15.14 Find Both the Center and the Commutator Subgroup of Z3 × S3

Total Page:16

File Type:pdf, Size:1020Kb

15.14 Find Both the Center and the Commutator Subgroup of Z3 × S3 15.14 Find both the center and the commutator subgroup of Z3 × S3. Solution: The center subgroup of G := Z3 × S3 is Z(G) = {g ∈ G | gx = xg for all x ∈ G} = Z3 × {e}. −1 −1 The commutator subgroup [G, G] is generated by all g1g2g1 g2 for all g1, g2 ∈ G. Suppose g1 = (a1, σ1) and g2 = (a2, σ2). Then −1 −1 −1 −1 g1g2g1 g2 = (a1, σ1)(a2, σ2)(a1, σ1) (a2, σ2) −1 −1 = (a1, σ1)(a2, σ2)(−a1, σ1 )(−a2, σ2 ) −1 −1 = (a1 + a2 − a1 − a2, σ1σ2σ1 σ2 ). −1 −1 = (0, σ1σ2σ1 σ2 ). −1 −1 All permutations σ1σ2σ1 σ2 for σ1, σ2 ∈ S3 generate the commutator subgroup [S3,S3] = A3 of S3. So the commutator subgroup of G = Z3 × S3 is [G, G] = [Z3 × S3, Z3 × S3] = [Z3, Z3] × [S3,S3] = {0} × A3. 15.19 Solution: a. T. b. F. e.g. S3 is noncyclic, but S3/A3 ' Z2 is cyclic. c. F. 0.5 + Z is an element of R/Z that has order 2. d. T. e. F. R/Z only has two elements of order 4, i.e. 0.25+Z and 0.75+Z. f. T. g. F. If G/H is abelian, then H contains the commutator subgroup C of G. h. F. G must be nonabelian. i. T. j. F. An for every n ≥ 5 is a nontrivial finite simple group, but it has the order |An| = n!/2, which is not a prime. 15.20 Let F be the additive group of all functions mapping R into R. Let K be the subgroup of F consisting of the constant functions. Find a subgroup of F to which F/K is isomorphic. 32 Solution: Let F0 = {f ∈ F | f(0) = 0}. Then F0 is a group. Define a mapping φ : F → F0 by φ(g)(x) := g(x) − g(0). Then φ is a surjective group homomorphism with ker φ = K. Therefore, F/K = F/ ker φ ' Imφ = F0. 15.22 Let F be the additive group of all functions mapping R into R. Let K be the subgroup of continuous functions in F . Can you find an element of F/K having order 2? Why or why not? Solution: You cannot find an element f + K of F/K having order 2. Because if f + K has order 2, then f∈ / K but 2f ∈ K. So 2f is a continuous function. So f is a continuous function. So f ∈ K.A contradiction! 15.28 Give an example of a group G having no elements of finite order > 1 but having a factor group G/H, all of whose elements are of finite order. Solution: For example, take G := Z and H := 2Z. 15.30 Describe the center of every simple a. abelian group Solution: Let G be a simple abelian group. Then Z(G) = G since G is abelian. Notice that the simple abelian group G must be of the form Zp for some prime p. b. nonabelian group. Solution: Let G be a simple nonabelian group. Then Z(G) = {e} since Z(G) can only be {e} or G by the simplicity of G, but Z(G) 6= G since G is nonabelian. 15.31 Describe the center of every simple a. abelian group Solution: Let G be a simple abelian group. Then [G, G] = {0} since the generators of [G, G] are x + y + (−x) + (−y) = 0 for all x, y ∈ G. b. nonabelian group. Solution: Let G be a simple nonabelian group. Then [G, G] = G since the subgroup [G, G] can only be {e} or G by the simplicity of G, but [G, G] 6= {e} since G is nonabelian. 33 15.35 Let φ : G → G0 be a group homomorphism, and let N be a normal subgroup of G. Show that φ[N] is normal subgroup of φ[G]. Solution: Given arbitrary φ(g) ∈ φ[G], by homomorphism property and the normality of N in G, φ(g)φ[N]φ(g)−1 = φ[gNg−1] = φ[N]. Thus φ[N] is normal in φ[G]. 15.36 Let φ : G → G0 be a group homomorphism, and let N 0 be a normal subgroup of G0. Show that φ−1[N 0] is a normal subgroup of G. Solution: For every x ∈ G, the set xφ−1[N 0]x−1 satisfies that φ(xφ−1[N 0]x−1) = φ(x)φ(φ−1[N 0])φ(x−1) ⊆ φ(x)N 0φ(x)−1 ⊆ N 0 since N 0 ¢ G0. So xφ−1[N 0]x−1 ⊆ φ−1[N 0] for every x ∈ G. This shows that φ−1[N 0] is a normal subgroup of G. 15.40 Let N be a normal subgroup of G and let H be any subgroup of G. Let HN = {hn | h ∈ H, n ∈ N}. Show that HN is a subgroup of G, and is the smallest subgroup containing both H and N. Solution: Let us check that HN is a subgroup of G: 1. Closed: Let h1n1, h2n2 ∈ HN. Then n1h2 ∈ Nh2 = h2N. There is n3 ∈ N such that n1h2 = h2n3. So h1n1h2n2 = h1(n1h2)n2 = h1(h2n3)n2 = (h1h2)(n3n2) ∈ HN. Thus HN is closed under multiplication. 