<<

UNITED NATIONS SC

UNEP/POPS/POPRC.14/INF/4 Distr.: General 18 July 2018 English only Stockholm Convention on Persistent Organic Pollutants

Persistent Organic Pollutants Review Committee Fourteenth meeting Rome, 17–21 September 2018 Item 4 (a) of the provisional agenda* Technical work: consideration of a draft risk profile on perfluorohexane sulfonic acid (CAS No: 355-46-4, PFHxS), its salts and PFHxS-related compounds

Additional information on perfluorohexane sulfonic acid (CAS No: 355-46-4, PFHxS), its salts and PFHxS-related compounds

Note by the Secretariat As referred to in the note by the Secretariat on a draft risk profile on perfluorohexane sulfonic acid (CAS No: 355-46-4, PFHxS), its salts and PFHxS-related compounds (UNEP/POPS/POPRC.14/2), the annex to the present note sets out additional information on PFHxS, its salts and PFHxS-related compounds prepared by the intersessional working group on PFHxS, its salts and PFHxS-related compounds. The present note, including its annex, has not been formally edited.

* UNEP/POPS/POPRC.14/1.

200718 UNEP/POPS/POPRC.14/INF/4 Annex

Perfluorohexane sulfonic acid (CAS No: 355-46-4, PFHxS), its salts and PFHxS-related compounds

ADDITIONAL INFORMATION

Prepared by the intersessional working group on PFHxS, its salts and PFHxS-related compounds Persistent Organic Pollutants Review Committee

July 2018

2 UNEP/POPS/POPRC.14/INF/4

Table 1.1. Measured levels of PFHxS in aquatic biota Study site/ Range Organism Tissue Year Country Mean (g/kg) Comment Reference Type of location (g/kg) Marine water organisms Atlantic Homogenate 2004 United States Charleston Harbour, n.d. Houde et al., 2006 croaker South Carolina Fish Homogenate 2009 Republic of Estuarine and Coastal areas, 0.020–1.2 0.28 Naile et al., 2013 Korea Urban/industrial Crab Homogenate 2009 Republic of Estuarine and Coastal areas, 0.039–3.3 0.30 Naile et al., 2013 Korea Urban/industrial Gastropod Homogenate 2009 Republic of Estuarine and Coastal areas, 0.16–1.1 0.45 Naile et al., 2013 Korea Urban/industrial Bivalve Homogenate 2009 Republic of Estuarine and Coastal areas, 0.073–1.4 0.47 Naile et al., 2013 Korea Urban/industrial Fish (Arctic cod, Homogenate 2007–2009 Canadian Remote n.d. Pooled samples and some Braune et al., 2014 Capelin, Sand Arctic individual lance) Bentic fish Homogenate 2007–2009 Canadian Remote n.d.–0.22 Pooled samples and some Braune et al., 2014 (various) Arctic ng/g individual Pigfish Homogenate 2004 United States Sarasota Bay, Florida 4.1 Houde et al., 2006 Pinfish Homogenate 2002/03 United States Charleston Harbour, South Carolina n.d. Houde et al., 2006 Pinfish Homogenate 2004 United States Sarasota Bay, Florida 4.6 Houde et al., 2006 Red drum Homogenate 2002/03 United States Charleston Harbour, South Carolina 0.5 Houde et al., 2006 Sheephead Homogenate 2004 United States Sarasota Bay, Florida n.d. Houde et al., 2006 Spotted seatrout Homogenate 2002/03 United States Charleston Harbour, South Carolina 1.1 Houde et al., 2006 Spotted seatrout Homogenate 2004 United States Sarasota Bay, Florida 0.6 Houde et al., 2006 Spotfish Homogenate 2002/03 United States Charleston Harbour, South Carolina 0.6 Houde et al., 2006 Polar cod Liver 2004 Norway Svalbard, Barents Sea n.d.–0.07 0.04 Haukas et al., 2007 Rainbow trout Muscle Sweden Baltic Sea <0.011–0.040 0.013 Glynn et al., 2012 Fish various Whole body Canada Hudson Bay n.d.–0.22 Braune et al., 2014 Fish Muscle/liver Australia Urban/industrial n.d./0.70–1.2 Thomson et al., 2011b Various aquatic 2007 United States, Urban 0.1–3.4 ng/g Sawtooth pen clam, white Kumar et al., 2009 organisms Savannah, shrimp, eel, oyster toadfish, Georgia snapper, catfish, Atlantic croaker, southern kingfish, southern stingray, silver perch, spot, inshore lizardfish, tomtate, sea robin, Black sea bass, largemouth bass, Atlantic sharp-nose shark, bonnethead shark Various fish Liver 2004 Netherlands North Sea, Western Scheldt, <3–27 ng/g Various marine fish Van Leeuwen & Boer, 2006 Skagerak Various shellfish Liver 2004 Netherlands North Sea, Western Scheldt, <3–<6 ng/g Van Leeuwen & Boer, 2006 and crustaceans Skagerak 3

UNEP/POPS/POPRC.14/INF/4

Study site/ Range Organism Tissue Year Country Mean (g/kg) Comment Reference Type of location (g/kg) Fresh water organisms Atlantic Homogenate United States Charleston Harbour, n.d. Houde et al., 2006 croaker South Carolina Big head carp Muscle 2011 China Lake Tangxun, urban/industrial 0.19–3.57 1.15 Zhou et al., 2014 Grass carp Muscle 2011 China Lake Tangxun, urban/industrial 4.58 Zhou et al., 2014 Silver carp Muscle 2011 China Lake Tangxun, urban/industrial 0.81–3.33 1.59 Zhou et al., 2014 Common carp Muscle 2011 China Lake Tangxun, urban/industrial 15.5–74.0 31.2 Zhou et al., 2014 White amur Muscle 2011 China Lake Tangxun, urban/industrial 0.83–3.16 1.84 Zhou et al., 2014 bream Yellow catfish Muscle 2011 China Lake Tangxun, urban/industrial 6.19–12.2 9.92 Zhou et al., 2014 Cod Whole blood Poland Baltic Sea, Gulf of Gdansk 0.05–0.80 0.10 Falandysz et al., 2006 Herring Liver 2005/2006 Sweden East and West coast 0.22 Pooled sample Bignert et al., 2008 Herring Liver 2007/2008 Sweden East and West coast 2.2 Pooled sample Bignert et al., 2008 Herring Liver 2009 Sweden East and West coast 1.3 Pooled sample Bignert et al., 2008 Biota Various 2013-2015 Vietnam River <0.0–0.95 0.06 Fish, crab, prawn, snail, Lam et al., 2017 ng/g Fish Various 2010 Czech River Labe, Vltava and Bilina 0.007–0.121 0.032 Pooled and individual Svihlikova et al., 2015 Republic ng/g Bentic Whole 2010/2011 Canada Arctic n.d. Lescord et al., 2015 invertebrates Pelagic Whole 2010/2011 Canada Arctic n.d. Lescord et al., 2015 invertebrates Char Various 2010/2011 Canada Arctic n.d.–2.0 Lescord et al., 2015 Various fish Liver 2004 Netherlands <3–<4 Eel and pike Van Leeuwen & Boer, 2006 Rainbow trout Muscle Sweden Baltic Sea <0.011–0.040 0.013 Glynn et al., 2012 Fish Edible tissue 2016/2018 China Baiyangdian Lake, recepient water 0.02–39.77 Carp, bream, snakehead, stone Cui et al., 2018 (muscle) from rivers containing emission ng/g ww maroko, and loach from production facilities. Crab Edible tissue 2016/2018 China Baiyangdian Lake, recepient water 0.9–1.43 ng/g Crab Cui et al., 2018 from rivers containing emission ww from production facilities. Shrimp Whole body 2016/2018 China Baiyangdian Lake, recepient water 32.94 ng/g ww Cui et al., 2018 from rivers containing emission from production facilities. Rice field eel Edible tissue 2016/2018 China Baiyangdian Lake, recepient water 25.69 ng/g ww Cui et al., 2018 (muscle) from rivers containing emission from production facilities. Turtle Edible tissue 2018 China Baiyangdian Lake, recepient water 0.02 ng/g ww Cui et al., 2018 (muscle) from rivers containing emission from production facilities.

4 UNEP/POPS/POPRC.14/INF/4

Table 1.2. Measured levels of PFHxS in amphibians and birds

Organism Tissue Year Country Study site/Type of location Range (g/kg) Mean (g/kg) Comments Reference Amphibians American Plasma 2008/2009 United States Merrit Island National <0.008–161 7.955 Bangma et al., 2017 alligators Wildlife Refµge American Tail 2015 United States South Carolina 0.051–0.272 ng/g 0.0816–0.099 Median Tipton et al., 2017 alligators muscle ng/g Chinese alligators Serum 2009 China Anhui Research Center for 0–1.5 ng/g dw 0.2 ng/g dw Wang et al., 2013 Chinese Alligator Reproduction Birds Albatross Liver 2011 Canada Midway Atoll, North Pacific 0.32–0.81 Chu et al., et al., 2015 Ocean Albatross Muscle 2011 Canada Midway Atoll, North Pacific 0.14–0.44 Chu et al., et al., 2015 Ocean Albatross Adipose 2011 Canada Midway Atoll, North Pacific n.d.–0.18 Chu et al., et al., 2015 Ocean Herring Gull Egg 2012/2013 United Great Lakes 0.01–1.44 Letcher et al., 2015 States/Canada Caspian tern Egg 2013/2014 United Great Lakes n.d.–4.61 Range of three colonies Su et al., 2017 States/Canada Murres and Liver Various Canada Arctic Very low detection of PFHxS Butt et al., 2007 fulmars Murres and Egg Various Canada Prins Leopold Island, 0.01–0.21 Range between two species Braune and Letcher, 2013 Fulmars Nunavut Herring Gull Egg 2009–2014 United Urban (industrial)/rural 0.1–2.7 Range between locations. Big Gewurtz et al., 2016 States/Canada difference in concentration between Urban/industrial and rural Various Egg Australia Urban/industrial <0.50–6.8 Ibis and gull eggs Thomson et al., 2011b Great tits Egg 2011 Belgium, Industrial 36.9−354.6 162.3 Vicinity of a Groffen et al., 2017 (n=11) Antwerp perfluorochemical plant (3 M) in Antwerp, Belgium (PFOS levels in the range 3237-69218 µg/kg) Great tits Egg 2011 Belgium, Industrial

UNEP/POPS/POPRC.14/INF/4

Organism Tissue Year Country Study site/Type of location Range (g/kg) Mean (g/kg) Comments Reference European Shag Egg 2012 Norway Sklinna, mid, remote 0.53–0.53 Pooled samples Huber et al., 2015 European Shag Egg 2012 Norway Røst, north, remote 0.65–0.93 Pooled samples Huber et al., 2015 European herring Egg 2012 Norway Sklinna, mid, remote 0.23–0.50 Pooled samples Huber et al., 2015 gull European herring Egg 2012 Norway Røst, north, remote 0.40–0.79 Pooled samples Huber et al., 2015 gull Duck Egg 2016 China Baiyangdian Lake, recepient 30.61 ng/g ww n=10 Cui et al., 2018 water from rivers containing emission from production facilities. Duck Meat 2016 China Baiyangdian Lake, recepient 88.52 ng/g ww n=4 Cui et al., 2018 water from rivers containing emission from production facilities. Duck Liver 2016 China Baiyangdian Lake, recepient 288.78 ng/g ww n=4 Cui et al., 2018 water from rivers containing emission from production facilities. Duck Blood 2016 China Baiyangdian Lake, recepient 438.01 ng/g ww n=4 Cui et al., 2018 water from rivers containing emission from production facilities.

6 UNEP/POPS/POPRC.14/INF/4

Table 1.3. Measured levels of PFHxS in marine- and terrestrial mammals Study site/Type of Organism Tissue Year Country Range (g/kg) Mean (g/kg) Comments Reference location Marine mammals Lichen - 2009 Antartica 0.11–1.16 Alava et al., 2015 Penguin Feces 2009 Antartica 0.45–4.9 Alava et al., 2015 Penguin Feces 2010 Antartica 2.17–3.77 Llorca et al., 2012 Weddell seals Plasma Antartica McMurdo Sound n.d. Not detected Routti et al., 2015 Plasma 1990– Norway Svalbard 0.49–2.68 Not sampled every year Routti et al., 2016 2010 Ringed seal Liver 1986– East Greenland

7

UNEP/POPS/POPRC.14/INF/4

Study site/Type of Organism Tissue Year Country Range (g/kg) Mean (g/kg) Comments Reference location Belµga whale Liver Alaska, Cook inlet 0.6–3.55 Reiner et al., 2011 United States Belµga whale Liver Alaska, Eastern Chukchi Sea <0.0261–0.378 Reiner et al., 2011 United States Mink whale Liver Iceland <0.4–1.1 Kallenborne et al., 2004 Minke whale Liver 1998 Greenland Central, west 0.2 ng/g 1998, 3 pooled samples, pool n=4, Rotander et al., 2012 females, median. Fin whale Muscle 1986− Iceland West <0.2, <0.2 ng/g 1986−1989, 2009 (3 pooled Rotander et al., 2012 2009 samples/period, pool n=3−5, males, medians) Long-finned Liver Faroe island 0.39–1.0 Kallenborne et al., 2004 pilot whale White-beaked Liver 1999– Denmark Danish North Sea DL 6.8 2.8 Galatius et al., 2013 dolphin 2002 White-sided Liver 2001− Faroe 0.4, 0.5 ng/g 2001/2002, 2006 (3 pooled Rotander et al., 2012 dolphin 2006 Islands samples/period, pool n=3−5, males, medians) Bottlenose Plasma 2004 United Sarasota Bay, Florida 115 ± 101 ng/g n=12 Houde et al., 2006 dolphins States ww Bottlenose Plasma 2004 United Charleston Harbour, South 48 ± 62 ng/g n=24 Houde et al., 2006 dolphins States Carolina Bottlenose Plasma 2003– United Indian River Lagoon, FL, 2.30–757 Range between juvenile, adult female Fair et al., 2012 dolphins 2005 States less urban and adult male. Highest level found in juvenile based geometrical mean. Bottlenose Plasma 2003– United Charleston, SC, Urban 4.6–471 Range between juvenile, adult female Fair et al., 2012 dolphins 2005 States and adult male. Highest level found in juvenile based geometrical mean. Bottlenose Blubber 2005 United Indian River Lagoon, FL, 0.3–69.3 Range between juvenile, adult female Fair et al., 2010 dolphins States less urban and adult male. Highest level found in adult male based on geometrical mean. Bottlenose Blubber 2005 United Charleston, SC, urban 0.3–22.7 Range between juvenile, adult female Fair et al., 2010 dolphins States and adult male. Highest level found in juvenile based on geometrical mean. Otter Liver 1972– Sweden 0.7–12 ng/g Northern 2.8, 5.5, and 3.6 Northern Sweden, Southern Sweden, Roos et al., 2013 2011 Sweden ng/g (median South-west Norway 0.7–64 ng/g Southern respectively) Sweden 1.5–7.6 ng/g South–west Norway Terrestrial Roe deer Liver Germany 0.5–2.0 Falk et al., 2012 pooled

8 UNEP/POPS/POPRC.14/INF/4

Study site/Type of Organism Tissue Year Country Range (g/kg) Mean (g/kg) Comments Reference location Various 2011/ Norway Svalbard, Arctic remote 0.23–8.4 total range 0.47–5.2 mean The range levels represent tissues; liver, Aas et al., 2014 2012 range blood, kidney, adipose tissue and muscle Arctic fox Liver Norway Svalbard, Arctic <0.05–139 Routti et al., 2017 Polar bear Liver Greenland East Greenland Bossi et al., 2005 Polar bear Liver 1999/ Greenland East Greenland 140 ng/g ww Smithwick et al., 2005a 2001 Polar bear Liver 2001 United Chukchi 35.2–325 ng/g ww 129 ng/g ww Smithwick et al., 2005b States Sea, Alaska Polar bear Liver 2001 United Northwest <3.2–261 ng/g ww 44.8 ng/g ww Smithwick et al., 2005b States Territories, Polar bear Liver 2002 Canada High Arctic <3.2–263 ng/g ww 35.9 ng/g ww Smithwick et al., 2005b Polar bear Liver Canada South Baffin <3.2–417 ng/g ww 71.4 ng/g ww Smithwick et al., 2005b Island Polar bear Liver 2002 Canada South Hudson Bay <3.2–321 ng/g ww 62.3 ng/g ww Smithwick et al., 2005b Polar bear Liver 1999/ Greenland East Greenland 4.39–544 ng/g ww 80.2 ng/g ww Smithwick et al., 2005b 2001 Polar bear Liver 1996/ Norway Svalbard, Barents Sea 2260–4430 ng/g ww 2940 ng/g ww Smithwick et al., 2005b 2002 Polar bear Plasma 1998– Norway Svalbard, Arctic 40.8 Mothers 1998 Bytningsvik et al., 2012 2008 Polar bear Plasma 1998– Norway Svalbard, Arctic 12.0 Cubs 1998 Bytningsvik et al., 2012 2008 Polar bear Plasma 1998– Norway Svalbard, Arctic 32.6 Mothers 2008 Bytningsvik et al., 2012 2008 Polar bear Plasma 1998– Norway Svalbard, Arctic 12.2 Cubs 2008 Bytningsvik et al., 2012 2008 Polar bear Various Greenland Scoresby Sound, Central 1.37–30.9 Liver, blood, brain, muscle, adipose Greaves et al., 2012 East Greenland. Polar bear Blood Norway Svalbard, Arctic 4.9–70 28 median Routti et al., 2017 Polar bear Liver 1984– Greenland East Greenland n.d. Not sampled every year Riget et al., 2013 1988 Polar bear Liver 1989– Greenland East Greenland

9

UNEP/POPS/POPRC.14/INF/4

Table 1.4. Measured levels of PFHxS in abiota Country/ Matrix Year Study site Type of location Concentration Mean Comment Reference Region Air Air Canada Arctic lakes (Amituk, Remote, Arctic <1 pg/m3 No exact value was given Stock et al., 2007 Char, and Resolute) on Cornwallis Island, Nunavut, Canada. Air Canada 2009 Alert Remote, Arctic 0.085 pg/m3 Genualdi et al., 2010 Air Norway 2016 Zeppelin Remote, Arctic Norwegian Environment Agency, 2017a (M-757) Air Norway 2016 Birkenes Norwegian Environment Agency, 2017a (M-757) Air Canada 2006–2014 Alert Remote, Arctic n.d.–0.62 pg/m3 0.032 pg/m3 Wong et al., 2018 Air Norway 2006–2014 Zeppelin Remote, Arctic n.d.–0.35 pg/m3 0.036 pg/m3 Wong et al., 2018 Air France Paris Urban 60.4 pg/m Genualdi et al., 2010 Air Canada 2009 Alert Remote, Arctic 0.26 pg/m3 Polar site Rauert et al., 2018a Air Canada 2013 Alert Remote, Arctic NS–2.0 pg/m3 Polar site Rauert et al., 2018a Air Canada 2015 Alert Remote, Arctic 1.2 pg/m3 Polar site Rauert et al., 2018a Air Norway 2009 Ny Ålesund Remote, Arctic 0.07 pg/m3 Polar site Rauert et al., 2018a Air Norway 2013 Ny Ålesund Remote, Arctic NS–0.71 pg/m3 Polar site Rauert et al., 2018a Air Norway 2015 Ny Ålesund Remote, Arctic 2.2 pg/m3 Polar site Rauert et al., 2018a Air United 2009 Hilo, Hawaii Background 1.6 pg/m3 Rauert et al., 2018a States Air United 2013 Hilo, Hawaii Background 1.9–5.9 pg/m3 Rauert et al., 2018a States Air United 2015 Hilo, Hawaii Background 7.6 pg/m3 Rauert et al., 2018a States Air South 2015 Sites in Costa Rica, Background 0.1–3.1 pg/m3 Rauert et al., 2018b America Mexico, Colombia, Brazil and Bolivia Air South 2015 Sites in Argentina, Chile Urban NS–2.6 pg/m3 Rauert et al., 2018b America and Brazil Air South 2015 Site in Mexico Agriculture 2.4 pg/m3 Rauert et al., 2018b America Ice, snow and snowmelt Snow Antarctica 2014/2015 Livingston Island Remote 0.35–7.3 pg/L 58% detection frequency Casal et al., 2017 melt Snow Antarctica 2014/2015 Livingston Island Remote n.d.–23 pg/L 58% detection frequency Casal et al., 2017 surface Snowpack Sweden 2009 North region Remote

