Foxp3 T Cells Inhibit Antitumor Immune Memory Modulated By

Total Page:16

File Type:pdf, Size:1020Kb

Foxp3 T Cells Inhibit Antitumor Immune Memory Modulated By Published OnlineFirst February 26, 2014; DOI: 10.1158/0008-5472.CAN-13-2928 Cancer Microenvironment and Immunology Research Foxp3þ T Cells Inhibit Antitumor Immune Memory Modulated by mTOR Inhibition Yanping Wang1, Tim Sparwasser3, Robert Figlin2, and Hyung L. Kim1 Abstract Inhibition of mTOR signaling enhances antitumor memory lymphocytes. However, pharmacologic mTOR inhibition also enhances regulatory T-cell (Treg) activity. To counter this effect, Treg control was added to mTOR inhibition in preclinical models. Tregs were controlled with CD4-depleting antibodies because CD4 depletion has high translational potential and already has a well-established safety profile in patients. The antitumor activity of the combination therapy was CD8 dependent and controlled growth of syngeneic tumors even when an adoptive immunotherapy was not used. Lymphocytes resulting from the combination therapy could be transferred into na€ve mice to inhibit aggressive growth of lung metastases. The combination therapy enhanced CD8 memory formation as determined by memory markers and functional studies of immune recall. Removal of FoxP3- expressing T lymphocytes was the mechanism underlying immunologic memory formation following CD4 depletion. This was confirmed using transgenic DEREG (depletion of regulatory T cells) mice to specifically þ remove Foxp3 T cells. It was further confirmed with reciprocal studies where stimulation of immunologic þ memory because of CD4 depletion was completely neutralized by adoptively transferring tumor-specific Foxp3 T cells. Also contributing to tumor control, Tregs that eventually recovered following CD4 depletion were less immunosuppressive. These results provide a rationale for further study of mTOR inhibition and CD4 depletion in patients. Cancer Res; 74(8); 1–12. Ó2014 AACR. Introduction are already approved by the U.S. Food and Drug Administra- The immune system can provide protection against cancers. tion (FDA) for clinical use, are a promising adjunct for use with Effective immune stimulation produces long-lasting memory cancer vaccines. lymphocytes, capable of rapidly responding to repeat antigen Strategies to limit immune suppression by mTOR inhibitors challenge. The mTOR pathway is an important checkpoint that may make this class of drugs even more useful with cancer governs the formation of CD8 memory cells (1–3). In mouse vaccines. Pharmacologic mTOR inhibition suppresses the models, decreased mTOR signaling promotes formation of immune system at least in part by enhancing CD4 regulatory CD8 memory cells that provide protection against bacteria T-cell (Treg) activity (2, 5). Therefore, we explored a combi- (4), virus (1) or cancer (2, 3). This is surprising because nation therapy targeting the mTOR pathway and Tregs. The rapamycin, which is the prototypic mTOR inhibitor, is con- most reliable Treg marker is forkhead box transcription factor fi sidered an immunosuppressant and is widely used to prevent (FoxP3), which is speci c for Tregs and is required for its rejection of solid organ transplants. In murine models of renal function (6). Unfortunately, there is no clinical strategy for cell carcinoma (RCC) and melanoma, pharmacologic mTOR targeting FoxP3-expressing cells in patients. Therefore, an inhibition had both immune stimulating and immune sup- alternative strategy is to target CD25, which is expressed by pressing effects (2). However, the net effect resulted in the majority of Tregs. However, this strategy has limitations decreased tumor growth. Therefore, mTOR inhibitors, which because some Tregs are CD25 negative. Furthermore, activated CD8 lymphocytes express CD25 and can be depleted