2. Identity: Since e ∈ H and e ∈ N, it is true that e = ee ∈ HN. 3. Inverse: If hn ∈ HN, then (hn)−1 = n−1h−1 ∈ Nh−1 = h−1N ⊆ HN. So the inverse of hn is also in HN. 34 Therefore, HN is a subgroup of G. Every subgroup K containing H and N will contain HN. That is, HN is the smallest subgroup that contains both H and N. Finally, every subgroup of G containing H and N must contains the elements in HN. So HN is the smallest subgroup containing both H and N. 35.
Recommended publications
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • Categories, Functors, and Natural Transformations I∗
    Lecture 2: Categories, functors, and natural transformations I∗ Nilay Kumar June 4, 2014 (Meta)categories We begin, for the moment, with rather loose definitions, free from the technicalities of set theory. Definition 1. A metagraph consists of objects a; b; c; : : :, arrows f; g; h; : : :, and two operations, as follows. The first is the domain, which assigns to each arrow f an object a = dom f, and the second is the codomain, which assigns to each arrow f an object b = cod f. This is visually indicated by f : a ! b. Definition 2. A metacategory is a metagraph with two additional operations. The first is the identity, which assigns to each object a an arrow Ida = 1a : a ! a. The second is the composition, which assigns to each pair g; f of arrows with dom g = cod f an arrow g ◦ f called their composition, with g ◦ f : dom f ! cod g. This operation may be pictured as b f g a c g◦f We require further that: composition is associative, k ◦ (g ◦ f) = (k ◦ g) ◦ f; (whenever this composition makese sense) or diagrammatically that the diagram k◦(g◦f)=(k◦g)◦f a d k◦g f k g◦f b g c commutes, and that for all arrows f : a ! b and g : b ! c, we have 1b ◦ f = f and g ◦ 1b = g; or diagrammatically that the diagram f a b f g 1b g b c commutes. ∗This talk follows [1] I.1-4 very closely. 1 Recall that a diagram is commutative when, for each pair of vertices c and c0, any two paths formed from direct edges leading from c to c0 yield, by composition of labels, equal arrows from c to c0.
    [Show full text]
  • Normal Subgroups of the General Linear Groups Over Von Neumann Regular Rings L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 96, Number 2, February 1986 NORMAL SUBGROUPS OF THE GENERAL LINEAR GROUPS OVER VON NEUMANN REGULAR RINGS L. N. VASERSTEIN1 ABSTRACT. Let A be a von Neumann regular ring or, more generally, let A be an associative ring with 1 whose reduction modulo its Jacobson radical is von Neumann regular. We obtain a complete description of all subgroups of GLn A, n > 3, which are normalized by elementary matrices. 1. Introduction. For any associative ring A with 1 and any natural number n, let GLn A be the group of invertible n by n matrices over A and EnA the subgroup generated by all elementary matrices x1'3, where 1 < i / j < n and x E A. In this paper we describe all subgroups of GLn A normalized by EnA for any von Neumann regular A, provided n > 3. Our description is standard (see Bass [1] and Vaserstein [14, 16]): a subgroup H of GL„ A is normalized by EnA if and only if H is of level B for an ideal B of A, i.e. E„(A, B) C H C Gn(A, B). Here Gn(A, B) is the inverse image of the center of GL„(,4/S) (when n > 2, this center consists of scalar invertible matrices over the center of the ring A/B) under the canonical homomorphism GL„ A —►GLn(A/B) and En(A, B) is the normal subgroup of EnA generated by all elementary matrices in Gn(A, B) (when n > 3, the group En(A, B) is generated by matrices of the form (—y)J'lx1'Jy:i''1 with x € B,y £ A,l < i ^ j < n, see [14]).