10 UNEP/POPS/POPRC.14/INF/4

Country/ Matrix Year Study site Type of location Concentration Mean Comment Reference Region Rain Netherlands 2008 North Sea coast, 30 km Semi-rural, infiltrated 0.3–25 ng/L 10.0 ng/L Eschauzier et al., 2010 water outside Amsterdam Rain Netherlands 2008 North Sea coast, 30 km Semi-rural. 2.9–21 ng/L Eschauzier et al., 2010 water outside Amsterdam River Netherlands 2008 North Sea coast, 30 km Semi-rural, infiltrated <0.8–4.0 ng/L 1.4 ng/L Eschauzier et al., 2010 water outside Amsterdam River Germany Rivers Elbe and lower 0.6–1.0 ng/L Amount varied by season Zhao et al., 2015 water Weser Water Australia Sydney Harbour and urban/industrial 2.7–4.3 ng/L Thomson et al., 2011b Parramatta River estuary Water Water Norway 2006 Svalbard Surface 20–500 pg/L Kwok et al., 2013 Ocean Greenland 2009 Eastern Greenland Arctic Ocean n.d.–14.5 pg/L Bush et al., 2010 water Ocean 2008 Atlantic Ocean Northern Europe 8.3–53 pg/L Ahrens et al., 2010 water Ocean Atlantic 2008 Atlantic Ocean Atlantic 4.1–17 pg/L Ahrens et al., 2010 water Ocean Southern 2008 Southern Ocean Southern 4.1 pg/L Ahrens et al., 2010 water Ocean Southern Between Asia and Surface water <1–10.2 pg/L Wei et al., 2007 water Antarctica Ocean Greenland 2009 Surface water <6.5–45 pg/L Zhao et al., 2012 water Ocean Atlantic 2010 Atlantic Ocean Surface water <6.5–61 pg/L Zhao et al., 2012 water Ocean Southern 2010/2011 Southern Ocean Surface water <6.5 pg/L Zhao et al., 2012 water Ocean Greenland 2004 Greenland Sea East of Greenland 6–19 pg/L, Reviewed in Butt et al., 2010 water Ocean Faroe Sea 1 ng/L Reviewed in Butt et al., 2010 water Islands Ocean Russian Baydaratskaya Bay Arctic n.d. Reviewed in Butt et al., 2010 water Federation Ocean Global Global Surface water n.d.–51 pg/L Benskin et al., 2012 water Ocean Arctic East of Greenland n.d.–20 pg/L Caliebe et al., 2005 water ocean Ocean Arctic 5–22 pg/L Yeung et al., 2017 water Ocean Southern 2012 Between Asia and Surface water 5–10.2 Mean range from various Wei et al., 2007 water Antarctica stations Ocean Arctic 2011 66 pg/L Under detection limit at all sites Cai et al., 2012 water ocean Ocean Mediterran 2014 Western Mediterranean Surface water 5.4–41.3 pg/L Brumovský et al., 2016 water ean

11

UNEP/POPS/POPRC.14/INF/4

Country/ Matrix Year Study site Type of location Concentration Mean Comment Reference Region Ocean Republic of 2009 Estuarine and coastal areas Surface water <0.2–8.7 ng/L 1.7 ng/L Naile et al., 2013 and costal Korea Ocean World wide North and south Atlantic Tropic- and sub tropic n.d.–1420 pg/L Close to 100% detection González-Gaya et al., 2014 and costal and Pacific, and south surface water frequency Indian oceans, and the coastal regions Ocean World wide Pacific and Atlantic Various depth 0.1–5600 pg/L Yamashita et al., 2005 and costal Oceans water Coastal Finland, Iceland, Faroe Islands 8–4390 pg/L Kallenborn et al., 2004 Sea Water Denmark, Coastal Sweden 2013 Baltic Sea and Kattegat 2 meters depth 0.11−1.7 ng/L 0.91 ng/L 100 % detection frequency, Nguyen et al., 2017 Sea Water n=18. Significant correlation with dissolved organic carbon and PFAS was observed, Fresh Canada Arctic lakes (Amituk, Background location, n.d.–24 ng/ L Stock et al., 2007 water Char, and Resolute) on Southern Norway Cornwallis Island, Nunavut, Canada. Fresh water Fresh Canada 2010/2011 Arctic lake Remote 0.01–30 ng/L Lescord et al., 2015 water Fresh Spain 2010 Juca River basin Urban/industrial 12.1–36.7 ng/L 3.25 ng/L 13% detection frequency Campo et al., 2016 water Fresh China 2004 Tributaries of the Pearl River water <0.13–<0.67 So et al., 2007 water River in Guangzhou Fresh China 2004 Sampling points along the River water <0.005–0.4 So et al., 2007 water Yangtze River Chongqing Fresh China 2015 Taihu Lake Lake 45.9–182 ng/L 69.3 ng/L Mean PFOS: 20.3 ng/L Chen et al., 2018 water River Sweden 2013 Baltic Sea and Kattegat 40 cm depth 0.051−18 ng/L 9.0 ng/L 77 % detection frequency, n=40. Nguyen et al., 2017 Significant correlation with dissolved organic carbon and PFAS was observed Fresh France 2012 Nation-wide survey 133 lakes and rivers <0.02−217 ng/L Industrial and urban sites had Munoz et al., 2015 water high PFAS levels River Australia 2011 Brisbane River (Somerset 0.09−0.13 ng/L 0.11 ng/L Gallen et al., 2014 Dam) River Australia 2011 Brisbane River (Jindalee) 2.5 ng/L Gallen et al., 2014 River Australia 2011 Oxley Creek High tide 1.7−4.3 ng/L 3.1 ng/L Gallen et al., 2014 River Australia 2011 Oxley Creek Low tide 7.1−17 ng/L 10 ng/L Gallen et al., 2014 Coastal Australia 2011 Morton Bay 0.98−1.3 ng/L 1.1 ng/L Gallen et al., 2014 water Coastal Australia 2011 Morton Bay 0.1−0.46 ng/L 0.25 ng/L Gallen et al., 2014 water

12 UNEP/POPS/POPRC.14/INF/4

Country/ Matrix Year Study site Type of location Concentration Mean Comment Reference Region River China 2016 Fuhe River The range of 0.38–1478 ng/L Flows into Baiyangdian Lake, Cui et al., 2018 water concentrations include production facility upstream of various stations up- and lake possible source of PFHxS downstream of PFHxS was the dominating production plant PFAS River China 2016 Hebei Province, Zhulong No known source of 0.15 and 0.48 n=2, flows into Baiyangdian Cui et al., 2018 water River PFHxS ng/L Lake River China 2016 Hebei Province, Receives water from 383 and 682 ng/L n=2, flows out of Baiyangdian Cui et al., 2018 water Zhaowangxin River Baiyangdian Lake Lake. PFHxS was the dominating PFAS River China 2016 Hebei Province, Baigouyin No known source of 11.8–13.6 ng/L n=2, flows into Baiyangdian Cui et al., 2018 water River PFHxS Lake Lake China 2016 Hebei Province, Various station in the 187–978.5 ng/L Cui et al., 2018 water Baiyangdian Lake north lake Lake China 2016 Hebei Province, Various station in the 3.6–900.4 ng/L Cui et al., 2018 water Baiyangdian Lake Lake China 2009 Thaihu Lake n.d.–6.92 ng/L Ma et al., 2018 water Lake China 2014 Thaihu Lake 4.8–118.5 ng/L Ma et al., 2018 water Sediment Sediment Canada Arctic lakes (Amituk, Remote region, Arctic n.d.–3.5 ng/g dw Stock et al., 2007 Char, and Resolute) on Cornwallis Island, Nunavut, Canada. Sediment United 2007 Savannah, Georgia Urban n.d.–0.3 ng/g dw Kumar et al., 2009 States Sediment Japan 2005 Rivers, (Kumo, Uji, <0.1–<1.6 Senthilkumar et al., 2007 Tenjin, Katsura, Osaka) Sediment United 2004 The San Francisco Bay Coastal areas n.d.–0.2 Higgins et al., 2005 States area, California, Corvallis, Oregon, Baltimore, Maryland Sediment Republic of 2009 Estuarine and coastal areas Urban/industrial n.d. Naile et al., 2013 Korea Sediment Spain 2010 Juca River basin Urban/industrial n.d. Campo et al., 2016 Sediment France 2012 Nation-wide survey <0.2-0.63 ng/g dw Munoz et al., 2015 (n=129) Sediment Czech 2007–2008 Morova River Industrial 0.12–3.8 g/kg 0.53 g/kg Median 0.34 g/kg, n=70, Becanova et al., 2016 Republic detection=60% Sediment Australia Sydney Harbour and urban/industrial <0.10–0.10 Thomson et al., 2011b Parramatta River estuary Sediment Serbia Canal urban/industrial n.d.–0.23 Channel draining waste water Beškoski et al., 2013 Sediment Canada 2015 Various sites, Ontario, 0.06–1.1 ng/g FHxSA 0.06–0.19 D'Agostino and Mabury, 2017 Hamilton area Sediment Canada 2010/2011 Arctic lake Remote 0.0–0.95 ng/g Lescord et al., 2015

13

UNEP/POPS/POPRC.14/INF/4

Country/ Matrix Year Study site Type of location Concentration Mean Comment Reference Region Sediment Vietnam 2013–2015 River Urban <0.04–18.3 ng/g 18.3 ng/g highest of all PFAS Lam et al., 2016 measured Sediment China 2015 Lake Taihu Urban 0.044–0.250 ng/g 0.145 ng/g Mean PFOS: 0.824 ng/g dw Chen et al., 2018 dw dw Mean PFBS: 0.002 ng/g dw Soil Soil North Various Rural LOD–36.5 pg/g Rankin et al., 2016 America Soil Europe Various Rural LOD–99.7 Rankin et al., 2016 Soil Asia Various Rural 2.95–14.63 Rankin et al., 2016 Soil Africa Various Rural LOD–8.91 Rankin et al., 2016 Soil Australia Various Rural LOD–39.57 Rankin et al., 2016 Soil South Various Rural LOD Rankin et al., 2016 America Soil Antarctica Various Rural LOD Rankin et al., 2016 Soil Republic of 2009 Estuarine and coastal areas Urban/industrial n.d. Naile et al., 2013 Korea

14 UNEP/POPS/POPRC.14/INF/4

Table 1.5. Detection in waste water treatment, sludge, impacted biota, AFFF impacted sites and from manufacture Country/ Matrix Year Study site Type of location Concentration Mean Comment Reference Region Waste water treatment, sludge, impacted biota, AFFF impacted sites and from manufacture Water Canada 2015 Various sites-Ontario, Hamilton AFFF-impacted 28–150 ng/L FHxSA 1.0–19 ng/L, FASADA D'Agostino and Mabury, 2017 area n.d.–0.36, FASAB nd–1.42

Water Canada 2015 Various sites-Ontario, Hamilton Urban 0.04−0.94 ng/L FHxSA 0.32 ng/L median D'Agostino and Mabury, 2017 area Water Canada 2015 Various sites-Ontario, Hamilton Urban 2.5 ng/L D'Agostino and Mabury, 2017 area Water Canada 2015 Various sites-Ontario, Hamilton Rural 0.3 ng/L D'Agostino and Mabury, 2017 area Water Canada 2014 Meretta- and Resolute Lake AFFF-impacted 13–30 ng/L FHxSA 1.2–3.6, FASAB 0.7– D'Agostino and Mabury, 2017 Arctic lakes 0.74 Ground Sweden 2016–2017 Military airport 18 000–92 000 ng/L Ericson Jogsten and Yeung, 2017 water Ground Australia Future Forrestfield rail station site AFFF use 0.024–0.12 g/L Awaiting classification http://www.parliament.wa.gov.au/p water ublications/tabledpapers.nsf/display paper/4011002cdacb8122de9b89b2 482581f00013ce30/$file/tp- 1002.pdf Ground Australia Future Belmont Station site AFFF use n.d.–3.08 g/L Classified as possibly http://www.parliament.wa.gov.au/p water contaminated - investigation ublications/tabledpapers.nsf/display required paper/4011002cdacb8122de9b89b2 482581f00013ce30/$file/tp- 1002.pdf Ground Australia Crown reserve land (lot 800) AFFF use n.d.–1.6 g/L Awaiting classification http://www.parliament.wa.gov.au/p water ublications/tabledpapers.nsf/display paper/4011002cdacb8122de9b89b2 482581f00013ce30/$file/tp- 1002.pdf Ground Australia Former DFES Headquarters AFFF use n.d.–5.11 g/L Restriction on ground water use http://www.parliament.wa.gov.au/p water ublications/tabledpapers.nsf/display paper/4011002cdacb8122de9b89b2 482581f00013ce30/$file/tp- 1002.pdf Ground Australia Private fire training facility AFFF use n.d.–4.66 g/L Classified as contaminated - http://www.parliament.wa.gov.au/p water and ground water remediation required ublications/tabledpapers.nsf/display soil 0.8–89.2 g/kg paper/4011002cdacb8122de9b89b2 482581f00013ce30/$file/tp- 1002.pdf Ground Australia Forrestfield Rail yard, Abernethy AFFF use n.d.–2.11 g/L Being reviewed for http://www.parliament.wa.gov.au/p water Road, High Wycombe classification. ublications/tabledpapers.nsf/display paper/4011002cdacb8122de9b89b2 482581f00013ce30/$file/tp- 1002.pdf 15

UNEP/POPS/POPRC.14/INF/4

Country/ Matrix Year Study site Type of location Concentration Mean Comment Reference Region Waste water treatment, sludge, impacted biota, AFFF impacted sites and from manufacture Ground Australia Fuel refinery AFFF use n.d.–2.29 g/L Classified as contaminated - http://www.parliament.wa.gov.au/p water remediation required ublications/tabledpapers.nsf/display paper/4011002cdacb8122de9b89b2 482581f00013ce30/$file/tp- 1002.pdf Ground Australia Former fuel terminal AFFF n.d.–32.5 g/L Restriction on ground water use http://www.parliament.wa.gov.au/p water and ground water Classified as remediated for ublications/tabledpapers.nsf/display soil n.d.–16 g/kg restricted use paper/4011002cdacb8122de9b89b2 482581f00013ce30/$file/tp- 1002.pdf Ground Australia Former fuel terminal AFFF n.d.–4.2 g/L Classified as possibly http://www.parliament.wa.gov.au/p water contaminated - investigation ublications/tabledpapers.nsf/display required paper/4011002cdacb8122de9b89b2 482581f00013ce30/$file/tp- 1002.pdf Ground Australia Former fuel terminal AFFF n.d.–5.99 g/L Classified as contaminated - http://www.parliament.wa.gov.au/p water remediation required ublications/tabledpapers.nsf/display paper/4011002cdacb8122de9b89b2 482581f00013ce30/$file/tp- 1002.pdf Soil Norway 2011 New training field at Evenes AFFF 2.1–443 g/kg Used from 1987–2005 https://avinor.no/contentassets/c3f59 Airport (BØF A) 53f2b7d412e9cc973909a53d266/20 15-harstad_narvik-undersokelser- av-pfas-i-jord-vann-og-biota.pdf Soil Norway 2013 New training field at Evenes AFFF 3.0–99.3 g/kg Used from 1987–2005 https://avinor.no/contentassets/c3f59 Airport (BØFA) 53f2b7d412e9cc973909a53d266/20 15-harstad_narvik-undersokelser- av-pfas-i-jord-vann-og-biota.pdf Soil Norway 2011 Old training field at Evenes AFFF 12.9–203 g/kg Used from 1973–1980 https://avinor.no/contentassets/c3f59 Airport (BØFB) 53f2b7d412e9cc973909a53d266/20 15-harstad_narvik-undersokelser- av-pfas-i-jord-vann-og-biota.pdf Ground Norway Old training field at Evenes AFFF 212 g/L Used from 1973–1980 https://avinor.no/contentassets/c3f59 water Airport (BØFB) 53f2b7d412e9cc973909a53d266/20 15-harstad_narvik-undersokelser- av-pfas-i-jord-vann-og-biota.pdf Surface Norway Old training field at Evenes AFFF 7.5–407 g/L Used from 1973–1980 https://avinor.no/contentassets/c3f59 water Airport (BØFB) 53f2b7d412e9cc973909a53d266/20 15-harstad_narvik-undersokelser- av-pfas-i-jord-vann-og-biota.pdf Surface Norway New training field at Evenes AFFF 5–3460 g/L Used from 1973–1980 https://avinor.no/contentassets/c3f59 water Airport (BØFA) 53f2b7d412e9cc973909a53d266/20 15-harstad_narvik-undersokelser- av-pfas-i-jord-vann-og-biota.pdf

16 UNEP/POPS/POPRC.14/INF/4

Country/ Matrix Year Study site Type of location Concentration Mean Comment Reference Region Waste water treatment, sludge, impacted biota, AFFF impacted sites and from manufacture Water Norway 2015 Rygge airport AFFF 53–6240 ng/L Concentration range from https://www.forsvarsbygg.no/conten various areas surrounding the tassets/392d6ac269554b578b9634e airport 74641dc6a/tiltaksvurdering-pfas- rygge-flystasjon-1.mars-2016- endelig.pdf Soil Norway 2015 Rygge airport AFFF 3–22.9 g/kg Concentration range from https://www.forsvarsbygg.no/conten various areas surrounding the tassets/392d6ac269554b578b9634e airport 74641dc6a/tiltaksvurdering-pfas- rygge-flystasjon-1.mars-2016- endelig.pdf Ground Norway 2015 Rygge airport AFFF 66.7–47400 ng/L Concentration range from https://www.forsvarsbygg.no/conten water various areas surrounding the tassets/392d6ac269554b578b9634e airport 74641dc6a/tiltaksvurdering-pfas- rygge-flystasjon-1.mars-2016- endelig.pdf Water Canada 2015 AFFF impacted 38 ng/L FHxSA 2.4/ D'Agostino and Mabury, 2017 0.32 ng/L (AFFF/Urb an)

Surface Sweden 2016–2017 Fortum Waste Solution Hazardous waste 8.8–250 ng/L Ericson Jogsten and Yeung, 2017 water management facility Surface Sweden 2016–2017 Various airports Airports 4.4–1000 ng/L Both civil and military Ericson Jogsten and Yeung, 2017 water Surface Australia Perth Airport South Main Drain, Airport 0.02–0.55 g/L Classified as possibly http://www.parliament.wa.gov.au/p water Redcliffe and Ascot contaminated — investigation ublications/tabledpapers.nsf/display required. paper/4011002cdacb8122de9b89b2 482581f00013ce30/$file/tp- 1002.pdf Surface Australia Perth Airport North Main Drain Airport 1.8 g/L Classified as contaminated — http://www.parliament.wa.gov.au/p water and Swan River foreshore at restricted use ublications/tabledpapers.nsf/display South Guildford paper/4011002cdacb8122de9b89b2 482581f00013ce30/$file/tp- 1002.pdf Waste European 90 European 3.4 ng/L Highest (single) CONCAWE, report no. 8/16 water Waste Water Treatment Plants Maximum Concentration 922 ng/L Waste Sweden 2015 Influent/effluent Waste water 0.1–1.9 ng/L Eriksson et al., 2017 water treatment park Waste Sweden Effluent Waste water Approx. 7 Swedish EPA, 2016 water treatment park ng/L Waste Norway 2016 Waste water inlet Waste 2899–5689 Norwegian Environment Agency, water management ng/passive sampler 2017b (M-806) Water Norway 2016 Landfill leachates Waste 93–96 ng/passive Norwegian Environment Agency, management sampler 2017b (M-806) 17

UNEP/POPS/POPRC.14/INF/4

Country/ Matrix Year Study site Type of location Concentration Mean Comment Reference Region Waste water treatment, sludge, impacted biota, AFFF impacted sites and from manufacture Water Sweden Landfill leachates Waste Approx. 80 Swedish EPA, 2016 management ng/L Water United Landfill leachates from 6 Waste 1.3–3900 ng/L PFHxS detected Allred et al., 2014 States different sites management Water United Landfill leachates from 6 Waste n.d.–89 ng/L Precursor FHxSAA Allred et al., 2014 States different sites management (perfluorohexane sulfonamino acetic acid Water United Landfill leachates from 6 Waste 0.63–1900 ng/L Precursor MeFHxSAA (N- Allred et al., 2014 States different sites management methyl perfluorohexane sulfonamino acetic acid Water United Landfill leachates from 6 Waste n.d.–51 ng/L Precursor EtFHxSAA (N-ethyl Allred et al., 2014 States different sites management perfluorohexane sulfonamino acetic acid Water Australia 2015–2016 Local point source, Oakey, Fire-fighting 0.07–6 2.4 g/L Bräunig et al., 2017 Queensland training area Sludge Norway 2016 Sludge Waste 110–2700 g/kg dw Norwegian Environment Agency, management 2017b (M-806) Sludge Sweden 2012–2015 Sludge Waste water 0.02–0.07 ng/g Eriksson et al., 2017 treatment park Leachate Australia 2014 Landfills 13 landfill sites LOD–1900 ng/L Sites are located across Australia Gallen et al., 2016 Biosolid Australia 2014 Waste Water Treatment Plants 16 WWTP LOD–7.3 ng/g dw Sites are located across Australia Gallen et al., 2016 Leachate Australia 2014 Landfills 27 landfill sites 56–16000 ng/L 1200 ng/L 100 % detection frequency, Gallen et al., 2017 PFHxSPFOS in concentration Sediment Norway 2016 Oslo Fjord and Mjøsa Fjord and lake 0.71 g/kg dw Norwegian Environment Agency, 2017b (M-806) Soil Australia 2015–2016 Local point source, Oakey, Fire-fighting 0.1–74 13 g/kg Bräunig et al., 2017 Queensland training area dw Grass Australia 2015–2016 Local point source, Oakey, Fire-fighting 1–26 10 g/kg Bräunig et al., 2017 Queensland training area ww Egg yolk Australia 2015–2016 Local point source, Oakey, Fire-fighting 10–16 13 ng/g Bräunig et al., 2017 Queensland training area Cow inside Australia 2015–2016 Local point source, Oakey, Fire-fighting 2–125 52 g/L Bräunig et al., 2017 plume Queensland training area serum Cow Australia 2015–2016 Local point source, Oakey, Fire-fighting 0.5–18 7 g/L Bräunig et al., 2017 outside Queensland training area serum plume Sheep Australia 2015–2016 Local point source, Oakey, Fire-fighting 32–129 63 g/L Bräunig et al., 2017 Queensland training area serum Horse Australia 2015–2016 Local point source, Oakey, Fire-fighting 18–74 33 g/L Bräunig et al., 2017 Queensland training area serum Human Australia 2015–2016 Local point source, Oakey, Fire-fighting 39–214 93 g/L Bräunig et al., 2017 Queensland training area serum Waste Taiwan, Hsinchu Science Park Semiconductor 13333 ng/L Lin et al., 2009a effluent Province fabrication plant of China