by CD25- targeting strategies. In murine models, depleting CD25-expres- Authors' Affiliations: 1Department of Surgery, Division of Urology; sing cells with aCD25 antibodies was effective in preventing 2Department of Medicine, Division of Hematology and Oncology, 3 tumor growth, but was not effective in treating established Cedars-Sinai Medical Center, Los Angeles, California; and Institute of – Infection Immunology, TWINCORE, Centre for Experimental and Clinical tumors (7 9) and has been shown to restrict adoptive immu- Infection Research, Hannover, Germany notherapy (10, 11). Another strategy uses an engineered pro- Note: Supplementary data for this article are available at Cancer Research tein that combines interleukin-2 (IL-2) and diphtheria toxin Online (http://cancerres.aacrjournals.org/). (denileukin diftitox, trade name Ontax) to target CD25-expres- Corresponding Author: Hyung Kim, Cedars-Sinai Medical Center, 8635 sing cells. The approach has been tested in patients with RCC W. Third Street, Suite 1070, Los Angeles, CA 90048. Phone: 310-423-4700; or melanoma (12, 13), however clinical effectiveness was Fax: 310-423-4711; E-mail: [email protected] limited, possibly because of depletion of CD8 effector cells. doi: 10.1158/0008-5472.CAN-13-2928 Using preclinical models, we explored a combination of Ó2014 American Association for Cancer Research. pharmacologic mTOR inhibition and Treg depletion using www.aacrjournals.org OF1 Downloaded from cancerres.aacrjournals.org on October 1, 2021. © 2014 American Association for Cancer Research. Published OnlineFirst February 26, 2014; DOI: 10.1158/0008-5472.CAN-13-2928 Wang et al. aCD4 antibody. This is an attractive approach because CD4- CD32 (9.3), anti-CD90.1 (OX-7), anti-CD11c (N418), anti-Bcl2 depleting antibodies have been studies in patients with periph- (BCL/10C4), anti-T-bet (4B10), anti-CD62L (MEL-14), anti- eral T-cell lymphoma (14, 15), Crohn disease (16), and multiple CD279 (PD-1,29F.1A12), anti-FoxP3 (FJK-16s), anti-IFN-g sclerosis (17, 18), and have a well-established safety profile. (XMG1.2), anti-IL-2 (JES6.5H4), anti-IL-4 (11B11), IL-17A However, CD4 depletion removes CD4 effector cells, which are (eBio1787). CellTrace 5-(and 6-)carboxyfluorescein diacetate required for initiation of an immune response. Therefore, CD4 succinimidyl ester (CFSE) Cell Proliferation Kit was purchased depletion was timed to occur after immune priming has taken from Invitrogen. CD4 (GK1.5) and CD8 (2.43) antibodies for T place. In murine models for RCC and melanoma, mTOR cells depletion were purchased from BioXcell. Temsirolimus inhibition and CD4 depletion produced a robust cellular was purchased from LC Laboratory. immune response that was transferable and effective in con- trolling subcutaneous tumors as well as lung metastases. The T-cell enrichment and Treg sorting combination treatment produced highly effective memory Mouse spleen and lymph nodes were collected and processed lymphocytes with robust recall responses. The stimulation of into single-cell suspensions. CD8 and CD4 T cells were nega- immunological memory because of CD4 depletion was attrib- tively enriched using mouse CD8 or CD4 recovery column kits uted to Treg depletion based on experiments using transgenic (Cedarlane Labs). Purity of CD8 and CD4 cells after negative fi selection was greater than 85%. FoxP3-GFP cells or antibody models to speci cally deplete Tregs ("Treg knock-out") or þ þ replace tumor-specific Tregs ("Treg knock-in") following CD4 stained CD4 CD25 cells were sorted by MoFlo Cell Sorter. depletion. Another mechanism contributing to the antitumor Preparation of dendritic cells and T-cell stimulation response was that Tregs that returned after CD4 depletion were Dendritic cell (DC) preparation has been described (2). To less immunosuppressive