Biochemical and Functional Characterization of Human RNA

Total Page:16

File Type:pdf, Size:1020Kb

Biochemical and Functional Characterization of Human RNA Biochemical and Functional Characterization of Human RNA Binding Proteins by Peter Freese A.B., Harvard University (2012) Submitted to the Graduate Program in Computational and Systems Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2018 ○c Massachusetts Institute of Technology 2018. All rights reserved. Author...................................................................... Computational and Systems Biology December 22, 2017 Certified by. Christopher B. Burge Professor of Biology and Biological Engineering Thesis Supervisor Accepted by................................................................. Christopher B. Burge Director, Computational and Systems Biology Graduate Program 2 Biochemical and Functional Characterization of Human RNA Binding Proteins by Peter Freese Submitted to the Program in Computational and Systems Biology on December 22, 2017, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract RNA not only shuttles information between DNA and proteins but also carries out many other essential cellular functions. Nearly all steps of an RNA’s life cycle are controlled by approximately one thousand RNA binding proteins (RBPs) that direct RNA splicing, cleav- age and polyadenylation, localization, translation, and degradation. Despite the central role of RBPs in RNA processing and gene expression, they have been less well studied than DNA binding proteins, in part due to the historical dearth of technologies to probe RBP binding and activity in a high-throughput, comprehensive manner. In this thesis, I describe the affinity landscapes of the largest set of human RBPs to date elucidated through ahigh- throughput version of RNA Bind-N-Seq (RBNS), an unbiased in vitro assay that determines the primary sequence, secondary structure, and contextual preferences of an RBP. The 78 RBPs bound an unexpectedly low diversity of RNA motifs, implying convergence of binding specificity toward a small set of RNA motifs characterized by low compositional complexity. Offsetting the low diversity of sequence motifs, extensive preferences for contextual features beyond short linear motifs were observed, including bipartite motifs, flanking nucleotide content, and preference for or against RNA structure. These features likely refine which motif occurrences are selected in cells, enabling RBPs that bind the same linear motif to act on distinct subsets of transcripts. Additionally, RBNS data is integrated with complemen- tary in vivo binding sites from enhanced crosslinking and immunoprecipitation (eCLIP) and functional (RNAi/RNA-seq) data produced through collaborative efforts with the ENCODE consortium. These data enable creation of “RNA maps” of RBP activity in pre-mRNA splic- ing and gene expression levels, either with (eCLIP) or without (RBNS) crosslinking-based assays. The mapping and characterization of RNA elements recognized by over 200 human RBPs is also presented in two human cell lines, K562 and HepG2 cells. Together, these novel data augment the catalog of functional elements encoded in the human genome to include those that act at the RNA level and provide a basis for how RBPs select their RNA targets, a fundamental requirement in more fully understanding RNA processing mechanisms and outcomes. Thesis Supervisor: Christopher B. Burge Title: Professor of Biology and Biological Engineering 3 4 Acknowledgments I would like to thank my advisor, Prof. Chris Burge, for providing an incredibly rich envi- ronment in which to conduct research and for teaching me to be a rigorous computational biologist grounded in fundamental biological questions. Having never performed research on RNA or touched high-throughput sequencing data sets, the lab has been a wonderful place to learn new skills, formulate and test hypotheses, and receive feedback that has fueled my intellectual growth. A particular thanks goes out to Burge lab postdoc Daniel Dominguez and fellow CSB graduate student Maria Alexis, who have been phenomenal RBNS collabora- tors over the past years and central to this work as well as my overall scientific development; without either, I’m sure the RBNS project would have been nowhere near as successful or impactful as it has turned out to be. Additionally, I would like to thank all other past and present Burge lab members for their feedback and insights over the past five years, as well as their friendship and great company at our lab social events and beer hours, creating a multitude of memorable experiences outside of the lab. In particular, I’d like to thank Athma for being an always pleasant and engaging baymate, Alex and Nicole for being early RBNS collaborators