Crystals 2012, 2, 1034-1057; doi:10.3390/cryst2031034 OPEN ACCESS crystals ISSN 2073-4352 www.mdpi.com/journal/crystals Review Magnetic and Electric Properties of Organic Conductors Probed by 13 C-NMR Using Selective-Site Substituted Molecules Shinji Hirose, Masaki Misawa and Atsushi Kawamoto * Department of Condensed Matter Physics, Hokkaido University, Kita-ku Sapporo, Hokkaido 060-0810, Japan; E-Mails:
[email protected] (S.H.);
[email protected] (M.M.) * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel.: +81-01-706-4423; Fax: +81-01-706-4926. Received: 6 April 2012; in revised form: 26 June 2012 / Accepted: 6 July 2012 / Published: 27 July 2012 Abstract: Quasi-One and quasi-two dimensional organic conductors consisting of TTF derivatives such as BEDT-TTF (bis-(ethylene-dithio)-tetra-thia-fulvalene) and TMT CF (C = S; TMTTF: tetra-methyl-tetra-thia-fulvalene, C = Se; TMTSF: tetra-methyl-tetra- selena-fulvalene) have been well investigated in condensed matter physics because of interest in the emerging electric and magnetic properties, such as the spin density wave, charge order, superconductivity, anti-ferromagnetism, and so on. To probe the electronic state, nuclear magnetic resonance (NMR) is one of the most powerful tools as the microscopic magnetometer. A number of 13 C-NMR studies have been performed of the double-site central 13 C= 13 C bond substituted molecules. However, problems with the coupled spin system of 13 C= 13 C complicated the interpretation for observations on NMR. Therefore, single-site 13 C-enriched molecules are desired.