than Tregs from mice without CD4 prepare DC vaccine for treatment of mice, DCs were pulsed manipulation. with tumor cell lysate and activated with 10 mg/mL CpG. DCs Materials and Methods were subcutaneously injected into mouse. For in vitro activa- tion of Pmel-1 cells, DC was pulsed with 10 ng/mL mouse gp100 Mice and tumor cells peptide (amino acids 25–33, which is presented by H2-Db class Female C57BL/6J, Balb/c mice and Pmel-1 mice, 6- to 8-week I molecules; Alpha Diagnostic International) and activated old, were purchased from Jackson Laboratory and housed with 10 mg/mL CpG for 2 hours. DC was washed with PBS, under pathogen-free conditions. FoxP3-GFP mice were a gen- and cocultured with CFSE-labeled Pmel-1 cells. Pmel-1 cells erous gift from Dr. V. Kuchroo (Harvard University, Boston, proliferation was analyzed by FACscan. MA). DEREG [depletion of regulatory T cells; Tg(Foxp3-DTR/ EGFP)23.2Spar] transgenic mice was generated and described Adoptive transfer, CD4 cells depletion, and mTOR by T. Sparwasser (19). All experiments involving animals were inhibition in compliance with federal and state standards, which include Pmel-1 lymphocytes were isolated from lymph nodes and the federal Animal Welfare Act and the NIH guide for the care spleen of na€ve Pmel-1 mice. CD8 lymphocytes were enriched and use of laboratory animals. by negative selection using Cedarlane purification column. At þ Human gp100-transduced B 16 cells (B16-gp100) were kindly least 85% of the resulting cells were CD8 . A total of 5 Â 105 provided by Dr. A. Rakhmilevich from University of Wisconsin- cells were transferred into B57BL/6 mice. The day after adop- Madison. RENCA, a murine RCC line, was a gift from Dr. A. tive transfer, mice received tumor lysate–pulsed DC vaccine. Belldegrum (University of California, Los Angeles, CA). All cells To deplete CD4 cells, aCD4 was administered approximately were periodically authenticated by morphologic and histologic 7 and 9 days later; mice were inject intraperitoneally with inspection, and animal grafting for assessing their ability to 250 mg of CD4 mAb (clone GK1.5). To deplete CD8 cells, mice grow and metastasize. Cells were annually tested for myco- received 250 mg of CD8 mAb (clone 2.43). To deplete FoxP3 cells plasma using Myco Alert Kit (Lonza). The cells were main- in DEREG mice, 5 mg DT was injected. Flow cytometry was used tained in Dulbecco's modified Eagle medium or RPMI 1640 to confirm depletion of target cells. For mTor inhibitor treat- medium supplemented with 10% heat-inactivated FBS (Life ment, 15 mg temsirolimus was injected intraperitoneally each Technologies), 2 mmol/L of L-glutamine, 100 units/mL of day for 2 weeks. Flow cytometry was used to analyze memory penicillin, and 100 mg/mL of streptomycin.
Recommended publications
  • Fig. L COMPOSITIONS and METHODS to INHIBIT STEM CELL and PROGENITOR CELL BINDING to LYMPHOID TISSUE and for REGENERATING GERMINAL CENTERS in LYMPHATIC TISSUES
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Χ 23 February 2012 (23.02.2012) WO 2U12/U24519ft ft A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61K 31/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US201 1/048297 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 18 August 201 1 (18.08.201 1) NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/374,943 18 August 2010 (18.08.2010) US kind of regional protection available): ARIPO (BW, GH, 61/441,485 10 February 201 1 (10.02.201 1) US GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 61/449,372 4 March 201 1 (04.03.201 1) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (72) Inventor; and EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, (71) Applicant : DEISHER, Theresa [US/US]; 1420 Fifth LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Avenue, Seattle, WA 98101 (US).