who whetted my appetite for studying protein-RNA interactions, Jennifer and Yevgenia for our lighthearted coffee breaks, Matt for always being encouraging and ask- ing great biological questions, Bridget for planning great graduate student social events and group exercise class outings, Canadian Peter for his always outspoken and thought-provoking discussions, Marvin, Ana, Emma, and Kayla for their smiling faces and fresh perspectives, Genny for being a friendly face who always made me feel welcome in the Burge lab, Cassie, Myles, Amanda and Tsultrim for being amazing technicians who helped my understanding of the technical complexities of the RBNS assay, and Jason for being generous in taking me under his wing during my rotation despite being on paternity leave. My Thesis Advisory Committee members, Phil Sharp and Manolis Kellis, have been very generous in providing their guidance and expertise at my committee meetings as well as facilitating my professional development. The connections I have made with and through them have been and will continue to be incredibly valuable. I would also like to thank Melissa Moore for agreeing to serve as my external committee member and taking time out 5 of her incredibly busy schedule to support my scientific endeavors. I would like to thank my ENCODE RBP collaborators, who have been an instrumental source of feedback on my work and incredibly generous in sharing their time, data, and expertise in our group efforts. Through our work, I have learned a tremendous amount not only about RBP-RNA interactions and regulation but also the complexities and promise of studying biological problems through massive high-throughput integrative functional ge- nomic assays. In particular, Brent Graveley’s overall leadership of the RBP project has been instrumental in its success, Xintao Wei has always been a patient and responsive collaborator who made the logistics of working on a high-throughput consortium project very smooth, and Gene Yeo and his lab members Eric Van Nostrand and Gabe Pratt provided excellent scientific guidance and insights into RNA-RBP biology through their improved experimental and computational CLIP methods. My undergraduate research advisor Irene Chen and postdoc Kirill Korolev initially sparked my interest in conducting scientific research and showed me the challenges and rewards see- ing a research project through from start to finish. I would likely not have pursued graduate studies without these formative academic role models and their support of my ongoing sci- entific development. I would like to acknowledge the amazing friendship of my CSB 2012 classmates Vincent, Colette, Mandy, Mariana, Nezar, and Rotem, with whom I’ve shared over 5 years of incredible outings throughout MIT, Boston, and the Northeast. We’ve celebrated countless birthdays, taken summer trips to explore and relax, and supported each other through the ups and downs of a graduate career in a way that I couldn’t have imagined when we started this program together. It has been a pleasure to befriend the many other CSBs in years above and below me as we gather at retreats and other CSB events to share our research, successes, and struggles. Additionally, CSB administrator Jacquie Carota has done a phenomenal job of making the graduate program run smoothly and has always been a warm, smiling face to run into and chat with on the 2nd floor of Building 68. Finally, I would like to thank my family members, who have been incredibly patient and generous in their support of my PhD endeavors and broader educational upbringing that has allowed me to be where I am today. My mom, dad, and sister Kelly have been endless 6 supporters of my scientific passions and research, and always provided me with adown- to-earth perspective of the incredible fortunes I have been lucky enough to receive through graduate education at MIT. Going home to Minnesota to visit them and my extended family as well as our phenomenal vacations have helped me contextualize my research and career within a broader perspective. This work and my intellectual growth as a graduate student would not have been possible without their unflagging support. 7 8 Contents 1 Introduction 15 1.1 RNA binding proteins.............................. 16 1.1.1 RNA binding domains (RBDs) and sequence-specific recognition of RNA 16 1.1.2 RBP-mediated regulation of pre-mRNA splicing, RNA stability, and RNA translation............................. 23 1.2 Approaches for the study of RNA binding proteins.............. 31 1.2.1 In vitro RNA-RBP profiling techniques................. 32 1.2.2 In vivo RNA-RBP profiling techniques................. 34 1.2.3 Genetic studies of RNA profiling after RBP perturbation....... 40 1.2.4 Structural studies of RBPs and RBP-RNA interactions.......