18 UNEP/POPS/POPRC.14/INF/4

Country/ Matrix Year Study site Type of location Concentration Mean Comment Reference Region Waste water treatment, sludge, impacted biota, AFFF impacted sites and from manufacture Pure water Taiwan, Hsinchu Science Park Semiconductor 24.2 ng/L Lin et al., 2009a Province fabrication plant of China Photolithog Taiwan, Hsinchu Science Park Semiconductor 9930 ng/L Lin et al., 2009a raphic Province fabrication plant waste water of China Waste Taiwan, Hsinchu Science Park electronic/optoele 2 g/L Lin et al., 2009a effluent Province ctronic fabrication of China plant Waste Taiwan, Urban Taipei Municipal waste 6.3 ng/L Lin et al., 2010 water Province water treatment effluent of China plant I Waste Taiwan, Urban Taipei Municipal waste 35 ng/L Lin et al., 2010 water Province water treatment effluent of China plant II Waste Taiwan, Urban Taipei, Hsinchu Science Industrial Waste 2226.7 A hub for 384 high-tech Lin et al., 2010 water Province Park water treatment ng/L companies that include 86 effluent of China plant optoelectronics, 203 integrated circuit companies and 27 semiconductor fabrication plants

19

UNEP/POPS/POPRC.14/INF/4

Table 1.6. Detection in Drinking water Drinking PFHxS Mean Country/region Year Study site Comment Sum PFAS (mean (range) References water range ng/L ng/L Drinking Sweden 2013 Outgoing water from Brantafors 1770 Drinking water was also contaminated with Li et al., 2018 water waterworks in Ronneby 8000 ng/L PFOS and 100 ng/L PFOA Drinking Sweden 2013 Outgoing water from Kärragården 4.6 PFOS 27 ng/L and PFHxA 3.6 was also Li et al., 2018 water waterworks in Ronneby detected Drinking Italy 2013 Various municipalities in province of 27–36 From 8 municipalities supplied by drawing Annex E submission from Council water Treviso wells located in the Almisano area, involved of Chemists of the Province of in the PFAS contamination plume (from Treviso, Italy chemical plant (Miteni SpA). Drinking France 2009-10 Raw water (surface water, n=99) <4 to 8 1 % LOD=48, % LOQ=6 Boiteux et al., 2012 water Drinking France 2009-10 Raw water (ground water, n=163) <4 to 32 1 % LOD=31, % LOQ=10 Boiteux et al., 2012 water Drinking France 2009-10 Treated water (surface water, n=26) <4 to 7 2 % LOD=88, % LOQ=8 Boiteux et al., 2012 water Drinking France 2009-10 Treated water (surface water, n=15) <4 to 13 2 % LOD=100, % LOQ=27 Boiteux et al., 2012 water Drinking Spain 40 different locations from 5 different <0.02-5.3 0.64 Ericson et al., 2009 water zones of Catalonia Tap water The Nederlands 2013–14 37 water sources LOQ 0 Sum PFAS

20 UNEP/POPS/POPRC.14/INF/4

Table 1.7. PFHxS levels in food items Median Mean PFHxS range Detection Food item Country/region Year N Comment Sum PFAS (median (range) ng/g ww) References ng/g ww ng/g ww ng/g ww frequency Domestic eggs Netherlands 2013–2014 73 1.1 <0.5–5.2 7 Home produced eggs, sum PFASs :3.5 (

UNEP/POPS/POPRC.14/INF/4

Table 1.8. Detection in indoor and outdoor dust and indoor air Year of Concentration range Mean Dust Country/Region Type of location Comment Reference sampling (n) g/kg dw (%>LOD) g/kg dw Dust Norway /Oslo 2017 (n=5) Furniture store 1600–2300 (100) 1983 g/kg 6:2diPAP was found in equal high Norwegian Environment dw amounts 330–3300 µg/ kg dw Agency, 2017 (M-806) (mean PFOS 10,75 µg/kg) Dust Norway/ Oslo 2017 (n=5) Hotel 1600–2100 (100) 6:2diPAP was found in equal high Norwegian Environment amounts 330–3300 µg/ kg dw Agency, 2017 (M-806) Dust Norway 2007/08 (n=7) Private residences <1.4-3.1 1.4 Huber et al., 2011 Dust Norway 2007/08 (n=1) Office 27.8 Huber et al., 2011 Dust Norway 2007/08 (n=1) Storage 1814 Huber et al., 2011 Dust Norway 2008 (n=41) Private residences 0.21-142 8.4 Level of PFHxS was negativly correlated Haug et al., 2011 with age of residence, and positive correlated with volum of the living room (m3) Dust Czech Republic 2013 (n=12) Private home vacuuming

22 UNEP/POPS/POPRC.14/INF/4

Year of Concentration range Mean Dust Country/Region Type of location Comment Reference sampling (n) g/kg dw (%>LOD) g/kg dw Dust China Manufacturing plant, raw material 4340 Wang et al., 2010 stock room 1 Dust China Manufacturing plant, raw material 590 Wang et al., 2010 stock room 2 Dust China Manufacturing plant, electrolysis 2400 Wang et al., 2010 workshop 1 Dust China Manufacturing plant, electrolysis 1460 Wang et al., 2010 workshop 2 Dust China Manufacturing plant, electrolysis 4990 Wang et al., 2010 workshop 3 Dust China Manufacturing plant, sulfonation 15110 Wang et al., 2010 workshop 1 Dust China Manufacturing plant, sulfonation 15920 Wang et al., 2010 workshop 2 Dust China Manufacturing plant, sulfonation 9950 Wang et al., 2010 workshop 3 Dust China Manufacturing plant, laboratory 4740 Wang et al., 2010 building Dust China Manufacturing plant, road 1 100 Wang et al., 2010 Dust China Manufacturing plant, road 2 140 Wang et al., 2010 Dust China Manufacturing plant, road 3 1260 Wang et al., 2010

23

UNEP/POPS/POPRC.14/INF/4

Table 1.9. Detection in products

Year of Type of product/ Concentration mean g/kg Matrix Country/Region Comment Reference sampling (n) material dw (%>LOD) Consumer products Czech Republic 2008 Curtain (textile) 2.18 New Becanova et al., 2016 Consumer products Czech Republic 2004 Foam (textile) 0.586 Used Becanova et al., 2016 Consumer products Czech Republic 2003 Foam (textile) 0.409 Used Becanova et al., 2016 Consumer products Czech Republic 1996 Teddy bear cover (textile) 0.439 Used Becanova et al., 2016 Consumer products Czech Republic 1986 Table cloth (textile) 0.437 Used Becanova et al., 2016 Consumer products Czech Republic 1981 Upholstery material (textile) 2.93 Used Becanova et al., 2016 Consumer products Czech Republic 1981 Foam (textile) 1.085 Used Becanova et al., 2016 Consumer products Czech Republic 1981 Upholstery material (textile) 0.835 Used Becanova et al., 2016 Consumer products Czech Republic 1981 Blanket (textile) 0.219 Used Becanova et al., 2016 Consumer products Czech Republic 2010 Carpet-red (floor covering) 0.256 New Becanova et al., 2016 Consumer products Czech Republic 2006 Carpet-grey (floor covering) 5.016 Used Becanova et al., 2016 Consumer products Czech Republic 2006 Carpet-green (floor covering) 0.448 Used Becanova et al., 2016 Consumer products Czech Republic 1981 Persian carpet (floor covering) 3.26 Used Becanova et al., 2016 Consumer products Czech Republic 1981 Carpet (floor covering) 1.25 Used Becanova et al., 2016 Consumer products Czech Republic 2010 Switch (EEE) 0.054 New Becanova et al., 2016 Consumer products Czech Republic 2001 Keyboard (EEE) 0.059 Used Becanova et al., 2016 Consumer products Czech Republic 1996 TV 0.115 Used Becanova et al., 2016 Consumer products Czech Republic 1991 Fridge rubber insulation (EEE) 0.09 Used Becanova et al., 2016 Building materials Czech Republic 1986 Chipboard (OSB and wood) 0.207 Used Becanova et al., 2016 Building materials Czech Republic 2010 Blow cellulose insulation 0.642 New Becanova et al., 2016 Building materials Czech Republic 2006 Mounting and sealing foam 0.662 New Becanova et al., 2016 Building materials Czech Republic 2010 Pipe insulation aeroflex 1.43 New Becanova et al., 2016 Building materials Czech Republic 2006 Paper insulation 0.372 Used Becanova et al., 2016 Building materials Czech Republic 2006 Plaster (facade material) 0.182 Used Becanova et al., 2016 Building materials Czech Republic 2010 Window finishing beard (facade material) 0.252 New Becanova et al., 2016 Building materials Czech Republic 2006 Window corner bead (facade material) 1.48 Used Becanova et al., 2016 Building materials Czech Republic 2006 Drywall (facade material) 24.5 Used Becanova et al., 2016 Car interior material Czech Republic 2006 Hyundai textile material 0.147 Used Becanova et al., 2016 Car interior material Czech Republic 2006 Hyundai textile material 0.479 Used Becanova et al., 2016 Car interior material Czech Republic 2006 Skoda-textil material 0.027 Used Becanova et al., 2016

24 UNEP/POPS/POPRC.14/INF/4

Year of Type of product/ Concentration mean g/kg Matrix Country/Region Comment Reference sampling (n) material dw (%>LOD) Consumer products Germany 2010 (n=7) Paper based FCM 0.6 (6) Kotthoff et al., 2015 Consumer products Germany 2010 (n=13) Ski wax 9.3 (35) Kotthoff et al., 2015 Consumer products Germany 2010 (n=13) Leather 10.1 (96) Kotthoff et al., 2015 Consumer products Norway Paint 0.53 Herzke et al., 2012 Consumer products Norway Paint 0.31 Herzke et al., 2012 Consumer products Norway Electrics and electronics 0.06 Herzke et al., 2012 Consumer products Norway Carpet (textile) 0.08 g/m3 Herzke et al., 2012 Consumer products Norway Lether 4.81 g/m3 Herzke et al., 2012 Consumer products Norway Non-stick wear pans 14.1 Herzke et al., 2012 Consumer products Norway Non-stick wear pans 11.9 Herzke et al., 2012 Consumer products Norway Non-stick wear pans 1.86 Herzke et al., 2012 Fire-fighting agents Norway AFFF 370,000 Herzke et al., 2012 Consumer products Untied States 2014-15 Paper based FCM 56% of bread and dessert wrappers, 38% of sandwich and burger Schaider et al., 2017 (n=407) wrappers and 20% of paperboard contained fluorine (total fluorine) no fluorine was detected in paper cops. PFHxS was detected in 1 of 20 samples analysed with LC/MS/TOF

25

UNEP/POPS/POPRC.14/INF/4

Table 1.10. Concentrations of PFHxS in human serum (See also ECHA 2017a, Annex II Table 14)

Human serum concentration (µg/L) Location Year N median (rang, %LOQ) or geometric mean (GM) Remarks Reference

PFHxS PFOS PFOA Afghanistan, 2007 43 adults Max level 3.0 1.2 (0.2–11.8) Max level 3.0 PFOA and PFOS were not detected in tap water Hemat et al., 2010 Kabul 12 (22%) 100% (24%) (LOQ µg/L: 0.03 PFOA, 0.015 PFOS) children Adults (20–43 years old), Children (2.5–9 years old) Arctic 2001 7 0.26 (0.15–0.46) 11.0 (5.56–14.11) 1.61 (0.63–2.48) Norilsk, Taimyr AO Region of Russia, blood from Hanssen et al., 2013 Russia mothers collected 3 days post-delivery.

Norilsk participants mostly consumed store-bought foods (primarily non-local). There was some consumption of tundra reindeer, ptarmigan, and fish (mostly Salmonidae and Coregonidae species) Australia 2002/02 26 pools 3.6 (2–12.8) 25 (19.1–36.1) 10.6 (7–14.5) Pools of human serum, all ages and both sex Toms et al., 2014 2006/07 84 pools 2.9 (

26 UNEP/POPS/POPRC.14/INF/4

Human serum concentration (µg/L) Location Year N median (rang, %LOQ) or geometric mean (GM) Remarks Reference

PFHxS PFOS PFOA China 2013–2015 (China) 448 GM 0.58 (0.55;0.61) GM 8.0(7.6;8.3) GM 10.7(10.2;11.1) Blood sample were taken at gestagenal week 15, Bjerregaard-Olesen et Denmark 1996–2002 (Denmark) 1594 GM 1.06 (1.03;1.09) GM 28.3(27.7;29.0) GM 4.3(4.2;4.4) 9.7, 12.3, 25.1 and 18.6 weeks in the respective birth al., 2017 Greenland 2008–2013 (Denmark) 1533 GM 0.44 (0.43;0.45) GM 7.7 (7.5;7.9) GM 1.8(1.8;1.9) cohort from China (Shanghai Birth Cohort), Norway 2010–2013 (Greenland) 207 GM 0.79 (0.73;0.84) GM 10.9 (10.3;11.7) GM 1.3(1.2;1.4) Denmark, (Danish National Birth Cohort and 2007–2009 (Norway) 391 GM 0.47 (0.45;0.50) GM 8.0(7.7;8.4) GM 1.6(1.6;1.7) Aarhus Birth Cohort), Greenlandic Birth Cohort and Northern-Norway Mother Child Contaminant Cohort.

Log-transformed PFAA concentrations were adjusted for age and parity using analysis of covariance. Faroe Island 2006 10 M 2.38 (0.53-3.71) M 47.8 (12.66-76.04) M 3.46 (2.79-5.36) Male age 47–80 (whaling men) Hu et al., 2018 2011-12, 51 C 5.94 (3.59–14.3) C 9.82 (4.40–15.0) C 0.73 (0.34–1.97) Children age 13 2007-2008 51 F (0.5 (0.15–1.35) F 5.59 (1.82–13.8) F 1.0 (0.35–3.1) Female age 19–44 Germany ESB, 1982-2009 420 0.079−5.10 0.417−116.0 0.092−39.4 Participants (age 20-29 year), mostly students from Yeung et al., 2013 two German cities, i.e. Münster and Halle. In this study, also PFSA and PFCA precursors (DiPAPs and SamPAPs) were detected in human plasma.

PFOS peaked between 1985 and 1990, PFHxS peaked between 2000 and 2005

Greenland 2010-2013 207 0.70 10.15 1.19 Pregnant Inuit women (18-44 years), blood sampled Long et al., 2015 at gestational week 25.1 (range 7-40 week)

In the North region, the levels of PFSAs in the blood were associated with both Se and Hg. These data indicate that the pregnant women's burden of PCBs, OCPs, PFASs, Pb and Hg is mainly derived from intake of the traditional food including marine mammals, seabirds, fish and terrestrial species. Greenland 2002/03 196 2.01 (0.091-20.5) 44.7 (12.3-161) 4.54 (1.52–13.7) Male Inuit, seafood 2 days/week Lindh et al., 2012 India, 2000 45 Female 1.6 (<1–1.8, Female 2.5 (<1–3, Female <3 5 (<3, 0%) Agricultural and industrial area Kannan et al., 2004 Coimbatore 36%) 55%) Male 3.5 (<3–3.5, Male 1.5 (<1–2.9, Male 1.3 (<1–3.1, 3%) 41%) 50%) Italy 2016 250 2.49 (0.03-9.14)a 5.84 (0.56-119) a 1.64 (27.9) a a not exposed Annex E Council of 257 2.98 (0.09-43.40)b b exposed Chemists of the 43 9.16 (2.74-32.30)c c exposed (Lonigo) Province of Treviso, Italy drinking water exposure, area with fluorochemical plant 27

UNEP/POPS/POPRC.14/INF/4

Human serum concentration (µg/L) Location Year N median (rang, %LOQ) or geometric mean (GM) Remarks Reference

PFHxS PFOS PFOA Japan 2013 83 0.54 (n.d.–1.8) – – Select three areas in each year, (40–59 years old and Japan Annex E, Survey 2014 81 0.42 (n.d.–1.1) long-time resident) in each survey area of the Exposure to 2015 76 0.22 (n.d.–0.8) chemical compounds in 2016 88 0.32 (0.071–0.76) human (FY 2013 to FY 2016). The Environmental Risk Assessment Office, Environmental Health Department, Ministry of the Environment, Japan has conducted this survey and are open on website below: http://www.env.go.jp/ch emi/dioxin/pamph/cd/20 17en_full.pdf Norway 2007-8 123 0.34 (0.04-1.64) 5.37 (1.63-17.7) 1.03 (0.36-4.24) Gützkow et al., 2012

Norway 2007-9 391 0.44 (

Blood samples donated at mean gestational week 18.6 (9–36) Norway 2010-11 950 0.71 (0.18-84.7, 6.20 (1.28-99.2, 1.92 (0.51-14.0, 445 girls age 16.5 Averina et al., 2018 100%) 100%) 100%) 495 boys, age 16.3 Boys had significant higher sum PFOS and sum PFHxS.

PFHxS levels were higher in the group that had fat fish >1x week, 1-6 glasses of sugar drinks and canned food 4-6 times per week Poland 2002/03 190 1.18 (0.43-3.78) 18.5 (8.20 -40.2) 4.84 (1.48–16.0) Male, seafood 1 day/week Lindh et al., 2012 Sweden, 2014–2016 106 277 (12.3–1660) 345 (24.1–1500) 17.5 (2.38–92) Participants age 4–84 years, 53% females, receiving Li et al., 2018 Ronneby PFAS contaminated drinking water Sweden, 2014–2016 3418 152 (<0.5–1790) 176 (<0.50–1870) 10.4 (<0.4–91.9) Drinking water exposure until 2013, (AFFF training Li et al., 2018 Ronneby area and military facility located nearby the municipal water source). Levels (ng/L) in outgoing water from waterworks in Ronneby: 1770 PFHxS, 8000 PFOS, 100 PFOA. Highest serum levels in persons that had live 35 years in this area.

28 UNEP/POPS/POPRC.14/INF/4

Human serum concentration (µg/L) Location Year N median (rang, %LOQ) or geometric mean (GM) Remarks Reference

PFHxS PFOS PFOA Sweden, 2016 242 0.84 (<0.5–60.1) 4.21 (<0.5–55.3) 1.59 (<0.4–4.98) Reference site nearby Ronneby with PFAS clean Li et al., 2018 Karlshamn water source

Ukraine 2002/2003 203 0.34 (

29

UNEP/POPS/POPRC.14/INF/4

Table 1.11. Levels in cord blood (See also ECHA 2017a, annex II, Table 14) Cord blood concentration ng/mL

Median, (range), % detection (LOD) Location Year PFHxS PFOS PFOA Remarks Reference Arctic Russia 2001 0.14 (0.08-0.33) 0.49 (0.15-1.12) 4.11 (1.75-6.27) n=7, Norilsk, Taimyr AO Region of Hanssen et al., 2013 Russia. Canada, Ottawa 2005-2008 0.5 (n.d.–9.6) 5.0 (n.d.–21.7) 1.6 (0.3–5.2) N=100 Arbuckle et al., 2013 77% 98% 100% Canada 2008-2011

Table 1.12. Levels in Breast milk (See also ECHA 2017a, annex II, Table 14) Breast milk concentration ng/ml

Median, (range), % detection (LOD) Location Year PFHxS PFOS PFOA Remarks Reference Cambodia 2000 nd (<0.002–0.019) 0.039 (0.017–0.327) n.d. (<0.043–0.131) n=24 Tao et al., 2008b 13% 100% 4% China 2004 0.004–0.1 0.045–0.36 0.047–210 Range, n=19, all above LOD So et al., 2006 (Annex E China) China 0.012–2.52 0.0446–83.1 <0.05–2.19 5 samples from 5 different citys Yeung et al., 2006 France 2007 0.050 (0.040–0.066) 0.079 (<0.05–0.330) 0.075 (<0.05–0.224) median, (range), Number >LOD Antignac et al., 2013 100% 90% 98% n=48 Germany 2007–2009 n.d., (<0.02–0.3) 0.04 (<0.3–0.11) n.d., (<0.15–0.25) No. >LOQ Fromme et al., 2010 3% 72% 2% n=44 participants (1 samples each month) Indonesia 2001 0.013 (<0.002–0.059) 0.067 (0.025–0.256) n.d. n=20 Tao et al., 2008b 100% 45% 0% Japan 1999 0.006 (<0.002–0.018) 0.196 (0.140–0.523) 0.067 (<0.043–0.170) n=24 Tao et al., 2008b 92% 100% 92% Malaysia 2003 0.007 (<0.002–0.013) 0.121 (0.048–0.350) n.d. (<0.042–0.090) n=13 Tao et al., 2008b 85% 100% 23% Philippines 2000/2004 0.007 (<0.002–0.013) 0.104 (0.027–0.208) n.d (<0.043–0.183) n=24 Tao et al., 2008b 92% 100% 29% Republic of Korea 1999–2005 0.007 (0.001–0.016) 0.061 (0.032–0.130) 0.041 (<0.043–0.077) n=17 Kim et al., 2011 Spain 2007–2008 0.040 (0.02–0.11) 0.11 (<0.05–0.22) 100% n.d. n=10 Karrman et al., 2010 100% 0%