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]
  • Newer Monoclonal Antibodies for Hematological Malignancies
    Experimental Hematology 2008;36:755–768 Newer monoclonal antibodies for hematological malignancies Jorge Castillo, Eric Winer, and Peter Quesenberry Division of Hematology and Oncology, Rhode Island Hospital, Brown University Warren Alpert Medical School, Providence, RI, USA (Received 28 March 2008; revised 28 April 2008; accepted 28 April 2008) Since the approval of rituximab in 1997, monoclonal antibodies have come to play an impor- tant role in the therapy of hematological malignancies. Rituximab, gemtuzumab ozogamicin, and alemtuzumab are US Food and Drug Administration–approved for treatment of B-cell lymphomas, acute myeloid leukemia, and chronic lymphocytic leukemia, respectively. Multi- ple monoclonal antibodies directed against new and not-so-new cellular antigens are undergo- ing development and investigation all over the world. Most of these new compounds have undergone primatization or humanization, improving their specificity and decreasing their antigenicity when compared to earlier murine or chimeric products. This review will focus on three major aspects of monoclonal antibody therapy: 1) new therapeutic approaches with currently approved agents; 2) preclinical and clinical experience accumulated on new agents in the last few years; discussion will include available phase I, II, and III data on ofa- tumumab, epratuzumab, CMC-544, HeFi-1, SGN-30, MDX-060, HuM195 (lintuzumab), galix- imab, lumiliximab, zanolimumab, and apolizumab; and 3) the role of naked and radiolabeled monoclonal antibodies in the hematopoietic stem cell transplantation setting. Ó 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. Since the discovery of hybridoma technology in 1975 [1], or chemotherapy (Table 2). Different strategies of action the production and variety of monoclonal antibodies have have been developed using monoclonal antibodies; these been exponentially increasing.
    [Show full text]
  • Ep 3178848 A1
    (19) TZZ¥__T (11) EP 3 178 848 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 14.06.2017 Bulletin 2017/24 C07K 16/28 (2006.01) A61K 39/395 (2006.01) C07K 16/30 (2006.01) (21) Application number: 15198715.3 (22) Date of filing: 09.12.2015 (84) Designated Contracting States: (72) Inventor: The designation of the inventor has not AL AT BE BG CH CY CZ DE DK EE ES FI FR GB yet been filed GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Cueni, Leah Noëmi et al Designated Extension States: F. Hoffmann-La Roche AG BA ME Patent Department Designated Validation States: Grenzacherstrasse 124 MA MD 4070 Basel (CH) (71) Applicant: F. Hoffmann-La Roche AG 4070 Basel (CH) (54) TYPE II ANTI-CD20 ANTIBODY FOR REDUCING FORMATION OF ANTI-DRUG ANTIBODIES (57) The present invention relates to methods of treating a disease, and methods for reduction of the formation of anti-drug antibodies (ADAs) in response to the administration of a therapeutic agent comprising administration of a Type II anti-CD20 antibody, e.g. obinutuzumab, to the subject prior to administration of the therapeutic agent. EP 3 178 848 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 178 848 A1 Description Field of the Invention 5 [0001] The present invention relates to methods of treating a disease, and methods for reduction of the formation of anti-drug antibodies (ADAs) in response to the administration of a therapeutic agent.
    [Show full text]
  • The Role of Monoclonal Antibodies in the Management of Leukemia
    Pharmaceuticals 2010, 3, 3258-3274; doi:10.3390/ph3103258 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review The Role of Monoclonal Antibodies in the Management of Leukemia Ali Al-Ameri 1, Mohamad Cherry 2, Aref Al-Kali 1 and Alessandra Ferrajoli 1,* 1 Department of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA 2 Department of Internal Medicine, Hematology Oncology section, Oklahoma University Health Sciences Center, 700 N.E. 13th Street, Oklahoma City, OK 74103, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-713-792-2063. Received: 20 September 2010 / Accepted: 18 October 2010 / Published: 18 October 2010 Abstract: This article will review the monoclonal antibodies more commonly used in leukemias. In the last three decades, scientists have made considerable progress understanding the structure and the functions of various surface antigens, such as CD20, CD33. The introduction of rituximab, an anti CD20 monoclonal antibody, had a great impact in the treatment of lymphoproliferative disorders. Gemtuzumab, an anti CD 33 conjugated monoclonal antibody has activity in acute mylegenous leukemia (AML). As this field is undergoing a rapid growth, the years will see an increasing use of monoclonal antibodies in hematological malignancies. Keywords: monoclonal Abs; leukemia; CLL; AML; ALL 1. Introduction In 1900, speaking of monoclonal antibodies (MAbs), Paul Ehrlich proposed that “immunizations such as these which are of great theoretic interest may come to be available for clinical application attacking epithelium new formations, particularly carcinoma by means of specific anti-epithelial sera”[1]. Erlich’s dream came true with the first report of the manufacturing of MAb in 1975 by Kohler and Milstein [2,3].