Recommended publications
  • IP6K1 Upregulates the Formation of Processing Bodies by Promoting Proteome Remodeling on the Mrna Cap
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.13.199828; this version posted July 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. IP6K1 upregulates the formation of processing bodies by promoting proteome remodeling on the mRNA cap Akruti Shah1,2 and Rashna Bhandari1* 1Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India. 2Graduate studies, Manipal Academy of Higher Education, Manipal 576104, India. *Correspondence to Rashna Bhandari; Email: [email protected] Running title: IP6K1 promotes mRNA turnover to induce P-bodies ORCID IDs Akruti Shah - 0000-0001-9557-4952 Rashna Bhandari - 0000-0003-3101-0204 This PDF file includes: Main Text Figures 1 to 6 Keywords mRNA decay/mRNA metabolism/P-bodies/translation suppression 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.13.199828; this version posted July 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Inositol hexakisphosphate kinases (IP6Ks) are ubiquitously expressed small molecule kinases that catalyze the conversion of the inositol phosphate IP6 to 5-IP7. IP6Ks have been reported to influence cellular functions by protein-protein interactions independent of their enzymatic activity.
    [Show full text]
  • Effects of Chromosome Specific Introgression in Upland Cotton on Fiber and Agronomic Traits
    Genetics: Published Articles Ahead of Print, published on December 30, 2005 as 10.1534/genetics.105.053371 1 Effects of Chromosome Specific Introgression in Upland Cotton on Fiber and Agronomic Traits * 1 * † * Sukumar Saha, Johnie N. Jenkins, Jixiang Wu, Jack C. McCarty, * ‡ § †† Osman A. Gutiérrez, Richard G. Percy, Roy G. Cantrell, and David M. Stelly *United States Department of Agriculture-Agriculture Research Service, Crop Science Research † Laboratory, Mississippi State, Mississippi 39762, Department of Plant and Soil Sciences, ‡ Mississippi State University, Mississippi State, Mississippi 39762, United States Department of Agriculture-Agriculture Research Service, Maricopa Agricultural Center, Maricopa, Arizona § †† 85239, Cotton Incorporated, Raleigh, North Carolina 27513, and Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843 Disclaimer: Mention of trademark or proprietary product does not constitute a guarantee or warranty of the product by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable. 2 Running head: Evaluation of fiber and agronomic traits using chromosome substitution lines Key words: Chromosome substitution, Cotton, QTL, Germplasm, Mapping 1 Corresponding author: United States Department of Agriculture-Agriculture Research Service, Crop Science Research Laboratory, 810 Highway 12 East, Mississippi State, Mississippi 39762- 5367. E-mail: [email protected] 3 ABSTRACT Interspecific chromosome substitution is among the most powerful means of introgression and steps toward quantitative trait locus (QTL) identification. By reducing the genetic “noise” from other chromosomes, it greatly empowers the detection of genetic effects by specific chromosomes on quantitative traits. Here, we report on such results for 14 cotton lines (CS-B) with specific chromosomes or chromosome arms from G.
    [Show full text]
  • Localization of Condensin Subunit XCAP-E in Interphase Nucleus, Nucleoid and Nuclear
    1 Localization of condensin subunit XCAP-E in interphase nucleus, nucleoid and nuclear matrix of XL2 cells. Elmira Timirbulatova, Igor Kireev, Vladimir Ju. Polyakov, and Rustem Uzbekov* Division of Electron Microscopy, A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia. *Author for correspondence: telephone. 007-095-939-55-28; FAX 007-095-939-31-81 e-mail: [email protected] Key words: XCAP-E; nucleolus; condensin; nuclear matrix; Xenopus. Abbreviations: DAPI , 4’, 6 diamidino-2-phenylindole; DNP, deoxyribonucleoprotein; DRB, 5,6-dichloro-1b-d-ribofuranosylbenzimidazole; SMC, structural maintenance of chromosomes; XCAP-E, Xenopus chromosome associated protein E. 2 Abstract The Xenopus XCAP-E protein is a component of condensin complex In the present work we investigate its localization in interphase XL2 cells and nucleoids. We shown, that XCAP-E is localizes in granular and in dense fibrillar component of nucleolus and also in small karyoplasmic structures (termed “SMC bodies”). Extraction by 2M NaCl does not influence XCAP-E distribution in nucleolus and “SMC bodies”. DNAse I treatment of interphase cells permeabilized by Triton X-100 or nucleoids resulted in partial decrease of labeling intensity in the nucleus, whereas RNAse A treatment resulted in practically complete loss of labeling of nucleolus and “SMC bodies” labeling. In mitotic cells, however, 2M NaCl extraction results in an intense staining of the chromosome region although the labeling was visible along the whole length of sister chromatids, with a stronger staining in centromore region. The data are discussed in view of a hypothesis about participation of XCAP-E in processing of ribosomal RNA.