    [Show full text]
  • Generalized Quaternions
    GENERALIZED QUATERNIONS KEITH CONRAD 1. introduction The quaternion group Q8 is one of the two non-abelian groups of size 8 (up to isomor- phism). The other one, D4, can be constructed as a semi-direct product: ∼ ∼ × ∼ D4 = Aff(Z=(4)) = Z=(4) o (Z=(4)) = Z=(4) o Z=(2); where the elements of Z=(2) act on Z=(4) as the identity and negation. While Q8 is not a semi-direct product, it can be constructed as the quotient group of a semi-direct product. We will see how this is done in Section2 and then jazz up the construction in Section3 to make an infinite family of similar groups with Q8 as the simplest member. In Section4 we will compare this family with the dihedral groups and see how it fits into a bigger picture. 2. The quaternion group from a semi-direct product The group Q8 is built out of its subgroups hii and hji with the overlapping condition i2 = j2 = −1 and the conjugacy relation jij−1 = −i = i−1. More generally, for odd a we have jaij−a = −i = i−1, while for even a we have jaij−a = i. We can combine these into the single formula a (2.1) jaij−a = i(−1) for all a 2 Z. These relations suggest the following way to construct the group Q8. Theorem 2.1. Let H = Z=(4) o Z=(4), where (a; b)(c; d) = (a + (−1)bc; b + d); ∼ The element (2; 2) in H has order 2, lies in the center, and H=h(2; 2)i = Q8.
    [Show full text]
  • GROUPS with MINIMAX COMMUTATOR SUBGROUP Communicated by Gustavo A. Fernández-Alcober 1. Introduction a Group G Is Said to Have
    International Journal of Group Theory ISSN (print): 2251-7650, ISSN (on-line): 2251-7669 Vol. 3 No. 1 (2014), pp. 9-16. c 2014 University of Isfahan www.theoryofgroups.ir www.ui.ac.ir GROUPS WITH MINIMAX COMMUTATOR SUBGROUP F. DE GIOVANNI∗ AND M. TROMBETTI Communicated by Gustavo A. Fern´andez-Alcober Abstract. A result of Dixon, Evans and Smith shows that if G is a locally (soluble-by-finite) group whose proper subgroups are (finite rank)-by-abelian, then G itself has this property, i.e. the commutator subgroup of G has finite rank. It is proved here that if G is a locally (soluble-by-finite) group whose proper subgroups have minimax commutator subgroup, then also the commutator subgroup G0 of G is minimax. A corresponding result is proved for groups in which the commutator subgroup of every proper subgroup has finite torsion-free rank. 1. Introduction A group G is said to have finite rank r if every finitely generated subgroup of G can be generated by at most r elements, and r is the least positive integer with such property. It follows from results of V.V. Belyaev and N.F. Sesekin [1] that if G is any (generalized) soluble group of infinite rank whose proper subgroups are finite-by-abelian, then also the commutator subgroup G0 of G is finite. More recently, M.R. Dixon, M.J. Evans and H. Smith [4] proved that if G is a locally (soluble-by-finite) group in which the commutator subgroup of every proper subgroup has finite rank, then G0 has likewise finite rank.
    [Show full text]
  • Math 594: Homework 4
    Math 594: Homework 4 Due February 11, 2015 First Exam Feb 20 in class. 1. The Commutator Subgroup. Let G be a group. The commutator subgroup C (also denoted [G; G]) is the subgroup generated by all elements of the form g−1h−1gh. a). Prove that C is a normal subgroup of G, and that G=C is abelian (called the abelization of G). b). Show that [G; G] is contained in any normal subgroup N whose quotient G=N is abelian. State and prove a universal property for the abelianization map G ! G=[G; G]. c). Prove that if G ! H is a group homomorphism, then the commutator subgroup of G is taken to the commutator subgroup of H. Show that \abelianization" is a functor from groups to abelian groups. 2. Solvability. Define a (not-necessarily finite) group G to be solvable if G has a normal series feg ⊂ G1 ⊂ G2 · · · ⊂ Gt−1 ⊂ Gt = G in which all the quotients are abelian. [Recall that a normal series means that each Gi is normal in Gi+1.] a). For a finite group G, show that this definition is equivalent to the definition on problem set 3. b*). Show that if 1 ! A ! B ! C ! 1 is a short exact sequence of groups, then B if solvable if and only if both A and C are solvable. c). Show that G is solvable if and only if eventually, the sequence G ⊃ [G; G] ⊃ [[G; G]; [G; G]] ⊃ ::: terminates in the trivial group. This is called the derived series of G.