30 UNEP/POPS/POPRC.14/INF/4

Breast milk concentration ng/ml

Median, (range), % detection (LOD) Location Year PFHxS PFOS PFOA Remarks Reference Sweden 1972 <0.005 0.023 0.019 n=75 Sundstrøm et al., 2011 1976 <0.005 0.059 0.041 n=78 1980 0.006 0.103 0.060 n=116 1984/1985 0.006 0.172 0.078 n=102 1988 0.016 0.211 0.148 n=20 1990 0.010 0.202 0.106 n=20 1992 0.011 0.222 0.111 n=20 1994 0.015 0.219 0.106 n=20 1995 0.028 0.214 0.139 n=20 1996 0.016 0.224 0.111 n=20 1997 0.016 0.237 0.138 n=20 1998 0.028 0.212 0.128 n=20 1999 0.023 0.234 0.120 n=20 2000 0.024 0.213 0.124 n=20 2001 0.017 0.198 0.098 n=20 2002 0.027 0.210 0.118 n=20 2003 0.025 0.179 0.098 n=15 2004 0.017 0.188 0.100 n=20 2007 0.017 0.122 0.086 n=20 2008 0.014 0.075 0.074 n=18 Sweden 2004 0.070 (0.031–0.172) 0.166 (0.060–0.470) Not available Median, (range), Number >LOD Karrman et al., 2007 100% 100% (<0.209–0.492) n=12 primiparous women Sweden aLevels were >LOD (0.01) but the Karrman et al., 2007 Uppsala 1996 0.037 0.209 <0.209a blank level (0.209) was >50% of the Uppsala 1997 0.030 0.207 <0.209a detected concentrations. Uppsala 1998 0.040 0.219 <0.209a Uppsala 1999 0.044 0.213 <0.209a Uppsala 2000 0.028 0.191 <0.209a Göteborg 2001 0.028 0.258 <0.209a Uppsala 2002 0.051 0.194 <0.209a Lund 2003 0.025 0.153 <0.209 Lycksele 2003–2004 0.016 0.123 <0.209 United States 2004 0.012 (<0.030–0.161) 0.106(<0.032–0.617) 0.044 (<0.031–0.161) n=45 Tao et al., 2008a 51% 95% 88% Vietnam 2000/2001 0.004 (<0.002–0.027) 0.058 (0.017–0.393) n.d (<0.043–0.089) median, (range), Number >LOD Tao et al., 2008b 73% 100% 3% n=40

31

UNEP/POPS/POPRC.14/INF/4

Table 2. Overview of PFHxS, its salts and PFHxS-related compounds identified in various national chemical inventories, including the Australian Inventory of Chemical Substances (AICS), the Canadian Domestic Substance List (DSL) (Environment Canada, 2013), the Inventory of Existing Chemical Substances in China (IECSC), the Japanese Existing and New Chemical Substances Inventory (ENCS), the Substances in Preparations in Nordic Countries (Nordic SPIN), and the United States Toxic Substances Control Act Inventory (US TSCA)

CAS number Chemical AICS Canada China Japan Nordic US DSL IECSC ENCS SPIN TSCA* 423-50-7 PFHxSF Yes Yes Yes, S 355-46-4 PFHxS Yes, S 3871-99-6 PFHxS, K Yes Yes Yes Yes*2 Yes Yes, S 55120-77-9 PFHxS, Li Yes Yes*2 Yes, P,S + 68259-08-5 PFHxS, NH4 Yes Yes Yes Yes, S

70225-16-0 PFHxS, NH(CH2CH2OH)2 Yes Yes Yes Yes Yes, S 68259-15-4 MeFHxSA Yes Yes Yes, S 68555-75-9 MeFHxSE Yes Yes Yes Yes Yes, S 34455-03-3 EtFHxSE Yes Yes Yes Yes Yes, S 50598-28-2 FHxSA-derivative Yes Yes, S 68957-61-9 FHxSA-derivative Yes Yes Yes, S 68957-32-4 EtFHxSE-derivative Yes, S 67584-53-6 EtFHxSE-derivative Yes Yes Yes Yes*3 Yes Yes, S 68555-70-4 EtFHxSE-derivative Yes, S 68298-09-9 FHxSA-derivative Yes, S 68957-58-4 FHxSA-derivative Yes Yes Yes Yes*4 Yes Yes, S 52166-82-2 FHxSA-derivative Yes Yes Yes Yes*4 Yes Yes, S 66008-72-8 MeFHxSA-derivative Yes Yes, S 68227-98-5 MeFHxSE-acrylate Yes, S 67584-57-0 MeFHxSE-acrylate Yes Yes Yes, S 67584-61-6 MeFHxSE-acrylate Yes Yes Yes, S 38850-52-1 FHxSE-derivative Yes, S 1893-52-3 EtFHxSE-acrylate Yes Yes Yes, S 38850-60-1 FHxSA-derivative Yes, S

32 UNEP/POPS/POPRC.14/INF/4

CAS number Chemical AICS Canada China Japan Nordic US DSL IECSC ENCS SPIN TSCA* 80621-17-6 FHxSA-derivative Yes Yes 67906-70-1 EtFHxSE-acrylate Yes Yes, S 38850-58-7 FHxSA-derivative Yes Yes Yes Yes Yes, S 73772-32-4 FHxSE-derivative Yes Yes Yes, S 81190-38-7 FHxSE-derivative Yes Yes Yes, S 67939-92-8 EtFHxSE-derivative Yes, S 68815-72-5 PFHxS-ester Yes Yes Yes Yes Yes, S 68555-90-8 MeFHxSE-acrylate polymer Yes Yes Yes Yes, S mixtures 56372-23-7 EtFHxSE-driv. polyethoxylates Yes Yes Yes Yes Yes, S 30295-56-8 FHxSA-derivative Yes 70776-36-2 MeFHxSE-acrylate polymer Yes Yes Yes Yes, S mixtures 68877-32-7 EtFHxSE-acrylate polymer Yes Yes, S mixtures 68586-14-1 MeFHxSE-acrylate polymer Yes Yes Yes Yes, S mixtures 68555-92-0 MeFHxSE-acrylate polymer Yes Yes Yes Yes, S mixtures 68555-91-9 EtFHxSE-acrylate polymer Yes Yes Yes Yes, S mixtures *S=substances listed under the Significant New Use Rule; P=chemicals with a commenced pre-manufacture notice (P). *2: Registry name is perfluoroalkyl (C=4-12) sulfonic acid salt (Na, K, Li) *3: Registry name is perfluoroalkyl (C=6-10)-N-ethylsulfonyl glycine potassium salt *4: Registry name is perfluoroalkyl (C=6-10) sulfonamide propyl trimethyl ammonium salt

33

UNEP/POPS/POPRC.14/INF/4

Table 3. Comparison of half-lives of PFAS in male and females in a variety of species including human

PFAS Human (year) Rat (days) Mice (days) Pig (days) Monkey (days)

PFHxS M 8.5 (3109 days) 7.4 35 GM 19.9 29.1 31 713 141 Range 2.2-27.0 (95% CI: 6.0, 9.7)

F 12.2 4.7 7.7 GM 7.5 1.64 25 713 87 13.3 (95% CI: 3.9,5.9) PFOS M 5.4 (1976 days) 4.6 27 GM 60.9 38 43 634 132 Range 2.4-21.7 (95% CI: 3.7,6.1)

F 4.9 3.1 6.2 GM 8.0 62 38 634 110 6.8 (95% CI: 2.7,3.7))

PFOA M 3.8 (1378 days) 2.8 2.1 GM 4.7 5.6 22 236 21 Range 1.5-9.1 (95% CI: 2.4,3.4) F 3.3 2.4 2.6 GM 3.1 0.08 16 236 32 3.3 (95% CI: 2.0,3.0) References Olsen et al., 2007a Li et al., 2018b Zhang et al., Fu et al., 2016d Sundström et al., Sundström et al., Numata et Sundström et al., 2013c 2012e 2012e al., 2014f 2012e a: Half-life in 26 (24 males and 2 females) fluorplant workers, blood sampled for 5 successive years after retirement (individual half-life given for the two women). b: Drinking water exposure, up to seven blood samples collected between 2014 to 2016 from 106 individuals. c: Half-life estimated based on paired urine-blood samples and urine as only elimination way from 86 individuals. d: Half-life in fluorplant workers (n=302) estimated by daily clearance rate by paired blood-urine samples and annual decline in serum levels over 5 years. e: Clearance profile of PFHxS after a single oral dose; Rats (n=4/sex/group) within 96 h after exposure for 1, 10, or 100mg K+PFHxS/kg body weight. CD-1 mice were sampled at designated times (2, 4, and 8 h post- dose and days 1, 8, 15, 22, 36, 50, 64, and 162 post-dose (n=4/sex/dose group) after exposure to 1 or 20mg K+PFHxS/kg body weight. For rat and mice, blood, liver, kidney, 24h-hurine and feces were sampled. Three male and three female cynomolgus monkeys were given intravenous dose of 10 mg/kg PFHxS. Urine was collected up to day 119, and blood sampled at regular intervals up to day 171 post–dose. f: Fattening pigs, 10 gilts (female), 10 barrows (castrated male pigs) and 10 prepubescent male pigs) for 21 days they received either PFAA contaminated feed (hay and barley grown on agricultural land added soil improver contaminated with high concentrations with PFAS (PFHxS concentration was 91.3 g/kg, each animal received 2 kg/feed per day), blood were sampled at day -4 and days 4, 8, 11, 15, and 18 and at slaughter day 21, muscle, fat, liver, kidney, urine, and feces were sampled.

34 UNEP/POPS/POPRC.14/INF/4

Table 4.1. PFHxS serum levels and plasma, cholesterol, lipid levels and metabolic function associations Association between PFHxS and plasma lipids PFAS serum level Study- and cholesterol Year of Location, Study Region group, Non Median (range) ng/ml Comments Reference sampling cohort design LDL TC/ HDL n, age TC HDL TRIG or geometric mean -C HDL -C -C (GM) North 2005-2006 C8 Health Non- C-S, ↑ – – – – – Mean and SD All lipid outcomes except high Steenland et al., America Project, pregnant Multivariate PFHxS 5.1 (0.8) density 2009 Ohio and adults, linear PFOS 22.4 (14.8) lipoprotein cholesterol showed West ≥18 yrs regression PFOA 80.3 (236.1) significant increasing trends by Virginia, n=46,294 PFNA 1.6 (0.8) increasing decile of either United compound (PFOA and PFOS). States PFHxS and PFNA was only reported for TC, both positively associated. North 2007-2009 Canadian Non- C-S, ↑ ↑ ↑ ↑ ns ns GM and SD in plasma Over half of the study population Fisher et al., 2013 America Health pregnant Multivariate PFHxS 2.18 (2.63) was either obese or overweight. Measures adults, linear PFOS 8.4 (2.04) PFHxS OR for high Survey 18-74 yrs regression PFOA 2.46 (1.83) cholesterol=1.27(95% CI: 1.1, (Cycle 1) n=2700 and IQR 1.45)

No association was found between PFHxS and metabolic syndrome, insulin or glucose

North 1999-2000 NHANES, ≥12 yrs, C-S, – – – – ns ns – No association was found Lin et al., 2009b America and 2003- United n=1443, Multivariate between PFHxS and metabolic 2004 States (adolesce linear syndrome, insulin or glucose in nt 474, regression adolescent or adults adults 969) PFNA was ↑ hyperglycemia in adolescents. North 2003-2004 NHANES, 12-80 C-S, ↓ ↓ – ↓ ↑ – Median and rang PFHxS consistently acted in the Nelson et al., America United yrs, multivariate P= P=0. P= PFHxS 1.8 (0.2-27.1) opposite direction of the other 2010 States n=860 linear regres- 0.07 01 0.11 PFOS 21 (1.4-392) PFASs in the cholesterol sion and PFOA 3.9 (0.1-37.3) analyses, (PFOS, PFOA and IQR, PFNA 1.0 (0.1-10.3) PFNA ↑ HDL-C, TC, LDL). analyses in sex and age No association was found (12–19, 20– between PFAS and metabolic 59, 60–80 syndrome, insulin or glucose years) subgroups for each PFC separately

35

UNEP/POPS/POPRC.14/INF/4

Association between PFHxS and plasma lipids PFAS serum level Study- and cholesterol Year of Location, Study Region group, Non Median (range) ng/ml Comments Reference sampling cohort design LDL TC/ HDL n, age TC HDL TRIG or geometric mean -C HDL -C -C (GM) North 2003-2012 NHANES, >20 yrs, C-S, ns ns – – ↑f ns Mean and SD Diabetes prevalence in female in He et al., 2018 America United n=7904 multivariate male: PFHxS 2.88 Q4 PFHxS OR=1.22 (p=0.056). States Male=39 linear regres- (0.05) 56 sion analyses PFOS 20.8 (0.32) Systolic blood pressure ↑f Female in sex and PFOA 4.5 (0.06) =3948 age, IQR PFNA 1.52 (0.02) PFOA was ↑ associated with female: PFHxS 1.94 diabetes in males, and with TC in (0.04) adults. PFOS 14.51 (0.26) PFOA 3.46 (0.04) PFNA 1.3 (0.03) North 1999-2002 Project 682 C-(P)-cohort, ns ns ns ns ns ns Median and (P25-P75) Maternal blood sampled 1th Mora et al., 2018 America Viva, mother multivariate Prenatal-PFASs trimester week 9.7 in 1999-2002 Boston, child linear regres- PFHxS 2.4 (1.6-3.8) Mid-childhood blood at median Mother- pairs sion PFOS 24.6 (17.9-34) age 7.7 yrs, 2007-2010 child pairs analyses, PFOA 5.4 (3.9-7.6) IQR-of PFNA 0.6(0.5-0.9) Among girls, higher PFOS, prenatal or PFOA and PFDeA ↑ TG and/or mid- Mid-childhood LDL-C. childhood PFHxS 1.9 (1.2-3.4) However, boys and girls these PFAS and PFOS 6.2 (4.2-9.7) PFAS combined ↑HDL-C and ↓ mid- PFOA 4.3 (3.0-6.0) ALT. childhood PFNA 1.5 (1.1-02.3) lipids and liver enzymes (ALT) North 1993-2001 children ≤7 yrs on C-C, ↑ ↑ – – ns ns Median PFHxS decreased insulin Koshy et al., America and 9/11/01 multivariate Control-WTCHR resistance 2017 adolescent or born regression PFHxS: 0.53–0.67 -8.6% change, (beta coefficient= s enrolled between analysis PFOS: 2.78–3.72 -0.09 (95% CI-0.18, -0.003), in the 9/11/93 PFOA: 1.39–1.81 World and 2001 PFNA: 0.49–0.61 Trade n=123 in Center the Health WTCHR Registry group (WTCHR) and n=185 in control group

36 UNEP/POPS/POPRC.14/INF/4

Association between PFHxS and plasma lipids PFAS serum level Study- and cholesterol Year of Location, Study Region group, Non Median (range) ng/ml Comments Reference sampling cohort design LDL TC/ HDL n, age TC HDL TRIG or geometric mean -C HDL -C -C (GM) Europe 2003-2004 MoBa, Pregnant C-S, ns ns – – ↑ ns Median and (P25-P75) Sampling 2nd trimester Starling et al., Norway women, Multivariate PFHxS 0.60 (0.44–0.87) 2014 n=891, regression PFOS 13.03 (10.31– PFOS, PFNA, PFDA, PFUnDA, (18-44) 16.60) and PFHxS showed positive yrs PFOA 2.25 (1.66-3.03) linear PFNA 0.39 (0.29-0.51) associations with HDL- cholesterol in adjusted models. Pr ln increase of PFHxS: =1.46 (95% CI: 0.19, 2.73). Europe 2003-2008 INMA, Pregnant C-S, ns – – – – ↓a GM and rang Sampling 1st trimester Matilla-Santander Spain women, Multivariate PFHxS 0.55 (0.05-11.0) et al., 2017 n=1240, linear PFOS 5.77 (0.28-38.58) Both PFOS and PFHxS ↑ with (18-44) regression PFOA 2.31 (0.28-31.64) impaired glucose tolerance; yrs PFNA 0.64 (0.03-5.51) PFHxS OR=1.65 (95%CI: 0.99, 2.76) per log 10-unit increase aAssociation was nonlinear Europe 2003-2008 INMA, n=627 C-P, ns ns – – ns ↑a at 4 GM and (P25–P75) Maternal plasma PFAS at 1st Manzano- Spain mother- Multivariate yrs PFHxS 0.61 (0.43–0.84) trimester Salgado et al., child pair linear PFOS 5.80 (4.52–7.84) Blood lipids at age 4 (non- 2017 regression PFOA 2.32 (1.63–3.31) fasting) PFNA 0.66 (0.5–0.90) aTRIG z-score [for a doubling of exposure, =0.11; 95% CI: 0.01, 0.21] C8 Health Project, Ohio and West Virginia: community residents to a chemical plant, exposed to PFOA (and other PFAS) through drinking water; NHANES (National Health and Nutrition Examination Survey); MoBa (The Norwegian Mother and Child Cohort Study) C-C: case-control; C(P): cohort (prospective); C(R): cohort (retro perspective); C-S: cross-sectional ↑ Positive association p≤0.05; ↓ negative association p≤0.05; Non-significant association: ↑ Positive association p>0.05; ↓ negative association p>0.05; - not studied; ns: non-significant; CI: confidence interval; IQR: interquartile range; Q: quartile; PFAS: perfluoroalkyl substances; PFHxS: perfluorohexane sulfonate; PFNA: perfluorononanoic acid; PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulfonate; TC=total cholesterol; LDL-C=low-density lipoprotein-cholesterol; HDL-C=high density lipoprotein cholesterol, TRIG=triglycerides; ALT=alanine aminotransferase

37

UNEP/POPS/POPRC.14/INF/4

Table 4.2. PFHxS serum levels and thyroid hormone associations Association between PFHxS and THs PFAS serum level, and matrix year of Location Study group, Region Study design Comments Reference sampling cohort n, age TSH TT4 TT3 fT3 fT4 Median (range) ng/ml or geometric mean (GM) Asia 2006- Republic Cordblood C(P), multiple ns ns ↑f – – PFHxS 0.38 (0.11-1.31) PFOS and PFPeA ↑ T4 in female Shan-Kulkarni 2010 of Korea n=279 linear regression PFOS 0.66 (0.07-5.9) PFNA ↓ TSH in female et al., 2016 (147 females, models, cord PFOA 0.91 (0.05-2.4) PFDA ↑ T3 in female 132 males) blood PFAS and PFNA 0.2 (0.03-1.24) TH PFDeA, PFNA , PFPeA and PFHxS were highly correlated in cord blood Asia 2009- Republic Neonates, C-C, ns ns ns – – Cases In the control group: Kim et al., 2016 2010 of Korea blood 1–3 Cases= PFHxS 1.23 (0.13-3.11) PFPeA and PFHpA was ↑ with months after congenital PFOS 5.33 (0.50-23.9) relevant microsomal antibodies birth hypothyroidism In infants with congenital hypothyroidism PFOA 5.4 (0.79-15.7) (27) cases, (CH) infants (n=27) PFHxS and PFOA as well as total PFNA 1.93 (0.31-4.59) Case group received medication for (13) controls PFSAs and total PFAS was ↓ with thyroid congenital hypothyroidism and this stimulating–immunoglobulin (TSI) Controls may have impacted the results. PFHxS 1.17 (0.2-3.45) PFOS 4.05 (0.64-11.6) PFOA 2.12 (0.36-4.55) PFNA 0.63 (nd-1.64) North 2011- NHANE Children (158 C-S, ns ↓m ns ns ns Median and (P25-P75) In male: PFOS and PFNA↑ with Lewis et al., America 2012 S, United boys, 158 girls) Multiple linear TSH 2015 States 12-<20 yrs regression) PFHxS 0.83 (0.56, 1.74) In female: PFOA ↓ with TSH PFOS 3.76 (2.33, 5.57) PFOA 1.53 (1.15, 2.15) PFNA 0.73 (0.52, 1.10) North 2007- CHirP Pregnant C-S, ns ns – – ns Maternal analysis (15 No PFAS were associated with Webster et al., America 2008 study, women, n=152 Multiple linear wk gestation, 2nd TSH, T4 or fT4 in women with 2014 Vancover regression, IQR trimester) normal TPOAb. , Canada PFHxS 1.0 <0.5-12) In women with TPOAb ≥9 UI/ml PFOS 4.8 (1.2-16) (n=14): PFOA 1.7 (<0.5-4.6) 46-69% ↑ in TSH observed with PFNA 0.6 (<0.5-1.8) IQR ↑ in PFNA, PFOA or PFOS.

