoda: Scolopendromorpha)
    Biology of three scolopendrid centipedes 123 International Journal of Myriapodology 3 (2010) 123-137 Sofi a–Moscow Field observations on three scolopendrid centipedes from Mauritius and Rodrigues (Indian Ocean) (Chilopoda: Scolopendromorpha) John G.E. Lewis1*, Peter Daszak2, Carl G. Jones3, Janet D. Cottingham4, Esther Wenman5 & Aleksandra Maljkovic6 1 Somerset County Museum, Taunton Castle, Castle Green, Taunton, Somerset TA1 4AA and Entomology Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK. Address for Correspondence: Manor Mill Farm, Halse, Taunton, Somerset TA4 3AQ, UK. 2 School of Life Sciences, Kingston University, Penrhyn Road, Kingston-upon-Th ames, Surrey KT1 2EE, UK. Present address: Wildlife Trust, 460 west 34th Street, New York 10001, USA. 3 Mauritian Wildlife Foundation, Black River, Mauritius and Durrell Wildlife Conservation Trust, Les Augres Manor, Trinity, Jersey, Channel Island, UK. 4 Wildlife Trust, 460 west 34th Street, New York 10001, USA. 5 Th e Zoological Society of London, Regent’s Park, London, NW1 4RY, UK. 6 Mauritian Wildlife Foundation, Solitude, Rodrigues. Present address: Tropical Marine Ecology Lab., Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6. * Corresponding author: [email protected] Abstract Biological observations on three species of Scolopendra (S. morsitans L., 1758; S. subspinipes Leach, 1815; S. abnormis Lewis & Daszak, 1996) were made in the fi eld on Mauritius and Rodrigues and satellite is- lands. Data on behaviour, predators, parasites, food and the eff ect of bites are presented here. Remarks on colour variation are given. Scolopendra abnormis is confi ned to Round Island and Serpent Island. It showed no ritualised meeting reactions and cannot swim as do some other species and did not run off when ex- posed.
    [Show full text]
  • RNA Profile Diversity Across Arthropoda: Guidelines, Methodological Artifacts, and Expected Outcomes Danielle M
    Biology Methods and Protocols, 2018, 1–10 doi: 10.1093/biomethods/bpy012 Methods Manuscript METHODS MANUSCRIPT RNA profile diversity across arthropoda: guidelines, methodological artifacts, and expected outcomes Danielle M. DeLeo *, Jorge L. Pe´rez-Moreno, Herna´nVa´zquez-Miranda and Heather D. Bracken-Grissom Department of Biological Sciences, Florida International University-Biscayne Bay Campus, North Miami, FL, USA *Correspondence address. Florida International University – Biscayne Bay Campus, 3000 NE 151st, North Miami, FL 33181, USA. Tel: (305) 919-4109; Fax: (305) 919-4030; E-mail: ddeleo@fiu.edu Abstract High-quality RNA is an important precursor for high-throughput RNA sequencing (RNAseq) and subsequent analyses. However, the primary metric used to assess RNA quality, the RNA Integrity Number (RIN), was developed based on model bacterial and vertebrate organisms. Though the phenomenon is not widely recognized, invertebrate 28S ribosomal RNA (rRNA) is highly prone to a form of denaturation known as gap deletion, in which the subunit collapses into two smaller fragments. In many nonmodel invertebrates, this collapse of the 28S subunit appears as a single band similar in size to the 18S rRNA subunit. This phenomenon is hypothesized to be commonplace among arthropods and is often misinterpreted as a “degraded” rRNA profile. The limited characterization of gap deletion in arthropods, a highly diverse group, as well as other nonmodel invertebrates, often biases RNA quality assessments. To test whether the collapse of 28S is a general pat- tern or a methodological artifact, we sampled more than half of the major lineages within Arthropoda. We found that the 28S collapse is present in 90% of the species sampled.
    [Show full text]