    [Show full text]
  • SL{2, R)/ ± /; Then Hc = PSL(2, C) = SL(2, C)/ ±
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 60, October 1976 ERRATUM TO "ON THE AUTOMORPHISM GROUP OF A LIE GROUP" DAVID WIGNER D. Z. Djokovic and G. P. Hochschild have pointed out that the argument in the third paragraph of the proof of Theorem 1 is insufficient. The fallacy lies in assuming that the fixer of S in K(S) is an algebraic subgroup. This is of course correct for complex groups, since a connected complex semisimple Lie group is algebraic, but false for real Lie groups. By Proposition 1, the theorem is correct for real solvable Lie groups and the given proof is correct for complex groups, but the theorem fails for real semisimple groups, as the following example, worked out jointly with Professor Hochschild, shows. Let G = SL(2, R); then Gc = SL(2, C) is the complexification of G and the complex conjugation t in SL(2, C) fixes exactly SL(2, R). Let H = PSL(2, R) = SL{2, R)/ ± /; then Hc = PSL(2, C) = SL(2, C)/ ± /. The complex conjugation induced by t in PSL{2, C) fixes the image M in FSL(2, C) of the matrix (° ¿,)in SL(2, C). Therefore M is in the real algebraic hull of H = PSL(2, R). Conjugation by M on PSL(2, R) acts on ttx{PSL{2, R)) aZby multiplication by - 1. Now let H be the universal cover of PSLÍ2, R) and D its center. Let K = H X H/{(d, d)\d ED}. Then the inner automorphism group of K is H X H and its algebraic hull contains elements whose conjugation action on the fundamental group of H X H is multiplication by - 1 on the fundamen- tal group of the first factor and the identity on the fundamental group of the second factor.
    [Show full text]
  • The Center and the Commutator Subgroup in Hopfian Groups
    The center and the commutator subgroup in hopfian groups 1~. I-hRSHON Polytechnic Institute of Brooklyn, Brooklyn, :N.Y., U.S.A. 1. Abstract We continue our investigation of the direct product of hopfian groups. Through- out this paper A will designate a hopfian group and B will designate (unless we specify otherwise) a group with finitely many normal subgroups. For the most part we will investigate the role of Z(A), the center of A (and to a lesser degree also the role of the commutator subgroup of A) in relation to the hopficity of A • B. Sections 2.1 and 2.2 contain some general results independent of any restric- tions on A. We show here (a) If A X B is not hopfian for some B, there exists a finite abelian group iv such that if k is any positive integer a homomorphism 0k of A • onto A can be found such that Ok has more than k elements in its kernel. (b) If A is fixed, a necessary and sufficient condition that A • be hopfian for all B is that if 0 is a surjective endomorphism of A • B then there exists a subgroup B. of B such that AOB-=AOxB.O. In Section 3.1 we use (a) to establish our main result which is (e) If all of the primary components of the torsion subgroup of Z(A) obey the minimal condition for subgroups, then A • is hopfian, In Section 3.3 we obtain some results for some finite groups B. For example we show here (d) If IB[ -~ p'q~.., q? where p, ql q, are the distinct prime divisors of ]B[ and ff 0 <e<3, 0~e~2 and Z(A) has finitely many elements of order p~ then A • is hopfian.
    [Show full text]
  • Order (Group Theory) 1 Order (Group Theory)
    Order (group theory) 1 Order (group theory) In group theory, a branch of mathematics, the term order is used in two closely-related senses: • The order of a group is its cardinality, i.e., the number of its elements. • The order, sometimes period, of an element a of a group is the smallest positive integer m such that am = e (where e denotes the identity element of the group, and am denotes the product of m copies of a). If no such m exists, a is said to have infinite order. All elements of finite groups have finite order. The order of a group G is denoted by ord(G) or |G| and the order of an element a by ord(a) or |a|. Example Example. The symmetric group S has the following multiplication table. 3 • e s t u v w e e s t u v w s s e v w t u t t u e s w v u u t w v e s v v w s e u t w w v u t s e This group has six elements, so ord(S ) = 6. By definition, the order of the identity, e, is 1. Each of s, t, and w 3 squares to e, so these group elements have order 2. Completing the enumeration, both u and v have order 3, for u2 = v and u3 = vu = e, and v2 = u and v3 = uv = e. Order and structure The order of a group and that of an element tend to speak about the structure of the group.