IQR ↑ in all 4 PFAS gave 3-4%↑in fT4 North 2005- Edmonto Pregnant C-C, Neither PFOS, PFOA or PFHxS were PFHxS GM nmol/L Serum levels provided in nmol/L Chan et al., America 2006 n, women Cases=hypothyro association with maternal cases 2.86 (1.46-5.70) 2011 Alberta, (96) cases, xinemia hypothyroxinemia; control 2.59 (1.35-4.90) Hypothyroxinaemic cases were Canada (175) controls Conditional PFHxS adjusted analysis OR=1.12 defined as reduced fT4 (≤8.8 logistic regression (95%CI :0.89, 1.41) PFOS GM 14.15 pmol/L) despite normal TSH (0.15- PFOA GM 3.10 ≤4 mUI/ml)

38 UNEP/POPS/POPRC.14/INF/4

Association between PFHxS and THs PFAS serum level, and matrix year of Location Study group, Region Study design Comments Reference sampling cohort n, age TSH TT4 TT3 fT3 fT4 Median (range) ng/ml or geometric mean (GM) North 1999- Project Pregnant C (P) ns* ns* – – ↓* Maternal analysis (9.6 * Maternal analysis: PFHxS was Preston et al., America 2002 Viva, women (732) multiple linear wk gestation) neg associated with free T4 index (- 2018 Boston, Neonates (480) regression models, PFHxS 2.4

# Neonates analysis: neonate PFOS, PFOA and PFHxS were negatively associated with T4 levels in male neonates PFHxS Q4 vs Q1: beta=-2.51 µg/dL (95% CI: -3.99, -1.04) Plasma T4 levels in male neonates were also negativly associated with prenatal (maternal) PFAS levels; beta=-0.46 (95%CI: -0.85, -0.10) Asia 2000- Taiwan Pregnant C (P) ↑ ns ns – ns Median and (P25-P75) Positive association between Wang et al., 2001 women (285), multivariate linear PFHxS 0.81 (0.30-1.35) PFHxS and TSH in pregnant 2014 mean 28.8 yrs, regression models PFOS 12.73 (9.65-17.48) women, beta=0.105 (95%CI: 0.002, neonated (116) PFOA 2.39 (1.54-3.40) 0.207). PFNA 1.51 (0.85-2.51) No association between PFHxS in PFAS and TH in maternal serum and cord blood. maternal serum (3rd T), Cord blood TH only Europe 2007- Northern Pregnant C (P) ↑* ns ns ns ns PFHxS 0.44 (0.3-1.1) * Both PFOS, PFOA and PFHxS Berg et al., 2009 Norway women (391) multivariate linear PFOS 8.03 concentrations were associated with 2015 contam. regression models, PFOA 1.53 higher TSH concentration. Cohort IQR, included PFNA 0.56 However, when including PFOS as Study also thyroid covariate significance for PFOA (MISA) hormone binding and PFHxS were no longer present. protein Europe 2003- MoBa, Pregnant C (P) ns – – – – Median and (P25-P75) A small positive association was Wang et al., 2004 Norway women (903), multiple linear PFHxS 0.60 (0.43-0.84) observed between PFOS and TSH. 2013 mean (range) 30 regression models PFOS 12.81 (10.13- (18-44) yrs 16.49)

39

UNEP/POPS/POPRC.14/INF/4

Association between PFHxS and THs PFAS serum level, and matrix year of Location Study group, Region Study design Comments Reference sampling cohort n, age TSH TT4 TT3 fT3 fT4 Median (range) ng/ml or geometric mean (GM) PFOA 2.51 (1.57-2.95) PFNA 0.39 (0.28-0.51)

Maternal plasma (17-18 gws) North 2008- Time to Women C-(P), Multiple ns ns ns – – GM (95%CI) Women with history of infertility, Crowford et al., America 2009 pregnanc 30-44yrs linear regression, PFHxS 1.59 (1.37, 1.84) polycystic ovaries, ovarian disease, 2017 y cohort n=99 IQR of natural log PFOS 9.29 (8.31, 10.38) pelvic inflammatory disease, PFAS PFOA 2.79 (2.48, 3.16) endometriosis etc were excluded PFNA 0.84 (0.74, 0.97) from the study

Sum PFAS ↑T3 North 2011- NHANE n=1682 >12-80 C-S, ns ns ↑ f ns ns Median and (P25-P75) In women age 50-80 TT3 increased Lewis et al., America 2012 S, United yrs Multiple linear 50- PFHxS females with 2.0 % (95% CI: 0.2, 3.9) per 2015 States regression 80 20-40 yrs: 0.69 (0.43, doubling in PFHxS level. yrs 1.10) 60-80 yrs: 1.47 (0.9, No association was observed in 2.34) men. North 2007- NHANE n=1540, C-S, multivariate – ↑ – – – – Jain et al., 2013 America 2008 S, United ≥12 years linear, IQR and States 2009-10 North 2007- NHANE n=1181 C-S, ns ↑f ↑f ns ↓m GM (95% CI) f in women, min men Wen et al., 2013 America 2008 and S, United ≥20 years IQR of natural log PFHxS 2.0, (1.89-2.11) hypothyroidism (defined as In women: ↑risk of sub-clinical 2009- States PFAS, PFOS 14.2, (13.59- TSH<0.24 mIU/L) hypothyroidism with increasing PFHxS 2010 multivariable 14.86) levels, OR 3.10 CI (1.22-7.86), linear PFOA 4.15, (4.02-4.29) hyperthyroidism (defined as ↑risk of sub-clinical hyperthyroidism with PFNA 1.54, (1.48-1.59) TSH>5.43 mIU/L) increasing PFHxS levels, OR 2.27 CI (1.07-4.80) North 2007- NHANE n=1525 C-S, ↑ and ↑ ns ↑ a ↑ a ↓ a PFHxS 2.0 (9 IU/ml is a vulnerable 28% had group if urinary iodine Combined with low iodine levels<100 µg/L) Asia Southern- n=202, C-S, ns – – ns ns PFHxS 0.2 (

40 UNEP/POPS/POPRC.14/INF/4

Association between PFHxS and THs PFAS serum level, and matrix year of Location Study group, Region Study design Comments Reference sampling cohort n, age TSH TT4 TT3 fT3 fT4 Median (range) ng/ml or geometric mean (GM) and (increased FT3 and FT4 and Hainan reduced TSH, n=57) provinces  PFAS8=PFOS, PFOA, PFHxS, PFPrA, PFPeA, PFBA, PFHxA, PFBS Asia 2008 Republic n=633 C-S, IQR, ns ns – – – PFHxS Levels of PFHxS was significant Ji et al., 2012 of Korea ≥12 years multivariable Male 2.19 correlated with consumption of linear Female: 1.1 vegetables, potato and fish/shellfish, PFTrDA was ↓ correlated with TT4 NHANES (National Health and Nutrition Examination Survey), MoBa (The Norwegian Mother and Child Cohort Study) C-C: case-control; C(P): cohort (prospective); C(R): cohort (retro perspective); C-S: cross-sectional ↑ Positive association p≤0.05; ↓ negative association p≤0.05; - not studied; b: boys; CI: confidence interval; FT4: free thyroxin; g: girls; IQR: interquartile range; ln: natural log transformed; ns: non-significant; PFAS: perfluoroalkyl substances; PFHxS: perfluorohexane sulfonate; PFNA: perfluorononanoic acid; PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulfonate; Q: quartile; TSH: thyroid-stimulating hormone; TT4: total thyroxin; TT3: total triiodothyronine; fT3: free T3; fT4: free T4; Autoimmune hypothyroidism (Hashimoto's disease, TPOAb ≥9 UI/ml and TSH), Hyperthyroidism: (high fT4, low TSH), Hypothyroxinemia (low fT4 without expected increase in TSH)

41

UNEP/POPS/POPRC.14/INF/4

References Aas CB, Fµglei E, Herzke D, Yoccoz NG, Routti H (2014). Effect of body condition on tissue distribution of perfluoroalkyl substances (PFASs) in Arctic fox (Vulpes lagopus). Environ Sci Technol. 48(19):11654-61. Erratum in: Environ Sci Technol. 48(22):13558. Ahrens L, Xie Z, Ebinghaus R (2010). Distribution of perfluoroalkyl compounds in seawater from northern Europe, Atlantic Ocean, and Southern Ocean. Chemosphere. 78(8):1011-6. Ahrens, L., Siebert, U., Ebinghaus, R., (2009). Total body burden and tissue distribution of polyfluorinated compounds in harbor seals (Phoca vitulina) from the German Bight. Mar Pollut Bull, 58(4), 520-525. Alava JJ, McDoµgall MRR, Bobor-Córdova MJ, Calle P, Riofrio M, Calle N, Ikonomou MG, Gobas FAPC (2015). Chapter 3. Perfluorinated chemicals in sediments, lichens and seabirds from the Antarctic peninsula– environmental assessment and managment perspectives in Emerging pollutants in the environment–current and further implications. https://www.intechopen.com/books/emerging-pollutants-in-the-environment-current- and-further-implications/perfluorinated-chemicals-in-sediments-lichens-and-seabirds-from-the-antarctic-peninsula-environmenta Andreasen, B., Hoydal, K., Mortensen, R., Ehrenbjerg, S.V., Dam, M. AMAP Faroe Islands 2013–2016: Heavy Metals and POPs Core Programme, Arctic Monitoring and Assessment Programme, Environment Agency, Faroe Islands (in preparation). Antignac JP, Veyrand B, Kadar H, Marchand P, Oleko A, Le Bizec B, Vandentorren S (2013). Occurrence of perfluorinated alkylated substances in breast milk of French women and relation with socio-demographical and clinical parameters: results of the ELFE pilot study. Chemosphere. 91(6):802-8. Allred BM, Lang JR, Barlaz MA, Field JA (2014). Orthogonal zirconium diol/C18 liquid chromatography-tandem mass spectrometry analysis of poly and perfluoroalkyl substances in landfill leachate. J Chromatogr A. 12;1359:202-11. Arbuckle TE, Kubwabo C, Walker M, Davis K, Lalonde K, Kosarac I, Wen SW, Arnold D L (2013). Umbilical cord blood levels of perfluoroalkyl acids and polybrominated flame retardants. Int J Hyg Environ Health. 216(2):184-94. Averina M, Brox J, Huber S, Furberg AS (2018). Perfluoroalkyl substances in adolescents in northern Norway: Lifestyle and dietary predictors. The Tromsø study, Fit Futures 1. Environ Int. 114:123-130. Ballesteros V, Costa O, Iñiguez C, Fletcher T, Ballester F, Lopez-Espinosa MJ (2017). Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: A systematic review of epidemiologic studies. 99:15-28. Bangma JT, Reiner JL, Jones M, Lowers RH, Nilsen F, Rainwater TR, Somerville S, Guillette LJ, Bowden JA (2017). Variation in perfluoroalkyl acids in the American alligator (Alligator mississippiensis) at Merritt Island National Wildlife Refµge. Chemosphere. 166:72-79. Bečanová J, Komprdová K, Vrana B, Klánová J (2016). Annual dynamics of perfluorinated compounds in sediment: A case study in the Morava River in Zlín district, Czech Republic. Chemosphere. 151:225-33. Beesoon S, Webster GM, Shoeib M, Harner T, Benskin JP, Martin JW (2011). Isomer profiles of perfluorochemicals in matched maternal, cord, and house dust samples: manufacturing sources and transplacental transfer. Environ Health Perspect. 119(11):1659-64. Benskin JP, Muir DC, Scott BF, Spencer C, De Silva AO, Kylin H, Martin JW, Morris A, Lohmann R, Tomy G, Rosenberg B, Taniyasu S, Yamashita N (2012). Perfluoroalkyl acids in the Atlantic and Canadian Arctic Oceans. Environ Sci Technol. 46(11):5815-23. Berg V, Nøst TH, Hansen S, Elverland A, Veyhe AS, Jorde R, Odland JØ, Sandanger TM (2015). Assessing the relationship between perfluoroalkyl substances, thyroid hormones and binding proteins in pregnant women; a longitudinal mixed effects approach. Environ Int. 77:63-9. Berg V, Nøst TH, Huber S, Rylander C, Hansen S, Veyhe AS, Fuskevåg OM, Odland JØ, Sandanger TM (2014). Maternal serum concentrations of per- and polyfluoroalkyl substances and their predictors in years with reduced production and use. Environ Int.69:58-66 Beškoski VP, Takemine S, Nakano T, Slavković Beškoski L, Gojgić-Cvijović G, Ilić M, Miletić S, Vrvić MM (2013). Perfluorinated compounds in sediment samples from the wastewater canal of Pančevo (Serbia) industrial area. Chemosphere. 91(10):1408-15. Bignert, A., Danielsson, S., Strandmark, A., Nyberg, E., Asplund, L., Eriksson, U., Berger, U., Wilander, A., Haglund P. (2008). Sakrapport: Metaller och organiska miljögifter i marin biota, trend- och områdesövervakning. Comments Concerning the National Swedish Contaminant Monitoring Programme in Marine Biota, 2008. Retrieved from http://www.nrm.se/download/18.61d98c3a11a91af311a80001279/Marina+programmet +2008.pdf Bjerregaar-Olesen C, Bossi R, Liew Z, Long M, Bech BH, Henriksen TB, Berg V, Nøst TH, Zhang JJ, Odland JØ, Bonefeld-Jørgensen EC (2017). Maternal serum concentrations of perfluoroalkyl acids in

42 UNEP/POPS/POPRC.14/INF/4 fiveinternational birth cohorts. International Journal of Hygiene and Environmental Health 220: 86–93. Boiteux V, Dauchy X, Rosin C, Munoz JF (2012). National screening study on 10 perfluorinated compounds in raw and treated tap water in France. Arch Environ Contam Toxicol. 63(1):1-12. Bossi R, Riget FF, Dietz R, Sonne C, Fauser P, Dam M, Vorkamp K (2005). Preliminary screening of perfluorooctane sulfonate (PFOS) and other fluorochemicals in fish, birds and marine mammals from Greenland and the Faroe Islands. Environ Pollut. 136(2):323-9. Braune BM, Letcher RJ (2013). Perfluorinated sulfonate and carboxylate compounds in eggs of seabirds breeding in the Canadian Arctic: temporal trends (1975-2011) and interspecies comparison. Environ Sci Technol. 47(1):616-24. Braune BM, Gaston AJ, Elliott KH, Provencher JF, Woo KJ, Chambellant M, Ferguson SH, Letcher RJ (2014). Organohalogen contaminants and total mercury in forage fish preyed upon by thick-billed murres in northern Hudson Bay. Mar Pollut Bull. 78(1-2):258-66. Bräunig J, Baduel C, Heffernan A, Rotander A, Donaldson E, Mueller JF (2017). Fate and redistribution of perfluoroalkyl acids throµgh AFFF-impacted groundwater. SciTotal Environ. 596-597:360-368. Brumovský M, Karásková P, Borghini M, Nizzetto L (2016). Per- and polyfluoroalkyl substances in the Western Mediterranean Sea waters. Chemosphere. 159:308-316. Busch J, Ahrens L, Xie Z, Sturm R, Ebinghaus R (2010). Polyfluoroalkyl compounds in the East Greenland Arctic Ocean. J Environ Monit. 12(6):1242-6. Butt CM, Berger U, Bossi R, Tomy GT (2010). Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci Total Environ. 408(15):2936-65. Review. Butt CM, Mabury SA, Muir DC, Braune BM (2007). Prevalence of long-chained perfluorinated carboxylates in seabirds from the Canadian Arctic between 1975 and 2004. Environ Sci Technol. 41(10):3521-8. Bytingsvik J, van Leeuwen SP, Hamers T, Swart K, Aars J, Lie E, Nilsen EM, Wiig O, Derocher AE, Jenssen BM (2012). Perfluoroalkyl substances in polar bear mother-cub pairs: a comparative study based on plasma levels from 1998 and 2008. Environ Int. 15;49:92-9. Cai M, Zhao Z, Yin Z, Ahrens L, Huang P, Cai M, Yang H, He J, Sturm R, Ebinghaus R, Xie Z (2012). Occurrence of perfluoroalkyl compounds in surface waters from the North Pacific to the Arctic Ocean. Environ Sci Technol. 46(2):661-8. Calafat AM, Wong LY, Kuklenyik Z, Reidy JA, Needham LL (2007). Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and comparisons with NHANES 1999-2000. Environ Health Perspect. 115(11):1596-602. Caliebe C, Gerwinski W, Theobald N, Hühnerfuss H (2005). Occurrence of perfluorinated 465 organic acids in the water of the North Sea and Arctic North Atlantic. In Poster presented at Fluoros, Toronto, Canada. (http://www.chem.utoronto.ca/symposium/fluoros/pdfs/ANA010Theobald.pdf). Last accessed 16 May 2017. Campo J, Lorenzo M, Pérez F, Picó Y, Farré Ml, Barceló D (2016). Analysis of the presence of perfluoroalkyl substances in water, sediment and biota of the Jucar River (E Spain). Sources, partitioning and relationships with water physical characteristics. Environ Res. 147:503-12. Carlsson P, Herzke D, Kallenborn R (2014). Polychlorinated biphenyls (PCBs), polybrominateddiphenyl ethers (PBDEs) and perfluorinated alkylated substances (PFASs) in traditional seafood items from western Greenland. Environ Sci Pollut Res Int. 21(6):4741-50. Casal P, Gonzalez-Gaya B, Zhang YF, Reardon AJF, Martin JW, Jimenez B, Dachs J. (2017). Accumulation of Perfluoroalkylated Substances in Oceanic Plankton. Environmental Science & Technology 51(5):2766- 2775. Chan E, Burstyn I, Cherry N, Bamforth F, Martin JW (2011). Perfluorinated acids and hypothyroxinemia in pregnant women. Environ Res. 111(4):559-64. Chen M, Wang Q, Shan G, Zhu L, Yang L, Liu M (2018). Occurrence, partitioning and bioaccumulation of emerging and legacy per- and polyfluoroalkyl substances in Taihu Lake, China. Sci Total Environ. 5;634:251- 259. Chu S, Wang J, Leong G, Woodward LA, Letcher RJ, Li QX (2015). Perfluoroalkyl sulfonates and carboxylic acids in liver, muscle and adipose tissues of black-footed albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean. Chemosphere.138:60-6. Codling G, Halsall C, Ahrens L, Del Vento S, Wiberg K, Bergknut M, Laudon H, Ebinghaus R. (2014). The fate of per- and polyfluoroalkyl substances within a melting snowpack of a boreal forest. Environ Pollut.191:190-8. CONCAWE (2016). Environmental fate and effects of polyand perfluoroalkyl substances (PFAS).

43

UNEP/POPS/POPRC.14/INF/4

Crawford NM, Fenton SE, Strynar M, Hines EP, Pritchard DA, Steiner AZ (2017). Effects of perfluorinated chemicals on thyroid function, markers of ovarian reserve, and natural fertility. Reprod Toxicol. 69:53-59. doi: 10.1016/j.reprotox.2017.01.006. Epub 2017 Jan 19. Cui Q, Pan Y, Zhang H, Sheng N, Dai J (2018). Elevated concentrations of perfluorohexanesulfonate and other per- and polyfluoroalkyl substances in Baiyangdian Lake (China): Source characterization and exposure assessment. Environ Pollut. 241:684-691. D'Agostino LA, Mabury SA (2017). Certain Perfluoroalkyl and Polyfluoroalkyl Substances Associated with Aqueous Film Forming Foam Are Widespread in Canadian Surface Waters. Environ Sci Technol. 5; 51 (23):13603-13613. Dassuncao C, Hu XC, Zhang X, Bossi R, Dam M, Mikkelsen B, Sunderland EM (2017). Temporal Shifts in Poly- and Perfluoroalkyl Substances (PFASs) in North Atlantic Pilot Whales Indicate Large Contribution of Atmospheric Precursors. Environ Sci Technol. 51(8):4512-4521. Dietz R, Rigét FF, Galatius A, Sonne C, Teilmann J, Bossi R (2012). Spatial trends of perfluorochemicals in harbor seals (Phoca vitulina) from Danish waters. Sci Total Environ. 1;414:732-7. Dreyer A, Weinberg I, Temme C, Ebinghaus R (2009). Polyfluorinated compounds in the atmosphere of the Atlantic and Southern Oceans: evidence for a global distribution. Environ Sci Technol. 43(17):6507-14. ECHA (2017a). Member state committee support document for the identification of perfluorohexane-1-sulphonic acid and its salts as substances of very high concern because of their vPvB (Article 57 E) properties. (https://echa.europa.eu/documents/10162/40a82ea7-dcd2-5e6f-9bff-6504c7a226c5). Last accessed 04 October 2017 EFSA 2012. European Food Safety Authority; Perfluoroalkylated substances in food: occurrence and dietary exposure. EFSA Journal., 2012; 10(6):2743. [55 pp.] doi:10.2903/j.efsa.2012.2743. Available online: www.efsa.europa.eu/efsajournal Ericson Jogsten & Yeung (2017). Analysis of ultra-short chain perfluoroalkyl substances in Swedish environmental waters. Örebro universitet, Forskningscentrum Människa-Teknik-Miljö (MTM) Ericson I, Domingo JL, Nadal M, Bigas E, Llebaria X, van Bavel B, Lindström G (2009). Levels of perfluorinated chemicals in municipal drinking water from Catalonia, Spain: public health implications. Arch Environ Contam Toxicol. 57(4):631-8. Eriksson U, Haglund P, Kärrman A (2017). Contribution of precursor compounds to the release of per- and polyfluoroalkyl substances (PFASs) from waste water treatment plants (WWTPs). J Environ Sci (China). 61:80-90. Eschauzier C, Haftka J, Stuyfzand PJ, de Voogt P. (2010). Perfluorinated compounds in infiltrated river rhine water and infiltrated rainwater in coastal dunes. EnvironSci Technol. 44(19):7450-5. Fair PA, Adams J, Mitchum G, Hulsey TC, Reif JS, Houde M, Muir D, Wirth E, Wetzel D, Zolman E, McFee W, Bossart GD (2010). Contaminant blubber burdens in Atlantic bottlenose dolphins (Tursiops truncatus) from two southeastern US estuarine areas: concentrations and patterns of PCBs, pesticides, PBDEs, PFCs, and PAHs. Sci Total Environ. 1;408(7):1577-97. Fair PA, Houde M, Hulsey TC, Bossart GD, Adams J, Balthis L, Muir DC (2012). Assessment of perfluorinated compounds (PFCs) in plasma of bottlenose dolphins from two southeast US estuarine areas: relationship with age, sex and geographic locations. Mar Pollut Bull. 64(1):66-74. Falandysz J, Taniyasu S, Gulkowska A, Yamashita N, Schulte-Oehlmann U (2006). Is fish a major source of fluorinated surfactants and repellents in humans living on the Baltic Coast? Environ Sci Technol. 1;40(3):748-51. Falk S, Brunn H, Schröter-Kermani C, Failing K, Georgii S, Tarricone K, Stahl T (2012). Temporal and spatial trends of perfluoroalkyl substances in liver of roe deer (Capreolus capreolus). Environ Pollut. 171:1-8. Fisher M, Arbuckle TE, Liang CL, LeBlanc A, Gaudreau E, Foster WG, Haines D, Davis K, Fraser WD (2016). Concentrations of persistent organic pollutants in maternal and cord blood from the maternal-infant research on environmental chemicals (MIREC) cohort study. Environ Health. 4;15(1):59. Fisher M, Arbuckle TE, Wade M, Haines DA (2013). Do perfluoroalkyl substances affect metabolic function and plasma lipids? -Analysis of the 2007-2009, Canadian Health Measures Survey (CHMS) Cycle 1. Environ Res.121:95-103. Erratum in: Environ Res.126:221. Fraser AJ, Webster TF, Watkins DJ, Strynar MJ, Kato K, Calafat AM, Vieira VM, McClean MD (2013). Polyfluorinated Compounds in dust from homes, offices and vehicles as predictors of concentrations in office workers' serum. Environ Int. 60: 128–136. Fraser AJ, Webster TF, Watkins DJ, Nelson JW, Stapleton HM, Calafat AM, Kato K, Shoeib M, Vieira VM, McClean MD (2012). Polyfluorinated Compounds in Serum Linked to Indoor Air in Office Environments. Environmental Science & Technology, 2012; 46: 1209-1215. Fromme H, Mosch C, Morovitz M, Alba-Alejandre I, Boehmer S, Kiranoglu M, Faber F, Hannibal I, Genzel-Boroviczény O, Koletzko B, Völkel W (2010). Pre- and postnatal exposure to perfluorinated compounds (PFCs). Environ Sci Technol. 44(18):7123-9.