    [Show full text]
  • International Nonproprietary Names for Pharmaceutical Substances (INN)
    WHO Drug Information, Vol. 18, No. 3, 2004 Recommended INN: List 52 International Nonproprietary Names for Pharmaceutical Substances (INN) RECOMMENDED International Nonproprietary Names: List 52 Notice is hereby given that, in accordance with paragraph 7 of the Procedure for the Selection of Recommended International Nonproprietary Names for Pharmaceutical Substances [Off. Rec. Wld Health Org., 1955, 60, 3 (Resolution EB15.R7); 1969, 173, 10 (Resolution EB43.R9)], the following names are selected as Recommended International Nonproprietary Names. The inclusion of a name in the lists of Recommended International Nonproprietary Names does not imply any recommendation of the use of the substance in medicine or pharmacy. Lists of Proposed (1–85) and Recommended (1–45) International Nonproprietary Names can be found in Cumulative List No. 10, 2002 (available in CD-ROM only). Dénominations communes internationales des Substances pharmaceutiques (DCI) Dénominations communes internationales RECOMMANDÉES: Liste 52 Il est notifié que, conformément aux dispositions du paragraphe 7 de la Procédure à suivre en vue du choix de Dénominations communes internationales recommandées pour les Substances pharmaceutiques [Actes off. Org. mond. Santé, 1955, 60, 3 (résolution EB15.R7); 1969, 173, 10 (résolution EB43.R9)] les dénominations ci-dessous sont choisies par l’Organisation mondiale de la Santé en tant que dénominations communes internationales recommandées. L’inclusion d’une dénomination dans les listes de DCI recommandées n’implique aucune recommandation en vue de l’utilisation de la substance correspondante en médecine ou en pharmacie. On trouvera d’autres listes de Dénominations communes internationales proposées (1–85) et recommandées (1–45) dans la Liste récapitulative No. 10, 2002 (disponible sur CD-ROM seulement).
    [Show full text]
  • Assessment Report
    26 January 2017 EMA/CHMP/853224/2016 Committee for Medicinal Products for Human Use (CHMP) Assessment report Xeljanz International non-proprietary name: tofacitinib Procedure No. EMEA/H/C/004214/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5520 Send a question via our website www.ema.europa.eu/contact An agency of the European Union Table of contents 1. Background information on the procedure .............................................. 9 1.1. Submission of the dossier ..................................................................................... 9 1.2. Steps taken for the assessment of the product ...................................................... 10 2. Scientific discussion .............................................................................. 11 2.1. Problem statement ............................................................................................. 11 2.2. Quality aspects .................................................................................................. 16 2.3. Non-clinical aspects ............................................................................................ 24 2.4. Clinical aspects .................................................................................................. 36 2.5. Clinical efficacy .................................................................................................