    [Show full text]
  • RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases
    G C A T T A C G G C A T genes Review RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases Amber Willbanks, Shaun Wood and Jason X. Cheng * Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL 60637, USA; [email protected] (A.W.); [email protected] (S.W.) * Correspondence: [email protected] Abstract: Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases. Keywords: 5’ cap (5’ cap); 7-methylguanosine (m7G); R-loops; N6-methyladenosine (m6A); RNA editing; A-to-I; C-to-U; 2’-O-methylation (Nm); 5-methylcytosine (m5C); NOL1/NOP2/sun domain Citation: Willbanks, A.; Wood, S.; (NSUN); MYC Cheng, J.X. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes 2021, 12, 627.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Dramatic Nucleolar Dispersion in the Salivary Gland of Schwenkfeldina Sp
    www.nature.com/scientificreports OPEN Dramatic nucleolar dispersion in the salivary gland of Schwenkfeldina sp. (Diptera: Sciaridae) José Mariano Amabis & Eduardo Gorab * Micronucleoli are among the structures composing the peculiar scenario of the nucleolus in salivary gland nuclei of dipterans representative of Sciaridae. Micronucleolar bodies contain ribosomal DNA and RNA, are transcriptionally active and may appear free in the nucleoplasm or associated with specifc chromosome regions in salivary gland nuclei. This report deals with an extreme case of nucleolar fragmentation/dispersion detected in the salivary gland of Schwenkfeldina sp. Such a phenomenon in this species was found to be restricted to cell types undergoing polyteny and seems to be diferentially controlled according to the cell type. Furthermore, transcriptional activity was detected in virtually all the micronucleolar bodies generated in the salivary gland. The relative proportion of the rDNA in polytene and diploid tissues showed that rDNA under-replication did not occur in polytene nuclei suggesting that the nucleolar and concomitant rDNA dispersion in Schwenkfeldina sp. may refect a previously hypothesised process in order to counterbalance the rDNA loss due to the under-replication. The chromosomal distribution of epigenetic markers for the heterochromatin agreed with early cytological observations in this species suggesting that heterochromatin is spread throughout the chromosome length of Schwenkfeldina sp. A comparison made with results from another sciarid species argues for a role played by the heterochromatin in the establishment of the rDNA topology in polytene nuclei of Sciaridae. Transcriptional activity of ribosomal RNA (rRNA) genes in specifc chromosome regions is the primary event for the local assembly of the nucleolus, the starting site of ribosome biogenesis.
    [Show full text]
  • FMRP Links Optimal Codons to Mrna Stability in Neurons
    FMRP links optimal codons to mRNA stability in neurons Huan Shua,1, Elisa Donnardb, Botao Liua, Suna Junga, Ruijia Wanga, and Joel D. Richtera aProgram in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and bBioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605 Edited by Lynne E. Maquat, University of Rochester School of Medicine and Dentistry, Rochester, NY, and approved October 12, 2020 (received for review May 8, 2020) Fragile X syndrome (FXS) is caused by inactivation of the FMR1 Here, we have used ribosome profiling and RNA sequencing gene and loss of encoded FMRP, an RNA binding protein that re- (RNA-seq) to investigate translational dysregulation in the presses translation of some of its target transcripts. Here we use FMRP KO cortex and found that FMRP coordinates the link ribosome profiling and RNA sequencing to investigate the dysre- between RNA destruction and codon usage bias (codon opti- gulation of translation in the mouse brain cortex. We find that mality). We find that the apparent dysregulation of translational most changes in ribosome occupancy on hundreds of mRNAs are activity (i.e., ribosome occupancy) in FMRP KO cortex can be largely driven by dysregulation in transcript abundance. Many accounted for by commensurate changes in steady-state RNA down-regulated mRNAs, which are mostly responsible for neuro- levels. Down-regulated mRNAs in FMRP KO cortex are nal and synaptic functions, are highly enriched for FMRP binding enriched for those that encode factors involved in neuronal and targets. RNA metabolic labeling demonstrates that, in FMRP- synaptic functions and are highly enriched for FMRP binding deficient cortical neurons, mRNA down-regulation is caused by targets.