44 UNEP/POPS/POPRC.14/INF/4

Fry K, Power MC. (2017). Persistent organic pollutants and mortality in the United States, NHANES 1999-2011. Environmental Health 16. Fu JJ, Gao Y, Cui L, Wang T, Liang Y, Qu GB, Yuan B, Wang YW, Zhang AQ, Jiang GB (2016). Occurrence, temporal trends, and half-lives of perfluoroalkyl acids (PFAAs) in occupational workers in China. Scientific Reports 6: 38039 Galatius A, Bossi R, Sonne C, Rigét FF, Kinze CC, Lockyer C, Teilmann J, Dietz R (2013). PFAS profiles in three North Sea top predators: metabolic differences among species? Environ Sci Pollut Res Int. 20(11):8013-20. Galatius A, Dietz R, Rigét FF, Sonne C, Kinze CC, Lockyer C, Bossi R (2011). Temporal and life history related trends of perfluorochemicals in harbor porpoises from the Danish North Sea. Mar Pollut Bull. 62(7):1476-83. Gallen C, Baduel C, Lai FY, Thompson K, Thompson J, Warne M and Mueller J (2014). Spatio-temporal assessment of perfluorinated compounds in the Brisbane River system, Australia: Impact of a major flood event. Marine Pollution Bulletin, 85, pp 597-605. Gallen C, Drage D, Eaglesham G, Grant S, Bowman M, Mueller JF (2017). Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates. J Hazard Gallen C, Drage D, Kaserzon S, Baduel C, Gallen M, Banks A, Broomhall S, Mueller JF (2016). Occurrence and distribution of brominated flame retardants and perfluoroalkyl substances in Australian landfill leachate and biosolids. J Hazard Mater. 312:55-64.Mater. 331:132-141. Gamberg et al., 2018. Northern Contaminants Program, 2017/2018 report (in preparation). Gebbink WA, Glynn A, Darnerud PO, Berger U (2015). Perfluoroalkyl acids and their precursors in Swedish food: The relative importance of direct and indirect dietary exposure. Environ Pollut. 198:108-15. Genualdi S, Lee SC, Shoeib M, Gawor A, Ahrens L, Harner T (2010). Global pilot study of legacy and emerging persistent organic pollutants using sorbent-impregnated polyurethane foam disk passive air samplers. Environ Sci Technol. 44(14):5534-9. Gewurtz SB, Martin PA, Letcher RJ, Burgess NM, Champoux L, Elliott JE, Weseloh DVC (2016). Spatio-temporal trends and monitoring design of perfluoroalkyl acids in the eggs of gull (Larid) species from across Canada and parts of the United States. Sci Total Environ. 15;565:440-450. Glynn, A., Danerud, P.O., Pihlström, T., Berger, U., Vestergren, R., Cousins, I.T., Johansson, J., Bignert, A. (2012). Temporal trends of perfluorinated alkyl acids in eggs, milk and farmed fish from the Swedish food production. Retrieved from https://www.kemi.se/global/pm/2012/pm-17-12.pdf Gómez-Ramírez P, Bustnes JO, Eulaers I, Herzke D, Johnsen TV, Lepoint G, Pérez-García JM, García-Fernández AJ, Jaspers VLB (2017). Per- and polyfluoroalkyl substances in plasma and feathers of nestling birds of prey from northern Norway. Environ Res. 158:277-285. González-Gaya B, Dachs J, Roscales JL, Caballero G, Jiménez B (2014). Perfluoroalkylated substances in the global tropical and subtropical surface oceans. Environ Sci Technol. 48(22):13076-84. Greaves AK, Letcher RJ, Sonne C, Dietz R, Born EW (2012). Tissue-specific concentrations and patterns of perfluoroalkyl carboxylates and sulfonates in East Greenland polar bears. Environ Sci Technol. 46(21):11575-83. Groffen T, Lopez-Antia A, D'Hollander W, Prinsen E, Eens M, Bervoets L. (2017). Perfluoroalkylated acids in the eggs of great tits (Parus major) near a fluorochemical plant in Flanders, Belgium. Environ Pollut. 228:140-148. Grønnestad R, Villanger GD, Polder A, Kovacs KM, Lydersen C, Jenssen BM, Borgå K (2017). Maternal transfer of perfluoroalkyl substances in hooded seals. Environ Toxicol Chem. 36(3):763-770. Gützkow KB, Haµg L.S, Thomsen C, Sabaredzovic A, Becher G, Brunborg, G (2012). Placental transfer of perfluorinated compounds is selectiveea Norwegian Mother and Child sub-cohort study. Int. J. Hyg. Environ. Health 215, 216-21 Haµg LS, Hubert S, Schlablach M, Becher G, Thomsen C (2011). Investigation on Per- and Polyfluorinated Compounds in Paired Samples of House Dust and Indoor Air from Norwegian Homes Environ. Sci. Technol. 2011, 45, 7991–7998 Haukås M, Berger U, Hop H, Gulliksen B, Gabrielsen GW (2007). Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web. Environ Pollut. 148(1):360- 71. He X, Liu Y, Xu B, Gu L, Tang W (2018). PFOA is associated with diabetes and metabolic alteration in US men: National Health and Nutrition Examination Survey 2003-2012. Sci Total Environ. 625:566-574. Health Canada (2013). Second Report on Human Biomonitoring of Environmental Chemicals in Canada: Results of the Canadian Health Measures Survey Cycle 2 (2009-2011). Minister of Health, Ottawa, ON. 45

UNEP/POPS/POPRC.14/INF/4

Retrieved March 13, 2018. https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/environmental-contaminants/second-report-human-biomonitoring-environmental- chemicals-canada-health-canada-2013.html. Hemat H, Wilhelm M, Völkel W, Mosch C, Fromme H, Wittsiepe J (2010). Low serum levels of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) in children and adults from Afghanistan. Sci Total Environ. 408(16):3493-5. Herzke D, Olsson E, Posner S (2012). Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway–A pilot study. Chemosphere 88 (2012) 980–987. Higgins CP, Field JA, Criddle CS, Luthy RG (2005). Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environ Sci Technol. 39(11):3946-56 Houde M, Bujas TA, Small J, Wells RS, Fair PA, Bossart GD, Solomon KR, Muir DC (2006). Biomagnification of perfluoroalkyl compounds in the bottlenose dolphin (Tursiops truncatus) food web. Environ Sci Technol. 40(13):4138-44. Hu XC, Dassuncao C, Zhang X, Grandjean P, Weihe P, Webster GM, Nielsen F, Sunderland EM (2018). Can profiles of poly- and Perfluoroalkyl substances (PFASs) in human serum provide information on major exposure sources? Environ Health. 17(1):11. Huber S, Haµg LS, Schlabach M (2011). Per- and polyfluorinated compounds in house dust and indoor air from northern Norway - a pilot study. Chemosphere. 84(11):1686-93. Huber S, Warner NA, Nygård T, Remberger M, Harju M, µggerud HT, Kaj L, Hanssen L (2015). A broad cocktail of environmental pollutants found in eggs of three seabird species from remote colonies in Norway. Environ Toxicol Chem. 34(6):1296-308. Jain RB (2013). Association between thyroid profile and perfluoroalkyl acids: data from NHNAES 2007-2008. Environ Res. 126:51-9. Ji K, Kim S, Kho Y, Paek D, Sakong J, Ha J, Kim S. Choi K (2012). Serum concentrations of major perfluorinated compounds among the general population in the Republic of Korea: dietary sources and potential impact on thyroid hormones. Environ. Int. 45: 78-85. Kaboré HA, Vo Duy S, Munoz G, Méité L, Desrosiers M, Liu J, Sory TK, Sauvé S (2018). Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. Sci Total Environ. 616-617:1089-1100 Kallenborn R, Berger U, Järnberg U (2004). Perfluorinated alkylated substances (pfas) in the nordic environment. TemaNord 2004:552, Nordic Council of Ministers, Copenhagen 2004 Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Mohd MA, Olivero J, Van Wouwe N, Yang JH, Aldoust KM (2004). Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol. 38(17):4489-95. Karásková P, Venier M, Melymuk L, Bečanová J, Vojta Š, Prokeš R, Diamond ML, Klánová J (2016). Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America. Environment International 94: 315–324. Kärrman A, Ericson I, van Bavel B, Darnerud PO, Aune M, Glynn A, Lignell S, Lindström G (2007). Exposure of perfluorinated chemicals throµgh lactation: levels of matched human milk and serum and a temporal trend, 1996-2004, in Sweden. Environ Health Perspect. 115(2):226-30. Kato, K., Calafat, A.M., Needham, L.L., (2009). Polyfluoroalkyl chemicals in house dust. Environ. Res. 109, 518–523 Khalil N, Ebert JR, Honda M, Lee M, Nahhas RW, Koskela A, Hangartner T, Kannan K (2018). Perfluoroalkyl substances, bone density, and cardio-metabolic risk factors in obese 8-12 year old children: A pilot study. Environ Res. 160:314-321. Kim DH, Kim UJ, Kim HY, Choi SD, Oh JE (2016). Perfluoroalkyl substances in serum from South Korean infants with congenital hypothyroidism and healthy infants - Its relationship with thyroid hormones. Environ Res. 147:399-404. Kim SK, Lee KT, Kang CS, Tao L, Kannan K, Kim KR, Kim CK, Lee JS, Park PS, Yoo YW, Ha JY, Shin YS, Lee JH (2011). Distribution of perfluorochemicals between sera and milk from the same mothers and implications for prenatal and postnatal exposures. Environ Pollut. 159(1):169-74. Koshy TT, Attina TM, Ghassabian A, Gilbert J, Burdine LK, Marmor M, Honda M, Chu DB, Han X, Shao Y, Kannan K, Urbina EM, Trasande L (2017). Serum perfluoroalkyl substances and cardiometabolic consequences in adolescents exposed to the World Trade Center disaster and a matched comparison group. Environ Int. 109:128-135. Kotthoff M, Müller J, Jürling H, Schlummer M, Fiedler D (2015). Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ Sci Pollut Res Int. 22(19):14546-59. Kubwabo, C.; Stewart, B.; Zhu, J; Marro, L (2005). Occurrence of perfluorosulfonates and other perfluorochemicals in dust from selected homes in the city of Ottawa, Canada. J. Environ. Monit. 7, 1074–1078.

46 UNEP/POPS/POPRC.14/INF/4

Kumar K, Zushi Y, Masunaga S, Gilligan M, Pride C, Sajwan KS (2009). Perfluorinated organic contaminants in sediment and aquatic wildlife, including sharks, from Georgia, United States. Mar Pollut Bull. 58(4):621-9. Kwok KY, Yamazaki E, Yamashita N, Taniyasu S, Murphy MB, Horii Y, Petrick G, Kallerborn R, Kannan K, Murano K, Lam PK (2013). Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources. Sci Total Environ. 447 :46-55. Lam NH, Cho CR, Kannan K, Cho HS (2017). A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: Distributions and bioconcentration profiles. J Hazard Mater.323(Pt A):116-127. Lescord GL, Kidd KA, De Silva AO, Williamson M, Spencer C, Wang X, Muir DC (2015). Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high Arctic. Environ Sci Technol. 49(5):2694-702. Letcher RJ, Morris AD, Dyck M, Sverko E, Reiner EJ, Blair DAD, Chu SG, Shen L (2018). Legacy and new halogenated persistent organic pollutants in polar bears from a contamination hotspot in the Arctic, Hudson Bay Canada. Sci Total Environ. 610-611:121-136. Letcher RJ, Su G, Moore JN, Williams LL, Martin PA, de Solla SR, Bowerman WW (2015). Perfluorinated sulfonate and carboxylate compounds and precursors in herring gull eggs from across the Laurentian Great Lakes of North America: Temporal and recent spatial comparisons and exposure implications. Sci Total Environ.15;538:468-77. Lewis RC, Johns LE, Meeker JD (2015). Serum Biomarkers of Exposure to Perfluoroalkyl Substances in Relation to Serum Testosterone and Measures of Thyroid Function among Adults and Adolescents from NHANES 2011-2012. Int J Environ Res Public Health. 12(6):6098-114. doi: 10.3390/ijerph120606098. Li Y, Cheng Y, Xie Z, Zeng F (2017). Perfluorinated alkyl substances in serum of the southern Chinese general population and potential impact on thyroid hormones. Sci Rep. 7:43380. Li Y, Fletcher T, Mucs D, Scott K, Lindh CH, Tallving P, Jakobsson K (2018). Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup Environ Med. 75(1):46-51 Lin AY, Panchangam SC, Ciou PS (2010). High levels of perfluorochemicals in Taiwan's wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems. Chemosphere. 80(10):1167-74. Lin AY, Panchangam SC, Lo CC (2009a). The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environ Pollut. 157(4):1365-72. Lin CY, Lin Y-C, Chen P-C, Lin L-Y L (2009b). Association among serum perfluoroalkyl chemicals, glucose homeostasis, and metabolic syndrome in adolescents and adults. Diabetes Care. 32 (4): 702-707. Lindh CH, Rylander L, Toft G, Axmon A, Rignell-Hydbom A, Giwercman A, Pedersen HS, Góalczyk K, Ludwicki JK, Zvyezday V, Vermeulen R, Lenters V, Heederik D, Bonde JP, Jönsson BA (2012). Blood serum concentrations of perfluorinated compounds in men from Greenlandic Inuit and European populations. Chemosphere. 88(11):1269-75. Llorca M, Farré M, Tavano MS, Alonso B, Koremblit G, Barceló D (2012). Fate of a broad spectrum of perfluorinated compounds in soils and biota from Tierra del Fuego and Antarctica. Environ Pollut. 163:158-66. 88(11):1269-75. Long M, Knudsen A-K S, Pedersen HS, Bonefeld-Jørgensen EC (2015). Food intake and serum persistent organic pollutants in the Greenlandic pregnant women: The ACCEPT sub-study. Science of the Total Environment 529: 198–212. Ma X, Shan G, Chen M, Zhao J, Zhu L (2018). Riverine inputs and source tracing of perfluoroalkyl substances (PFASs) in Taihu Lake, China. Sci Total Environ. 15; 612:18-25. MacInnis JJ, French K, Muir DC, Spencer C, Criscitiello A, De Silva AO, Young CJ (2017). Emerging investigator series: a 14-year depositional ice record of perfluoroalkyl substances in the High Arctic. Environ Sci Process Impacts. 19(1):22-30. Mak YL, Taniyashu S, Yeung LWY, Lu G, Jin L, Yang Y, Lam PKS, Kannan K, Yamashita N (2009). Perfluorinated compounds in tap water from China and several other countries. Environ. Sci. Technol. 43, 4824– 4829. Manzano-Salgado CB, Casas M, Lopez-Espinosa MJ, Ballester F, Iñiguez C, Martinez D, Romaguera D, Fernández-Barrés S, Santa-Marina L, Basterretxea M, Schettgen T, Valvi D, Vioque J, Sunyer J, Vrijheid M (2017). Prenatal Exposure to Perfluoroalkyl Substances and Cardiometabolic Risk in Children from the Spanish INMA Birth Cohort Study. Environ Health Perspect. 125(9):097018. Matilla-Santander N, Valvi D, Lopez-Espinosa MJ, Manzano-Salgado CB, Ballester F, Ibarluzea J, Santa-Marina L, Schettgen T, Guxens M, Sunyer J, Vrijheid M (2017). Exposure to Perfluoroalkyl Substances and Metabolic Outcomes in Pregnant Women: Evidence from the Spanish INMA Birth Cohorts. Environ Health Perspect. 125(11):117004. Mora AM, Fleisch AF, Rifas-Shiman SL, Woo Baidal JA, Pardo L, Webster TF, Calafat AM, Ye X, Oken E, Sagiv SK (2018). Early life exposure to per- and polyfluoroalkyl substances and mid-childhood lipid and alanine aminotransferase levels. Environ Int. 111:1-13. 47

UNEP/POPS/POPRC.14/INF/4

Munoz G, Giraudel JL, Botta F, Lestremau F, Dévier MH, Budzinski H, Labadie P (2015). Spatial distribution and partitioning behavior of selected poly- and perfluoroalkyl substances in freshwater ecosystems: a French nationwide survey. Sci Total Environ. 517:48-56. Naile JE, Khim JS, Hong S, Park J, Kwon BO, Ryu JS, Hwang JH, Jones PD, Giesy JP (2013). Distributions and bioconcentration characteristics of perfluorinated compounds in environmental samples collected from the west coast of Korea. Chemosphere. 90(2):387-94. NCP (2013). Canadian Arctic Contaminants Assessment Report on Persistent Organic Pollutants–2013. Nelson JW, Hatch EE, Webster TF (2010). Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population. Environ Health Perspect. 118(2):197-202. Nguyen MA, Wiberg K, Ribeli E, Josefsson S, Futter M, Gustavsson J, Ahrens L (2017). Spatial distribution and source tracing of per- and polyfluoroalkyl substances (PFASs) in surface water in Northern Europe. Environ Pollut. 220:1438-1446. Noorlander CW, J. van Leeuwen SP, Dirk te Biesebeek J, Mengelers MJB, Zeilmaker MJ (2011). Levels of Perfluorinated Compounds in Food and Dietary Intake of PFOS and PFOA in Netherlands. J. Agric. Food Chem. 59, 7496–7505 Norwegian Environment Agency (2017a). Monitoring of environmental contaminants in air and precipitation. Report M-757/2017. http://www.miljodirektoratet.no/no/Publikasjoner/2017/September-2017/Monitoring- of-environmental-contaminants-in-air-and-precipitation/ Norwegian Environment Agency (2017b). Screening program 2017. Selected PBT compounds. Report M-806/2017 http://www.miljodirektoratet.no/Documents/publikasjoner/M806/M806.pdf Numata J, Kowalczyk J, Adolphs J, Ehlers S, Schafft H, Fuerst P, Müller-Graf C, Lahrssen-Wiederholt M, Greiner M (2014). Toxicokinetics of seven perfluoroalkyl sulfonic and carboxylic acids in pigs fed a contaminated diet. J Agric Food Chem. 62(28):6861-70. Olsen GW, Lange CC, Ellefson ME, Mair DC, Church TR, Goldberg CL, Herron RM, Medhdizadehkashi Z, Nobiletti JB, Rios JA, Reagen WK, Zobel LR (2012). Temporal trends of perfluoroalkyl concentrations in American Red Cross adult blood donors, 2000−2010. Environ. Sci. Technol. 46, 6330−6338. Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, Zobel LR (2007). Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect. 115(9):1298-305. Pan Y, Zhu Y, Zheng T, Cui Q, Buka SL, Zhang B, Guo Y, Xia W, Yeung LW, Li Y, Zhou A, Qiu L, Liu H, Jiang M, Wu C, Xu S, Dai J (2017). Novel Chlorinated Polyfluorinated Ether Sulfonates and Legacy Per- /Polyfluoroalkyl Substances: Placental Transfer and Relationship with Serum Albumin and Glomerular Filtration Rate. Environ Sci Technol. 51(1):634-644 Preston EV, Webster TF, Oken E, Claus Henn B, McClean MD, Rifas-Shiman SL, Pearce EN, Braverman LE, Calafat AM, Ye X, Sagiv SK (2018). Maternal Plasma per- and Polyfluoroalkyl Substance Concentrations in Early Pregnancy and Maternal and Neonatal Thyroid Function in a Prospective Birth Cohort: Project Viva (United States). Environ Health Perspect. 126(2):027013. Rankin K, Mabury SA, Jenkins TM, Washington JW (2016). A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence. Chemosphere. 161:333-41. Rauert C, Shoieb M, Schuster JK, Eng A, Harner T (2018a). Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Environ Pollut. 238:94-102. Rauert C, Harner T, Schuster JK, Eng A, Fillmann G, Castillo LE, Fentanes O, Villa Ibarra M, Miglioranza KSB, Moreno Rivadeneira I, Pozo K, Aristizábal Zuluaga BH (2018b). Atmospheric concentrations of new POPs and emerging chemicals of concern in the Group of Latin America and Caribbean (GRULAC) region. Environ Sci Technol. [Epub ahead of print] Reiner JL, O'Connell SG, Moors AJ, Kucklick JR, Becker PR, Keller JM (2011). Spatial and temporal trends of perfluorinated compounds in Belµga Whales (Delphinapterus leucas) from Alaska. Environ Sci Technol. 45(19):8129-36. Rigét F, Bossi R, Sonne C, Vorkamp K, Dietz R (2013). Trends of perfluorochemicals in Greenland ringed seals and polar bears: indications of shifts to decreasing trends. Chemosphere 93(8):1607-14. Roos A, Berger U, Järnberg U, van Dijk J, Bignert A (2013). Increasing concentrations of perfluoroalkyl acids in Scandinavian otters (Lutra lutra) between 1972 and 2011: a new threat to the otter population? Environ Sci Technol. 15;47(20):11757-65. Rotander A, Kärrman A, van Bavel B, Polder A, Rigét F, Auðunsson GA, Víkingsson G, Gabrielsen GW, Bloch D, Dam M (2012). Increasing levels of long-chain perfluorocarboxylic acids (PFCAs) in Arctic and North Atlantic marine mammals, 1984-2009. Chemosphere. 2012 Jan;86(3):278-85.

