View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University SUNScholar Repository Received: 11 April 2018 Bacterial diversity and Revised: 22 June 2018 Accepted: production of sulfide in 1 August 2018 Cite as: microcosms containing Alexander A. Grigoryan, Daphne R. Jalique, Prabhakara Medihala, uncompacted bentonites Simcha Stroes-Gascoyne, Gideon M. Wolfaardt, Jennifer McKelvie, Darren R. Korber. Bacterial diversity and production of Alexander A. Grigoryan a, Daphne R. Jalique a, Prabhakara Medihala a, sulfide in microcosms containing uncompacted Simcha Stroes-Gascoyne a, Gideon M. Wolfaardt b,c, Jennifer McKelvie d, bentonites. a,∗ Heliyon 4 (2018) e00722. Darren R. Korber doi: 10.1016/j.heliyon.2018. a Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada e00722 b Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada c Department of Microbiology, University of Stellenbosch, Cape Town, South Africa d Nuclear Waste Management Organization, Toronto, Canada ∗ Corresponding author. E-mail address:
[email protected] (D.R. Korber). Abstract Aims: This study examined the diversity and sulfide-producing activity of microorganisms in microcosms containing commercial clay products (e.g.,MX- 80, Canaprill and National Standard) similar to materials which are currently considered for use in the design specifications for deep geologic repositories (DGR) for spent nuclear fuel. Methods and results: In anoxic microcosms incubated for minimum of 60 days with 10 g l-1 NaCl, sulfide production varied with temperature, electron donor and À À bentonite type. Maximum specific sulfide production rates of 0.189 d 1, 0.549 d 1 and 0.157 dÀ1 occurred in lactate-fed MX-80, Canaprill and National Standard microcosms, respectively.