    [Show full text]
  • Essential Genes and Their Role in Autism Spectrum Disorder
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Essential Genes And Their Role In Autism Spectrum Disorder Xiao Ji University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Ji, Xiao, "Essential Genes And Their Role In Autism Spectrum Disorder" (2017). Publicly Accessible Penn Dissertations. 2369. https://repository.upenn.edu/edissertations/2369 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2369 For more information, please contact [email protected]. Essential Genes And Their Role In Autism Spectrum Disorder Abstract Essential genes (EGs) play central roles in fundamental cellular processes and are required for the survival of an organism. EGs are enriched for human disease genes and are under strong purifying selection. This intolerance to deleterious mutations, commonly observed haploinsufficiency and the importance of EGs in pre- and postnatal development suggests a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication and repetitive behavior. More and more genetic evidence points to a polygenic model of ASD and it is estimated that hundreds of genes contribute to ASD. The central question addressed in this dissertation is whether genes with a strong effect on survival and fitness (i.e. EGs) play a specific oler in ASD risk. I compiled a comprehensive catalog of 3,915 mammalian EGs by combining human orthologs of lethal genes in knockout mice and genes responsible for cell-based essentiality.
    [Show full text]
  • APOBEC1 Complementation Factor (A1CF) and RBM47 Interact in Tissue-Specific Regulation of C to U RNA Editing in Mouse Intestine and Liver
    Downloaded from rnajournal.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press APOBEC1 complementation factor (A1CF) and RBM47 interact in tissue-specific regulation of C to U RNA editing in mouse intestine and liver Valerie Blanc1, Yan Xie1, Susan Kennedy1, Jesse D. Riordan2, Deborah C. Rubin1, Blair B. Madison1, Jason C. Mills1, Joseph H. Nadeau2, Nicholas O. Davidson1,3 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63105, 2Pacific Northwest Research Institute, Seattle, WA 98122 3To whom communication should be addressed: Email: [email protected] Running title: A1CF and RBM47 interactively regulate C to U RNA editing Keywords: APOBEC1; A1CF; RBM47; ApoB; Intestine; Liver Downloaded from rnajournal.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT (246 words) Mammalian C to U RNA is mediated by APOBEC1, the catalytic deaminase, together with RNA binding cofactors (including A1CF and RBM47) whose relative physiological requirements are unresolved. Although A1CF complements APOBEC1 for in-vitro RNA editing, A1cf–/– mice exhibited no change in apolipoproteinB (apoB) RNA editing, while Rbm47 mutant mice exhibited impaired intestinal RNA editing of apoB as well as other targets. Here we examined the role of A1CF and RBM47 in adult mouse liver and intestine, following deletion of either one or both gene products and also following forced (liver or intestinal) transgenic A1CF expression. There were minimal changes in hepatic and intestinal apoB RNA editing in A1cf–/– mice and no changes in either liver- or intestine-specific A1CF transgenic mice. Rbm47 liver-specific knockout (Rbm47LKO) mice demonstrated reduced editing in a subset (11 of 20) RNA targets, including apoB.