48 UNEP/POPS/POPRC.14/INF/4

Routti H, Aars J, Fµglei E, Hanssen L, Lone K, Polder A, Pedersen ÅØ, Tartu S, Welker JM, Yoccoz NG (2017). Emission Changes Dwarf the Influence of Feeding Habits on Temporal Trends of Per- and Polyfluoroalkyl Substances in Two Arctic Top Predators. Environ Sci Technol. 51(20):11996-12006. Routti H, Gabrielsen GW, Herzke D, Kovacs KM, Lydersen C (2016). Spatial and temporal trends in perfluoroalkyl substances (PFASs) in ringed seals (Pusa hispida) from Svalbard. Environ Pollut. 214:230-8. Routti H, Krafft BA, Herzke D, Eisert R, Oftedal O (2015). Perfluoroalkyl substances detected in the world's southernmost marine mammal, the Weddell seal (Leptonychotes weddellii). Environ Pollut. 197:62-7. Schaider LA, Balan SA, Blum A, Andrews DQ, Strynar MJ, Dickinson ME, Lunderberg DM, Lang JR, Peaslee GF (2017). Fluorinated compounds in U.S. fast food packaging. Environ. Sci. Technol. Lett., 4 (3): 105– 111. Schiavone A, Corsolini S, Kannan K, Tao L, Trivelpiece W, Torres D Jr, Focardi S (2009). Perfluorinated contaminants in fur seal pups and penguin eggs from South Shetland, Antarctica. Sci Total Environ. 407(12):3899-904. Senthil Kumar K, Zushi Y, Masunaga S, Gilligan M, Pride C, Sajwan KS (2009). Perfluorinated organic contaminants in sediment and aquatic wildlife, including sharks, from Georgia, United States. Mar Pollut Bull. 58(4):621-9. Senthilkumar K, Ohi E, Sajwan K, Takasµga T, Kannan K (2007). Perfluorinated compounds in river water, river sediment, market fish, and wildlife samples from Japan. Bull Environ Contam Toxicol. 79(4):427-31. Shah-Kulkarni S, Kim B-M, Hong Y-C, Kim HS, Kwon EJ, Park H, Kim YJ, Ha E-H (2016). Prenatal exposure to perfluorinated compounds affects thyroid hormone levels in newborn girls. Environ Int (2016), 94: 607-613. Siebenaler R, Cameron R, Butt CM, Hoffman K, Higgins CP, Stapleton HM (2017). Serum perfluoroalkyl acids (PFAAs) and associations with behavioral attributes. Chemosphere.184: 687-693. Smithwick M, Muir DC, Mabury SA, Solomon KR, Martin JW, Sonne C, Born EW, Letcher RJ, Dietz R (2005a). Perflouroalkyl contaminants in liver tissue from East Greenland polar bears (Ursus maritimus). Environ Toxicol Chem. 24(4):981-6. Smithwick M, Mabury SA, Solomon KR, Sonne C, Martin JW, Born EW, Dietz R, Derocher AE, Letcher RJ, Evans TJ, Gabrielsen GW, Nagy J, Stirling I, Taylor MK, Muir DC (2005b). Circumpolar study of perfluoroalkyl contaminants in polar bears (Ursus maritimus). Environ Sci Technol. 39(15):5517-23. So MK, Miyake Y, Yeung WY, Ho YM, Taniyasu S, Rostkowski P, Yamashita N, Zhou BS, Shi XJ, Wang JX, Giesy JP, Yu H, Lam PK (2007). Perfluorinated compounds in the Pearl River and River of China. Chemosphere. 68(11):2085-95 So MK, Yamashita N, Taniyasu S, Jiang Q, Giesy JP, Chen K and Lam PKS (2006). Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China. Environmental Science Technology 40:2924-2929. Starling AP, Engel SM, Whitworth KW, Richardson DB, Stuebe AM, Daniels JL, Haµg LS, Eggesbø M, Becher G, Sabaredzovic A, Thomsen C, Wilson RE, Travlos GS, Hoppin JA, Baird DD, Longnecker MP (2014). Perfluoroalkyl substances and lipid concentrations in plasma during pregnancy among women in the Norwegian Mother and Child Cohort Study. Environ Int. 62:104-12. Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V (2009). Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. Am J Epidemiol. 170(10):1268-78 Stock NL, Furdui VI, Muir DC, Mabury SA (2007). Perfluoroalkyl contaminants in the Canadian Arctic: evidence of atmospheric transport and local contamination. Environ Sci Technol. 41(10):3529-36. Strynar, M. J.; Lindstrom, A. B (2008). Perfluorinated compounds in house dust from Ohio and North Carolina, United States. Environ. Sci. Technol. 42, 3751–3756. Su G, Letcher RJ, Moore JN, Williams LL, Grasman KA (2017). Contaminants of emerging concern in Caspian tern compared to herring gull eggs from Michigan colonies in the Great Lakes of North America. Environ Pollut. 222:154-164. Sundström M, Chang SC, Noker PE, Gorman GS, Hart JA, Ehresman DJ, Bergman A, Butenhoff JL (2012). Comparative pharmacokinetics of perfluorohexanesulfonate (PFHxS) in rats, mice, and monkeys. Reprod Toxicol. 33(4):441-51. Sundström M, Ehresman DJ, Bignert A, Butenhoff JL, Olsen GW, Chang SC, Bergman A (2011). A temporal trend study (1972-2008) of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in pooled human milk samples from Stockholm, Sweden. Environ Int. 37(1):178-83. Svihlikova V, Lankova D, Poustka J, Tomaniova M, Hajslova J, Pulkrabova J (2015). Perfluoroalkyl substances (PFASs) and other halogenated compounds in fish from the upper Labe River basin. Chemosphere. 129:170-8.

49

UNEP/POPS/POPRC.14/INF/4

Swedish EPA (2016). Högfluoreradeämnen (PFAS) och Bekämpningsmedel. En sammantagen bild av förekomsten i miljön. Report 6709 (in Sewdish). Tao, L., Kannan, K., Wong, C.M., Arcaro, K.F., Butenhoff, J.L., (2008a). Perfluorinated compounds in human milk from Massachusetts, U.S.A. Environmental Science and Technology 42, 3096-3101. Tao, L., Ma, J., Kunisue, T., Libelo, E.L., Tanabe, S., Kannan, K., (2008b). Perfluorinated compounds in human breast milk from several Asian countries, and in infant formula and dairy milk from the United States. Environmental Science and Technology 42, 8597-8602 Tartu S, Bourgeon S, Aars J, Andersen M, Lone K, Jenssen BM, Polder A, Thiemann GW, Torget V, Welker JM, Routti H (2017). Diet and metabolic state are the main factors determining concentrations of perfluoroalkyl substances in female polar bears from Svalbard. Environ Pollut. 229:146-158. Thompson J, Eaglesham G and Mueller J (2011a). Concentrations of PFOS, PFOA and other perfluorinated alkyl acids in Australian drinking water. Chemosphere, 83(10), pp 1320-1325. Thompson J, Roach A, Eaglesham G, Bartkow ME, Edge K and Mueller J (2011b). Perfluorinated alkyl acids in water, sediment and wildlife from Sydney Harbour and surroundings. Marine Pollution Bulletin, 62, pp 2869-2875. Tipton JJ, Guillette LJ Jr, Lovelace S, Parrott BB, Rainwater TR, Reiner JL (2017). Analysis of PFAAs in American alligators part 1: Concentrations in alligators harvested for consumption during South Carolina public hunts. J Environ Sci (China). 61:24-30. Toms LM, Thompson J, Rotander A, Hobson P, Calafat AM, Kato K, Ye X, Broomhall S, Harden F, Mueller JF (2014). Decline in perfluorooctane sulfonate and perfluorooctanoate serum concentrations in an Australian population from 2002 to 2011. Environ Int. 71:74-80 van Leeuwen S.P.J. and de Boer J. (2006). Survey on PFOS and other perfluorinated compounds in Dutch fish and shellfish http://library.wur.nl/WebQuery/wurpubs/345709 Wang J, Zhang Y, Zhang F, Yeung LW, Taniyasu S, Yamazaki E, Wang R, Lam PK, Yamashita N, Dai J (2013). Age- and gender-related accumulation of perfluoroalkyl substances in captive Chinese alligators (Alligator sinensis). Environ Pollut. 179:61-7. Wang Y, Fu J, Wang T, Liang Y, Pan Y, Cai Y, Jiang G (2010). Distribution of perfluorooctane sulfonate and other perfluorochemicals in the ambient environment around a manufacturing facility in China. Environ Sci Technol.1;44(21):8062-7. Wang Y, Rogan WJ, Chen PC, Lien GW, Chen HY, Tseng YC, Longnecker MP, Wang SL (2014). Association between maternal serum perfluoroalkyl substances during pregnancy and maternal and cord thyroid hormones: Taiwan Maternal and Infant Cohort Study. Environ Health Perspect 122:529–534 Wang Y, Starling AP, Haµg LS, Eggesbo M, Becher G, Thomsen C, Travlos G, King D, Hoppin JA, Rogan WJ, Longnecker MP (2013). Association between perfluoroalkyl substances and thyroid stimulating hormone among pregnant women: a cross-sectional study. Environ Health. 12(1):76 Webster GM, Rauch SA, Marie NS, Mattman A, Lanphear BP, Venners SA (2016). Cross-Sectional Associations of Serum Perfluoroalkyl Acids and Thyroid Hormones in U.S. Adults: Variation According to TPOAb and Iodine Status (NHANES 2007-2008). Environ Health Perspect. 124(7):935-42. Webster GM, Venners SA, Mattman A, Martin JW (2014). Associations between perfluoroalkyl acids (PFASs) and maternal thyroid hormones in early pregnancy: a population-based cohort study. Environ Res. 133:338-47. Wei S, Chen LQ, Taniyasu S, So MK, Murphy MB, Yamashita N, Yeung LW, Lam PK (2007). Distribution of perfluorinated compounds in surface seawaters between Asia and Antarctica. Mar Pollut Bull. 54(11):1813-8. Wen LL, Lin LY, Su TC, Chen PC, Lin CY (2013). Association between serum perfluorinated chemicals and thyroid function in U.S. adults: the National Health and Nutrition Examination Survey 2007-2010. J Clin Endocrinol Metab. 98(9):E1456-64. Wong F, Shoeib M, Katsoyiannis A, Eckhardt S, Stohl A, Bohlin-Nizzetto P, Li H, Fellin P, Su Y, Hung H (2018). Assessing temporal trends and source regions of per- and polyfluoroalkyl substances (PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP). Atmospheric Environment 172:65–73. Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T (2005). A global survey of perfluorinated acids in oceans. Mar Pollut Bull. 51(8-12):658-68. Yang L, Li J, Lai J, Luan H, Cai Z, Wang Y, Zhao Y, Wu Y (2016). Placental Transfer of Perfluoroalkyl Substances and Associations with Thyroid Hormones: Beijing Prenatal Exposure Study. Sci Rep. 6:21699. Yao Y, Zhao Y, Sun H, Chang S, Zhu L, Alder AC, Kannan K (2018). Per- and Polyfluoroalkyl Substances (PFASs) in Indoor Air and Dust from Homes and Various Microenvironments in China: Implications for Human exposure. Environ. Sci. Technol. 2018, 52, 3156−3166

50 UNEP/POPS/POPRC.14/INF/4

Yeung LW, So MK, Jiang G, Taniyasu S, Yamashita N, Song M, Wu Y, Li J, Giesy JP, Gurµge KS and Lam PK (2006). Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China. Environmental Science & Technology 40(3):715-20. Yeung LWY, Dassuncao C, Mabury S, Sunderland EM, Zhang X, Lohmann R (2017). Vertical Profiles, Sources, and Transport of PFASs in the Arctic Ocean. Environmental Science & Technology 51(12):6735-6744. Yeung LWY, Robinson SJ, Koschorreck J, Mabury SA (2013). Part II. A Temporal Study of PFOS and Its pecursors in Human Plasma from Two German Cities in 1982–2009. Environmental Sci Technol. 47 (8): 3875-3882. Zafeiraki E, Costopoulou D, Vassiliadou I, Leondiadis L, Dassenakis E, Hoogenboom RL, van Leeuwen SP (2016). Perfluoroalkylated substances (PFASs) in home and commercially produced chicken eggs from the Netherlands and Greece. Chemosphere.144:2106-12. Zafeiraki E, Costopoulou D, Vassiliadou I, Leondiadis L, Dassenakis E, Traag W, Hoogenboom RL, van Leeuwen SP (2015). Determination of perfluoroalkylated substances (PFASs) in drinking water from the Netherlands and Greece. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 32(12):2048-57. Zhang YZ, Zeng XW, Qian ZM, Vaµghn MG, Geiger SD, Hu LW, Lu L, Fu C, Dong GH (2017). Perfluoroalkyl substances with isomer analysis in umbilical cord serum in China. Environ Sci Pollut Res Int. 24(15):13626-13637. Zhang Y, Beesoon S, Zhu L, and Martin JW (2013). Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life. Environ. Sci. Technol. 47:10619-10627. Zhao Z, Xie Z, Möller A, Sturm R, Tang J, Zhang G, Ebinghaus R (2012). Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast. Environ Pollut. 170:71-7. Zhao Z, Xie Z, Tang J, Sturm R, Chen Y, Zhang G, Ebinghaus R (2015). Seasonal variations and spatial distributions of perfluoroalkyl substances in the rivers Elbe and lower Weser and the North Sea. Chemosphere. 129:118-25. Zhou, Z., Shi, Y., Vestergren, R., Wang, T., Liang, Y., & Cai, Y. (2014). Highly elevated serum concentrations of perfluoroalkyl substances in fishery employees from , China. Environ Sci Technol, 48(7), 3864-3874.

51

UNEP/POPS/POPRC.14/INF/4

Appendix I Perfluorohexane sulfonic acid and its PFHxS-related substances identified by OECD 2018 (http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/).

No. CAS number Chemical name 1 423-50-7 Perfluorohexanesulfonyl fluoride 2 355-46-4 Perfluorohexanesulfonic acid 3 3871-99-6 Potassium perfluorohexanesulfonate 4 55120-77-9 Lithium perfluorohexanesulfonate 5 68259-08-5 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, ammonium salt (1:1) 6 70225-16-0 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, compd. with 2,2'-iminobis[ethanol] (1:1) 7 68259-15-4 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-methyl- 8 68555-75-9 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(2-hydroxyethyl)-N-methyl- 9 34455-03-3 1-Hexanesulfonamide, N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(2-hydroxyethyl)- 10 50598-28-2 1-Hexanesulfonamide, N-[3-(dimethylamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro- 11 68957-61-9 1-Hexanesulfonamide, N-[3-(dimethylamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, hydrochloride (1:1) 12 68957-32-4 Glycine, N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]- 13 67584-53-6 Glycine, N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-, potassium salt (1:1) 14 68555-70-4 Glycine, N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-, sodium salt (1:1) 15 68298-09-9 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(phenylmethyl)- 16 68957-58-4 1-Propanaminium, N,N,N-trimethyl-3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, iodide (1:1) 17 52166-82-2 1-Propanaminium, N,N,N-trimethyl-3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, chloride (1:1) 18 66008-72-8 1-Propanaminium, N-(2-carboxyethyl)-N,N-dimethyl-3-[methyl[(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)sulfonyl]amino]-, inner salt 19 68227-98-5 2-Propenoic acid, 4-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]butyl ester 20 67584-57-0 2-Propenoic acid, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester 21 67584-61-6 2-Propenoic acid, 2-methyl-, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester 22 38850-52-1 1-Propanaminium, 3-[(carboxymethyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-N,N,N-trimethyl-, inner salt 23 1893-52-3 2-Propenoic acid, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester 24 38850-60-1 1-Propanesulfonic acid, 3-[[3-(dimethylamino)propyl][(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]- 25 80621-17-6 1-Propanesulfonic acid, 3-[methyl[3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]propyl]amino]-, sodium salt (1:1)

52 UNEP/POPS/POPRC.14/INF/4

No. CAS number Chemical name 26 67906-70-1 2-Propenoic acid, 2-methyl-, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester 27 38850-58-7 1-Propanaminium, N-(2-hydroxyethyl)-N,N-dimethyl-3-[(3-sulfopropyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, inner salt 28 73772-32-4 1-Propanesulfonic acid, 3-[[3-(dimethylamino)propyl][(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-2-hydroxy-, sodium salt (1:1) 29 81190-38-7 1-Propanaminium, N-(2-hydroxyethyl)-3-[(2-hydroxy-3-sulfopropyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-N,N-dimethyl-, hydroxide, sodium salt (1:1:1) 30 67939-92-8 1-Hexanesulfonamide, N,N'-[phosphinicobis(oxy-2,1-ethanediyl)]bis[N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro- 31 68815-72-5 Benzoic acid, 2,3,4,5-tetrachloro-6-[[[3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]oxy]phenyl]amino]carbonyl]-, potassium salt (1:1) 32 56372-23-7 Poly(oxy-1,2-ethanediyl), ë±-[2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl]-ìä-hydroxy- 33 55591-23-6 Perfluorohexanesulfonyl chloride 34 41997-13-1 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro- 35 1270179-82-2 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N,N-dimethyl- 36 1427176-17-7 1-Hexanesulfonamide, N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-methyl- 37 1270179-93-5 1-Hexanesulfonamide, N,N-diethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro- 38 149652-30-2 Benzene, 1-fluoro-4-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]- 39 85665-64-1 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(2-hydroxyethyl)-N-propyl- 40 76848-59-4 Benzene, 1-chloro-4-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]- 41 1427176-20-2 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N,N-bis(2-methoxyethyl)- 42 254889-10-6 Pyridinium, 1-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, inner salt 43 85665-66-3 Glycine, N-propyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-, potassium salt (1:1) 44 93416-31-0 Isoxazolidine, 4-(4-methoxyphenyl)-2-methyl-5-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]- 45 76848-68-5 1H-Benzimidazolium, 1,3-diethyl-2-methyl-5-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-, 4-methylbenzenesulfonate (1:1) 46 355-03-3 *cyclic Cyclohexanesulfonyl fluoride, 1,2,2,3,3,4,4,5,5,6,6-undecafluoro- 47 3107-18-4 *cyclic Cyclohexanesulfonic acid, 1,2,2,3,3,4,4,5,5,6,6-undecafluoro-, potassium salt (1:1) 48 67584-48-9 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-2-propen-1-yl- 49 67906-71-2 2-Propenoic acid, 2-methyl-, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester, polymer with octadecyl 2-propenoate and 2- propenoic acid 50 67939-61-1 2-Propenoic acid, 2-methyl-, 4-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]butyl ester 51 67969-65-7 1-Hexanesulfonamide, N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-[2-(phosphonooxy)ethyl]- 52 68239-74-7 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(4-hydroxybutyl)-N-methyl- 53 68259-38-1 Poly[oxy(methyl-1,2-ethanediyl)], ë±-[2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl]-ìä-hydroxy-

53

UNEP/POPS/POPRC.14/INF/4

No. CAS number Chemical name 54 68299-21-8 Benzenesulfonic acid, [[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]methyl]-, sodium salt (1:1) 55 68891-98-5 Chromium, diaquatetrachloro[ë_-[N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]glycinato-ë¼O:ë¼O']]-ë_-hydroxybis(2-propanol)di- 56 68957-53-9 Glycine, N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-, ethyl ester 57 70248-52-1 1-Propanaminium, N,N,N-trimethyl-3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, sulfate (2:1) 58 73772-33-5 1-Hexanesulfonamide, N-[3-(dimethylamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, acetate (1:1) 59 73772-34-6 1-Hexanesulfonamide, N-[3-(dimethylamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-[2-[2-(2-hydroxyethoxy)ethoxy]ethyl]- 60 82382-12-5 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, sodium salt (1:1) 61 148240-80-6 Fatty acids, C18-unsatd., trimers, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl esters 62 51619-73-9 1-Octanesulfonamide, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-N-(2-hydroxyethyl)-N-methyl- 63 68298-74-8 2-Propenoic acid, 2-methyl-, 2-[[[[5-[[[2-[ethyl[(tridecafluorohexyl)sulfonyl]amino]ethoxy]carbonyl]amino]-2-methylphenyl]amino]carbonyl]oxy]propyl ester (9CI) 64 70900-36-6 2-Propenoic acid, 2-methyl-, 2-[[[[2-methyl-5-[[[4-[methyl[(tridecafluorohexyl)sulfonyl]amino]butoxy]carbonyl]amino]phenyl]amino]carbonyl]oxy]propyl ester (9CI) 65 130114-31-7 1-Propanaminium, N-(carboxymethyl)-N,N-dimethyl-3-[(2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-1-oxoheptyl)amino]-, inner salt 66 141607-32-1 ë_-Alanine, N-[3-(dimethylamino)propyl]-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]- 67 178094-71-8 1-Hexanesulfonamide, N-[3-(dimethyloxidoamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, potassium salt (1:1) 68 30295-56-8 1-Hexanesulfonamide, N-[3-(dimethyloxidoamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro- 69 70776-36-2 2-Propenoic acid, 2-methyl-, octadecyl ester, polymer with 1,1-dichloroethene, 2-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8- (polymer) heptadecafluorooctyl)sulfonyl]methylamino]ethyl 2-propenoate, N-(hydroxymethyl)-2-propenamide, 2-[methyl[(1,1,2,2,3,3,4,4,4- nonafluorobutyl)sulfonyl]amino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoroheptyl)sulfonyl]amino]ethyl 2-propenoate, 2- [methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl 2-propenoate and 2-[methyl[(1,1,2,2,3,3,4,4,5,5,5- undecafluoropentyl)sulfonyl]amino]ethyl 2-propenoate 70 68555-90-8 2-Propenoic acid, butyl ester, polymer with 2-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]methylamino]ethyl 2-propenoate, 2- (polymer) [methyl[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]amino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7- pentadecafluoroheptyl)sulfonyl]amino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl 2-propenoate and 2- [methyl[(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)sulfonyl]amino]ethyl 2-propenoate 71 68877-32-7 2-Propenoic acid, 2-methyl-, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]amino]ethyl ester, polymer with 2- [ethyl[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7- pentadecafluoroheptyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl 2-methyl-2- propenoate, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate and 2-methyl-1,3-butadiene 72 68586-14-1 2-Propenoic acid, 2-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]methylamino]ethyl ester, telomer with 2-[methyl[(1,1,2,2,3,3,4,4,4- nonafluorobutyl)sulfonyl]amino]ethyl 2-propenoate, α-(2-methyl-1-oxo-2-propen-1-yl)-ω-hydroxypoly(oxy-1,2-ethanediyl), α-(2-methyl-1-oxo-2-propen-1- yl)-ω-[(2-methyl-1-oxo-2-propen-1-yl)oxy]poly(oxy-1,2-ethanediyl), 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoroheptyl)sulfonyl]amino]ethyl 2-