    [Show full text]
  • (Order of a Group). the Number of Elements of a Group (finite Or Infinite) Is Called Its Order
    CHAPTER 3 Finite Groups; Subgroups Definition (Order of a Group). The number of elements of a group (finite or infinite) is called its order. We denote the order of G by G . | | Definition (Order of an Element). The order of an element g in a group G is the smallest positive integer n such that gn = e (ng = 0 in additive notation). If no such integer exists, we say g has infinite order. The order of g is denoted by g . | | Example. U(18) = 1, 5, 7, 11, 13, 17 , so U(18) = 6. Also, { } | | 51 = 5, 52 = 7, 53 = 17, 54 = 13, 55 = 11, 56 = 1, so 5 = 6. | | Example. Z12 = 12 under addition modulo n. | | 1 4 = 4, 2 4 = 8, 3 4 = 0, · · · so 4 = 3. | | 36 3. FINITE GROUPS; SUBGROUPS 37 Problem (Page 69 # 20). Let G be a group, x G. If x2 = e and x6 = e, prove (1) x4 = e and (2) x5 = e. What can we say 2about x ? 6 Proof. 6 6 | | (1) Suppose x4 = e. Then x8 = e = x2x6 = e = x2e = e = x2 = e, ) ) ) a contradiction, so x4 = e. 6 (2) Suppose x5 = e. Then x10 = e = x4x6 = e = x4e = e = x4 = e, ) ) ) a contradiction, so x5 = e. 6 Therefore, x = 3 or x = 6. | | | | ⇤ Definition (Subgroup). If a subset H of a group G is itself a group under the operation of G, we say that H is a subgroup of G, denoted H G. If H is a proper subset of G, then H is a proper subgroup of G.
    [Show full text]
  • 1 Math 3560 Fall 2011 Solutions to the Second Prelim Problem 1: (10
    1 Math 3560 Fall 2011 Solutions to the Second Prelim Problem 1: (10 points for each theorem) Select two of the the following theorems and state each carefully: (a) Cayley's Theorem; (b) Fermat's Little Theorem; (c) Lagrange's Theorem; (d) Cauchy's Theorem. Make sure in each case that you indicate which theorem you are stating. Each of these theorems appears in the text book. Problem 2: (a) (10 points) Prove that the center Z(G) of a group G is a normal subgroup of G. Solution: Z(G) is the subgroup of G consisting of all elements that commute with every element of G. Let z be any element of the center, and let g be any element of G, Then, gz = zg. Since z is chosen arbitrarily, this shows that gZ(G) ⊆ Z(G)g, for every g. It also demonstrates the reverse inclusion, so that gZ(G) = Z(G)g. Since this holds for every g 2 G, Z(G) is normal in G. (b) (10 points) Let H be the subgroup of S3 generated by the transposition (12). That is, H =< (12) >. Prove that H is not a normal subgroup of S3. Solution: Denote < (12) > by H. There are many ways to show that H is not normal. Most are equivalent to the following. Choose some σ 2 S3 di®erent from " and di®erent from the transposition (12). In this case, almost any such choice will do. Say σ = (13). Compute (13)(12) and (12)(13) and see that they are not equal.
    [Show full text]
  • Automorphism Group of the Commutator Subgroup of the Braid Group
    ANNALES DE LA FACULTÉ DES SCIENCES Mathématiques STEPAN YU.OREVKOV Automorphism group of the commutator subgroup of the braid group Tome XXVI, no 5 (2017), p. 1137-1161. <http://afst.cedram.org/item?id=AFST_2017_6_26_5_1137_0> © Université Paul Sabatier, Toulouse, 2017, tous droits réservés. L’accès aux articles de la revue « Annales de la faculté des sci- ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Annales de la faculté des sciences de Toulouse Volume XXVI, no 5, 2017 pp. 1137-1161 Automorphism group of the commutator subgroup of the braid group (∗) Stepan Yu. Orevkov (1) 0 ABSTRACT.— Let Bn be the commutator subgroup of the braid 0 group Bn. We prove that Aut(Bn) = Aut(Bn) for n > 4. This answers a question asked by Vladimir Lin. 0 RÉSUMÉ.— Soit Bn le groupe dérivé du groupe de tresses Bn. On 0 montre que Aut(Bn) = Aut(Bn) pour n > 4, ce qui répond à une question posée par Vladimir Lin. 1. Introduction Let Bn be the braid group with n strings. It is generated by σ1, . , σn−1 (called standard or Artin generators) subject to the relations σiσj = σjσi for |i − j| > 1 ; σiσjσi = σjσiσj for |i − j| = 1.
    [Show full text]