    [Show full text]
  • Inhibition of SNW1 Association with Spliceosomal Proteins Promotes
    Cancer Medicine Open Access ORIGINAL RESEARCH Inhibition of SNW1 association with spliceosomal proteins promotes apoptosis in breast cancer cells Naoki Sato1, Masao Maeda2, Mai Sugiyama2, Satoko Ito2, Toshinori Hyodo2, Akio Masuda3, Nobuyuki Tsunoda1, Toshio Kokuryo1, Michinari Hamaguchi2, Masato Nagino1 & Takeshi Senga2 1Department of Surgical Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan 2Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan 3Division of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan Keywords Abstract Apoptosis, EFTUD2, PRPF8, RNA splicing, SNRNP200, SNW1 RNA splicing is a fundamental process for protein synthesis. Recent studies have reported that drugs that inhibit splicing have cytotoxic effects on various Correspondence tumor cell lines. In this report, we demonstrate that depletion of SNW1, a Takeshi Senga, 65 Tsurumai, Showa, Nagoya component of the spliceosome, induces apoptosis in breast cancer cells. Proteo- 466-8550, Japan. Tel: 81-52-744-2463; mics and biochemical analyses revealed that SNW1 directly associates with Fax: 81-52-744-2464; other spliceosome components, including EFTUD2 (Snu114) and SNRNP200 E-mail: [email protected] (Brr2). The SKIP region of SNW1 interacted with the N-terminus of EFTUD2 Funding Information as well as two independent regions in the C-terminus of SNRNP200. Similar to This research was funded by a grant from SNW1 depletion, knockdown of EFTUD2 increased the numbers of apoptotic the Ministry of Education, Culture, Sports, cells. Furthermore, we demonstrate that exogenous expression of either the Science and Technology of Japan SKIP region of SNW1 or the N-terminus region of EFTUD2 significantly pro- (Nanomedicine molecular science, 23107010.
    [Show full text]
  • Targets of Hnrnp L in Human T Cells Profiling Reveals Physical And
    Transcriptome-Wide RNA Interaction Profiling Reveals Physical and Functional Targets of hnRNP L in Human T Cells Downloaded from Ganesh Shankarling, Brian S. Cole, Michael J. Mallory and Kristen W. Lynch Mol. Cell. Biol. 2014, 34(1):71. DOI: 10.1128/MCB.00740-13. Published Ahead of Print 28 October 2013. http://mcb.asm.org/ Updated information and services can be found at: http://mcb.asm.org/content/34/1/71 These include: SUPPLEMENTAL MATERIAL Supplemental material on December 12, 2013 by UNIVERSITY OF PENNSYLVANIA LIBRARY REFERENCES This article cites 58 articles, 30 of which can be accessed free at: http://mcb.asm.org/content/34/1/71#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Transcriptome-Wide RNA Interaction Profiling Reveals Physical and Functional Targets of hnRNP L in Human T Cells Downloaded from Ganesh Shankarling, Brian S. Cole, Michael J. Mallory, Kristen W. Lynch ‹Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA The RNA processing factor hnRNP L is required for T cell development and function. However, the spectrum of direct targets of hnRNP L activity in T cells has yet to be defined. In this study, we used cross-linking and immunoprecipitation followed by high- throughput sequencing (CLIP-seq) to identify the RNA binding sites of hnRNP L within the transcriptomes of human CD4؉ and cultured Jurkat T cells.
    [Show full text]
  • Binding Specificities of Human RNA Binding Proteins Towards Structured
    bioRxiv preprint doi: https://doi.org/10.1101/317909; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Binding specificities of human RNA binding proteins towards structured and linear 2 RNA sequences 3 4 Arttu Jolma1,#, Jilin Zhang1,#, Estefania Mondragón4,#, Teemu Kivioja2, Yimeng Yin1, 5 Fangjie Zhu1, Quaid Morris5,6,7,8, Timothy R. Hughes5,6, Louis James Maher III4 and Jussi 6 Taipale1,2,3,* 7 8 9 AUTHOR AFFILIATIONS 10 11 1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden 12 2Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland 13 3Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 14 4Department of Biochemistry and Molecular Biology and Mayo Clinic Graduate School of 15 Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, USA 16 5Department of Molecular Genetics, University of Toronto, Toronto, Canada 17 6Donnelly Centre, University of Toronto, Toronto, Canada 18 7Edward S Rogers Sr Department of Electrical and Computer Engineering, University of 19 Toronto, Toronto, Canada 20 8Department of Computer Science, University of Toronto, Toronto, Canada 21 #Authors contributed equally 22 *Correspondence: [email protected] 23 24 25 SUMMARY 26 27 Sequence specific RNA-binding proteins (RBPs) control many important 28 processes affecting gene expression. They regulate RNA metabolism at multiple 29 levels, by affecting splicing of nascent transcripts, RNA folding, base modification, 30 transport, localization, translation and stability. Despite their central role in most 31 aspects of RNA metabolism and function, most RBP binding specificities remain 32 unknown or incompletely defined.
    [Show full text]