54 UNEP/POPS/POPRC.14/INF/4

No. CAS number Chemical name propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,5- undecafluoropentyl)sulfonyl]amino]ethyl 2-propenoate and 1-octanethiol 73 68555-92-0 2-Propenoic acid, 2-methyl-, 2-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]methylamino]ethyl ester, polymer with 2- [methyl[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7- pentadecafluoroheptyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl 2-methyl- 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate and octadecyl 2-methyl-2-propenoate 74 68555-91-9 2-Propenoic acid, 2-methyl-, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]amino]ethyl ester, polymer with 2- [ethyl[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7- pentadecafluoroheptyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl 2-methyl-2- propenoate, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate and octadecyl 2-methyl-2-propenoate

55

UNEP/POPS/POPRC.14/INF/4

Appendix II Non-exhaustive lists of perfluorohexane sulfonic acid and its related substances identified in Norwegian Environment Agency report M-792

Table 1. Perfluorohexane sulfonic acid (PFHxS) and its related substances (non-exhaustive list)

CAS number Chemical name Structure REACH related information 55591-23-6 PFHxS-Cl salt: 1,1,2,2,3,3,4,4,5,5,6,6,6- EC Inventory tridecafluorohexane-1-sulphonyl chloride Annex III Inventory Pre-registration process 67584-48-9 Precursor for PFHxS: N- EC Inventory allyltridecafluorohexanesulphonamide Annex III Inventory Pre-registration process 67939-61-1 Precursor for PFHxS: 4- EC Inventory [methyl[(tridecafluorohexyl)sulphonyl]amino]butyl Annex III Inventory methacrylate Pre-registration process 67969-65-7 Precursor for PFHxS: N-ethyltridecafluoro-N-[2- EC Inventory (phosphonooxy)ethyl]hexanesulphonamide Annex III Inventory Pre-registration process 68239-74-7 Precursor for PFHxS: Tridecafluoro-N-(4- EC Inventory hydroxybutyl)-N-methylhexanesulphonamide Annex III Inventory Pre-registration process 68299-21-8 Precursor for PFHxS: Sodium EC Inventory [[[(tridecafluorohexyl)sulphonyl]amino]methyl]benze Annex III Inventory nesulphonate Pre-registration process 68891-98-5 Precursor for PFHxS: Diaquatetrachloro[μ-[N-ethyl- EC Inventory N-[(tridecafluorohexyl)sulphonyl]glycinato-O1:O1']]- Annex III Inventory μ-hydroxybis(propan-2-ol)dichromium Pre-registration process 68957-53-9 Precursor for PFHxS: Ethyl N-ethyl-N- EC Inventory [(tridecafluorohexyl)sulphonyl]glycinate Annex III Inventory Pre-registration process 70225-16-0 Precursor for PFHxS: Tridecafluorohexanesulphonic EC Inventory acid, compound with 2,2'-iminodiethanol (1:1) Annex III Inventory Pre-registration process 70248-52-1 Precursor for PFHxS: EC Inventory Bis[trimethyl-3- Annex III Inventory [[(tridecafluorohexyl)sulphonyl]amino]propylammoni Pre-registration process um] sulphate 73772-33-5 Precursor for PFHxS No information 73772-34-6 Precursor for PFHxS No information

56 UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information 82382-12-5 PFHxS-Na salt No information 68555-70-4 Precursor for PFHxS: Sodium N-ethyl-N- EC Inventory [(tridecafluorohexyl)sulphonyl]glycinate Annex III Inventory Pre-registration process 423-50-7 1-Hexanesulfonyl fluoride, 1,1,2,2,3,3,4,4,5,5,6,6,6- Hazard classification & labelling, C&L tridecafluoro- Inventory; EC Inventory, Annex III Inventory, Pre-registration process

355-46-4 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6- Hazard classification & labelling, C&L tridecafluoro- Inventory; EC Inventory, Annex III inventory, Identification of substances of VHC-previous consultation, PACT

list of substances, Pre-registration process, Registry of submitted SVHC intentions https://echa.europa.eu/substance- information/- /substanceinfo/100.005.989 https://echa.europa.eu/documents/1016 2/40a82ea7-dcd2-5e6f-9bff- 6504c7a226c5 3871-99-6 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6- EC Inventory, Annex III inventory, tridecafluoro-, potassium salt (1:1) PACT list of substances, Pre- registration process, C&L Inventory, Hazard Classification and labelling https://echa.europa.eu/substance- information/- /substanceinfo/100.021.268

55120-77-9 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluoro-, lithium salt (1:1)

57

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information 68259-08-5 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6- EC Inventory, Annex III inventory, tridecafluoro-, ammonium salt (1:1) PACT list of substances, Pre- registration process, C&L Inventory, Hazard Classification and labelling https://echa.europa.eu/substance- information/- /substanceinfo/100.063.173

41997-13-1 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6- Hazard classification & labelling, C&L tridecafluoro- Inventory;

1270179-82-2 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluoro-N,N-dimethyl-

68259-15-4 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6- Hazard classification & labelling, C&L tridecafluoro-N-methyl- Inventory; EC Inventory Annex III inventory Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.063.178 1427176-17-7 1-Hexanesulfonamide, N-ethyl- No information 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-methyl-

1270179-93-5 1-Hexanesulfonamide, N,N-diethyl- No information 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

68555-75-9 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6- EC Inventory tridecafluoro-N-(2-hydroxyethyl)-N-methyl- Annex III inventory Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.064.938

58 UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information 34455-03-3 1-Hexanesulfonamide, N-ethyl- Hazard classification & labelling, C&L 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(2- Inventory; EC Inventory hydroxyethyl)- Annex III inventory Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.047.299 85665-64-1 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6- EC Inventory tridecafluoro-N-(2-hydroxyethyl)-N-propyl- Annex III inventory Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.080.113 76848-59-4 Benzene, 1-chloro-4-[(1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluorohexyl)sulfonyl]-

50598-28-2 1-Hexanesulfonamide, N-[3-(dimethylamino)propyl]- EC Inventory 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro- Annex III inventory Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.051.473 68957-61-9 1-Hexanesulfonamide, N-[3-(dimethylamino)propyl]- EC Inventory 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, hydrochloride Annex III inventory (1:1) Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.066.665 1427176-20-2 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluoro-N,N-bis(2-methoxyethyl)-

68957-32-4 Glycine, N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6- EC Inventory tridecafluorohexyl)sulfonyl]- Annex III inventory Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.066.645

59

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information 68298-09-9 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluoro-N-(phenylmethyl)-

254889-10-6 Pyridinium, 1-[[(1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluorohexyl)sulfonyl]amino]-, inner salt

67584-53-6 Glycine, N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6- EC Inventory tridecafluorohexyl)sulfonyl]-, potassium salt (1:1) Annex III inventory Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.060.646

68957-58-4 1-Propanaminium, N,N,N-trimethyl-3- EC Inventory [[(1,1,2,2,3,3,4,4,5,5,6,6,6- Annex III inventory tridecafluorohexyl)sulfonyl]amino]-, iodide (1:1) Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.066.662

52166-82-2 1-Propanaminium, N,N,N-trimethyl-3- EC Inventory [[(1,1,2,2,3,3,4,4,5,5,6,6,6- Annex III inventory tridecafluorohexyl)sulfonyl]amino]-, chloride (1:1) Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.052.436

85665-66-3 Glycine, N-propyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6- EC Inventory tridecafluorohexyl)sulfonyl]-, potassium salt (1:1) Annex III inventory Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.080.115

60 UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information 68227-98-5 2-Propenoic acid, 4-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6- EC Inventory tridecafluorohexyl)sulfonyl]amino]butyl ester Annex III inventory Pre-registration process

https://echa.europa.eu/substance- information/- /substanceinfo/100.063.066 67584-57-0 2-Propenoic acid, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6- EC Inventory tridecafluorohexyl)sulfonyl]amino]ethyl ester Annex III inventory Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.060.650 67584-61-6 2-Propenoic acid, 2-methyl-, 2- EC Inventory [methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6- Annex III inventory tridecafluorohexyl)sulfonyl]amino]ethyl ester Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.060.654 38850-52-1 1-Propanaminium, 3- EC Inventory [(carboxymethyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6- Annex III inventory tridecafluorohexyl)sulfonyl]amino]-N,N,N-trimethyl-, Pre-registration process inner salt https://echa.europa.eu/substance- information/- /substanceinfo/100.049.216 1893-52-3 2-Propenoic acid, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6- EC Inventory tridecafluorohexyl)sulfonyl]amino]ethyl ester Annex III inventory Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.015.984 38850-60-1 1-Propanesulfonic acid, 3-[[3- EC Inventory (dimethylamino)propyl][(1,1,2,2,3,3,4,4,5,5,6,6,6- Annex III inventory tridecafluorohexyl)sulfonyl]amino]- Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.049.218

61

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information 80621-17-6 1-Propanesulfonic acid, 3-[methyl[3- EC Inventory [[(1,1,2,2,3,3,4,4,5,5,6,6,6- Annex III inventory tridecafluorohexyl)sulfonyl]amino]propyl]amino]-, Pre-registration process sodium salt (1:1) https://echa.europa.eu/substance- information/- /substanceinfo/100.049.218 67906-70-1 2-Propenoic acid, 2-methyl-, 2- EC Inventory [ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6- Annex III inventory tridecafluorohexyl)sulfonyl]amino]ethyl ester Pre-registration process https://echa.europa.eu/substance-

information/- /substanceinfo/100.061.554 38850-58-7 1-Propanaminium, N-(2-hydroxyethyl)-N,N-dimethyl- EC Inventory 3-[(3-sulfopropyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6- Annex III inventory tridecafluorohexyl)sulfonyl]amino]-, inner salt Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.049.217

73772-32-4 1-Propanesulfonic acid, 3-[[3- EC Inventory (dimethylamino)propyl][(1,1,2,2,3,3,4,4,5,5,6,6,6- Annex III inventory tridecafluorohexyl)sulfonyl]amino]-2-hydroxy-, Pre-registration process sodium salt (1:1) https://echa.europa.eu/substance- information/- /substanceinfo/100.070.518

81190-38-7 1-Propanaminium, N-(2-hydroxyethyl)-3-[(2- EC Inventory hydroxy-3-sulfopropyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6- Annex III inventory tridecafluorohexyl)sulfonyl]amino]-N,N-dimethyl-, Pre-registration process hydroxide, sodium salt (1:1:1) https://echa.europa.eu/substance- information/- /substanceinfo/100.072.436

62 UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information 67939-92-8 1-Hexanesulfonamide, N,N'-[phosphinicobis(oxy-2,1- EC Inventory ethanediyl)]bis[N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,6- Annex III inventory tridecafluoro- Pre-registration process https://echa.europa.eu/substance- information/- /substanceinfo/100.061.677 93416-31-0 Isoxazolidine, 4-(4-methoxyphenyl)-2-methyl-5- No information [(1,1,2,2,3,3,4,4,5,5,6,6,6- tridecafluorohexyl)sulfonyl]-

76848-68-5 1H-Benzimidazolium, 1,3-diethyl-2-methyl-5- No information [(1,1,2,2,3,3,4,4,5,5,6,6,6- tridecafluorohexyl)sulfonyl]-, 4- methylbenzenesulfonate (1:1)

(Image is of 76848-67-4, related) 68815-72-5 Benzoic acid, 2,3,4,5-tetrachloro-6-[[[3- EC Inventory [[(1,1,2,2,3,3,4,4,5,5,6,6,6- Annex III inventory tridecafluorohexyl)sulfonyl]oxy]phenyl]amino]carbon Pre-registration process yl]-, potassium salt (1:1) https://echa.europa.eu/substance- information/- /substanceinfo/100.065.790

68555-90-8 2-Propenoic acid, butyl ester, polymer with 2- No information [[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8- heptadecafluorooctyl)sulfonyl]methylamino]ethyl 2- propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,4- nonafluorobutyl)sulfonyl]amino]ethyl 2-propenoate, (Image is of 68084-62-8, related) 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7- pentadecafluoroheptyl)sulfonyl]amino]ethyl 2- propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6- tridecafluorohexyl)sulfonyl]amino]ethyl 2-propenoate and 2-[methyl[(1,1,2,2,3,3,4,4,5,5,5- undecafluoropentyl)sulfonyl]amino]ethyl 2- propenoate

63

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information 56372-23-7 Poly(oxy-1,2-ethanediyl), α-[2- Pre-registration process [ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-Poly(oxy-1,2- https://echa.europa.eu/substance- ethanediyl), alpha-(2-(ethyl((1,1,2,2,3,3,4,4,5,5,6,6,6- information/- tridecafluorohexyl)sulfonyl)amino)ethyl)-omega- /substanceinfo/100.133.708 hydroxy- *111393-39-6 1-Hexanesulfonyl bromide, 1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluoro-

89863-64-9 2,4-Pentanedione, 3-[1-(2-furanyl)-2- No information [(1,1,2,2,3,3,4,4,5,5,6,6,6- tridecafluorohexyl)sulfonyl]ethyl]-

89863-63-8 2,4-Pentanedione, 3-[1-(2-thienyl)-2- No information [(1,1,2,2,3,3,4,4,5,5,6,6,6- tridecafluorohexyl)sulfonyl]ethyl]-

89863-56-9 Furan, 2-[1-(nitromethyl)-2-[(1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluorohexyl)sulfonyl]ethyl]-

89863-55-8 Thiophene, 2-[1-(nitromethyl)-2- No information [(1,1,2,2,3,3,4,4,5,5,6,6,6- tridecafluorohexyl)sulfonyl]ethyl]-

89863-50-3 Benzene, 1-methyl-4-[1-(phenylthio)-2- No information [(1,1,2,2,3,3,4,4,5,5,6,6,6- tridecafluorohexyl)sulfonyl]ethyl]-

64 UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information 89863-49-0 Furan, 2-[1-(phenylthio)-2-[(1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluorohexyl)sulfonyl]ethyl]-

89863-48-9 Thiophene, 2-[1-(phenylthio)-2- No information [(1,1,2,2,3,3,4,4,5,5,6,6,6- tridecafluorohexyl)sulfonyl]ethyl]-

Table 2. Commercially available olefinic esters of PFHxS

CAS number Name Structure REACH related information 680187-86-4 Hexane, 1-(ethenylsulfonyl)-1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluoro-

86525-52-2 Benzene, 1-methoxy-4-[2-[(1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluorohexyl)sulfonyl]ethenyl]-

86525-51-1 Benzene, 1-methyl-4-[2-[(1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluorohexyl)sulfonyl]ethenyl]-

86525-48-6 Furan, 2-[2-[(1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluorohexyl)sulfonyl]ethenyl]-

86525-43-1 Thiophene, 2-[2-[(tridecafluorohexyl)sulfonyl]ethenyl]- No information

65

UNEP/POPS/POPRC.14/INF/4

Table 3. Commercially available aryl esters of PFHxS

CAS number Chemical name Structure REACH related information 171561-95-8 Benzene, 1-nitro-4-[(1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluorohexyl)sulfonyl]-

149652-30-2 Benzene, 1-fluoro-4-[(1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluorohexyl)sulfonyl]-

147029-28-5 Benzenamine, 4-[(1,1,2,2,3,3,4,4,5,5,6,6,6- No information tridecafluorohexyl)sulfonyl]-

30295-56-8 1-Hexanesulfonamide, N-[3- No information (dimethyloxidoamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6- tridecafluoro-

70900-36-6 2-Propenoic acid, 2-methyl-, 2-[[[[2-methyl-5-[[[4- EC Inventory [methyl[(tridecafluorohexyl)sulfonyl]amino] Annex III inventory butoxy]carbonyl]amino]phenyl]amino]carbonyl]oxy]prop Pre-registration process yl ester https://echa.europa.eu/substance- information/-/substanceinfo/100.068.166

70776-36-2 Polymer based on 67584-57-0 No information

68298-74-8 2-Propenoic acid, 2-methyl-, 2-[[[[5-[[[2-[ethyl EC Inventory [(tridecafluorohexyl)sulfonyl]amino]ethoxy]carbonyl]ami Annex III inventory no]-2-methylphenyl]amino]carbonyl] oxy]propyl ester Pre-registration process https://echa.europa.eu/substance- information/-/substanceinfo/100.063.235

66 UNEP/POPS/POPRC.14/INF/4

Table 4. Polymers containing the n-C6F13SO2- fragment

CAS number Chemical name Structure REACH related information 68555-90-8 Polymer based on 67584-57-0 No information

68877-32-7 Polymer based on 67906-70-1 No information

68586-14-1 Polymer based on 67584-57-0 No information

68555-92-0 Polymer based on 67584-61-6 No information

68555-91-9 Polymer based on 67906-70-1 No information

67

UNEP/POPS/POPRC.14/INF/4

Definition PACT list: The Public Activities Coordination Tool (PACT) lists the substances for which a risk management option analysis (RMOA) or an informal hazard assessment for PBT/vPvB (persistent, bioaccumulative and toxic/very persistent and very bioaccumulative) properties or endocrine disruptor properties is either under development or has been completed since the implementation of the SVHC Roadmap commenced in February 20131. C& L inventory: This database contains classification and labelling information on notified and registered substances received from manufacturers and importers. It also includes the list of harmonised classifications. The database is refreshed regularly with new and updated notifications. However, updated notifications cannot be specifically flagged because the notifications that are classified in the same way are aggregated for display purposes. Annex III inventory: REACH Annex III criteria are the following: (a) Substances predicted (i.e. by the use of QSARs or other evidence) to likely meet criteria for CMR category 1A or 1B or Annex XIII criteria (i.e. PBT and vPvB); (b) Substances with dispersive or diffuse use(s) AND predicted to likely meet criteria for any health or environmental hazard classes or differentiations under CLP Regulation. A substance (or any of its constituents, impurities or additives) is on this Annex III inventory, it means that there are indications that either one or both of the Annex III criteria are fulfilled. In this case full Annex VII information has to be submitted unless there are substantiated reasons to disregard the information provided in the inventory. Pre-registration: Pre-registration is only for companies planning to register phase-in (existing) substances. After pre-registration, potential registrants of the same substance can find each other's contact details in REACH-IT, so they can get in contact to agree on the sameness of their substance, form a substance information exchange forum (SIEF), share data and submit a registration dossier jointly2. Registry of intentions: ECHA (at the request of the Commission) or Member States may prepare dossiers for the identification of substances of very high concern (SVHCs) and dossiers proposing restrictions (Annex XV of REACH). Dossiers proposing harmonised classification and labelling of substances may be prepared by MSCAs and manufacturers, importers or downstream users3. EC inventory: It comprises the following lists: (a) EINECS (European Inventory of Existing Commercial Chemical Substances) as published in O.J. C 146A, 15.6.1990. EINECS is an inventory of substances that were deemed to be on the European Community market between 1 January 1971 and 18 September 1981. EINECS was drawn up by the European Commission in the application of Article 13 of Directive 67/548/EEC, as amended by Directive 79/831/EEC, and in accordance with the detailed provisions of Commission Decision 81/437/EEC. Substances listed in EINECS are considered phase-in substances under the REACH Regulation. (b) ELINCS (European List of Notified Chemical Substances) in support of Directive 92/32/EEC, the 7th amendment to Directive 67/548/EEC. ELINCS lists those substances which were notified under Directive 67/548/EEC, the Dangerous Substances Directive Notification of New Substances (NONS) that became commercially available after 18 September 1981. (c) NLP (No-Longer Polymers). The definition of polymers was changed in April 1992 by Council Directive 92/32/EEC amending Directive 67/548/EEC, with the result that substances previously considered to be polymers were no longer excluded from regulation. Thus, the No-longer Polymers (NLP) list was drawn up, consisting of such substances that were commercially available between 18 September 1981 and 31 October 1993.4 ______

1 https://echa.europa.eu/addressing-chemicals-of-concern/substances-of-potential-concern/pact. 2 https://echa.europa.eu/regulations/reach/registration/data-sharing/pre-registration. 3 https://echa.europa.eu/addressing-chemicals-of-concern/registry-of-intentions. 4 https://echa.europa.eu/information-on-chemicals/ec-inventory.

68