    [Show full text]
  • INN Working Document 05.179 Update 2011
    INN Working Document 05.179 Update 2011 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2011 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Essential Medicines and Pharmaceutical Policies (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2011 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • IUPAC Glossary of Terms Used in Immunotoxicology (IUPAC Recommendations 2012)*
    Pure Appl. Chem., Vol. 84, No. 5, pp. 1113–1295, 2012. http://dx.doi.org/10.1351/PAC-REC-11-06-03 © 2012 IUPAC, Publication date (Web): 16 February 2012 IUPAC glossary of terms used in immunotoxicology (IUPAC Recommendations 2012)* Douglas M. Templeton1,‡, Michael Schwenk2, Reinhild Klein3, and John H. Duffus4 1Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; 2In den Kreuzäckern 16, Tübingen, Germany; 3Immunopathological Laboratory, Department of Internal Medicine II, Otfried-Müller-Strasse, Tübingen, Germany; 4The Edinburgh Centre for Toxicology, Edinburgh, Scotland, UK Abstract: The primary objective of this “Glossary of Terms Used in Immunotoxicology” is to give clear definitions for those who contribute to studies relevant to immunotoxicology but are not themselves immunologists. This applies especially to chemists who need to under- stand the literature of immunology without recourse to a multiplicity of other glossaries or dictionaries. The glossary includes terms related to basic and clinical immunology insofar as they are necessary for a self-contained document, and particularly terms related to diagnos- ing, measuring, and understanding effects of substances on the immune system. The glossary consists of about 1200 terms as primary alphabetical entries, and Annexes of common abbre- viations, examples of chemicals with known effects on the immune system, autoantibodies in autoimmune disease, and therapeutic agents used in autoimmune disease and cancer. The authors hope that among the groups who will find this glossary helpful, in addition to chemists, are toxicologists, pharmacologists, medical practitioners, risk assessors, and regu- latory authorities. In particular, it should facilitate the worldwide use of chemistry in relation to occupational and environmental risk assessment.
    [Show full text]
  • International Nonproprietary Names for Pharmaceutical Substances (INN)
    WHO Drug Information, Vol. 18, No. 3, 2004 Recommended INN: List 52 International Nonproprietary Names for Pharmaceutical Substances (INN) RECOMMENDED International Nonproprietary Names: List 52 Notice is hereby given that, in accordance with paragraph 7 of the Procedure for the Selection of Recommended International Nonproprietary Names for Pharmaceutical Substances [Off. Rec. Wld Health Org., 1955, 60, 3 (Resolution EB15.R7); 1969, 173, 10 (Resolution EB43.R9)], the following names are selected as Recommended International Nonproprietary Names. The inclusion of a name in the lists of Recommended International Nonproprietary Names does not imply any recommendation of the use of the substance in medicine or pharmacy. Lists of Proposed (1–85) and Recommended (1–45) International Nonproprietary Names can be found in Cumulative List No. 10, 2002 (available in CD-ROM only). Dénominations communes internationales des Substances pharmaceutiques (DCI) Dénominations communes internationales RECOMMANDÉES: Liste 52 Il est notifié que, conformément aux dispositions du paragraphe 7 de la Procédure à suivre en vue du choix de Dénominations communes internationales recommandées pour les Substances pharmaceutiques [Actes off. Org. mond. Santé, 1955, 60, 3 (résolution EB15.R7); 1969, 173, 10 (résolution EB43.R9)] les dénominations ci-dessous sont choisies par l’Organisation mondiale de la Santé en tant que dénominations communes internationales recommandées. L’inclusion d’une dénomination dans les listes de DCI recommandées n’implique aucune recommandation en vue de l’utilisation de la substance correspondante en médecine ou en pharmacie. On trouvera d’autres listes de Dénominations communes internationales proposées (1–85) et recommandées (1–45) dans la Liste récapitulative No. 10, 2002 (disponible sur CD-ROM seulement).
    [Show full text]
  • International Nonproprietary Names (Inn) for Biological and Biotechnological Substances
    INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 15/06/2006 INTERNATIONAL NONPROPRIETARY NAMES (INN) FOR BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES (A REVIEW) Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines (QSM) Medicines Policy and Standards (PSM) Department CONTENTS 0. INTRODUCTION…………………………………….........................................................................................v 1. PHARMACOLOGICAL CLASSIFICATION OF BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES……………………………………................................1 2. CURRENT STATUS OF EXISTING STEMS OR SYSTEMS FOR BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES…………………….3 2.1 Groups with respective stems ……………………………………………………………………3 2.2 Groups with respective pre-stems………………………………………………………………4 2.3 Groups with INN schemes………………………………………………………………………….4 2.4 Groups without respective stems / pre-stems and without INN schemes…..4 3. GENERAL POLICIES FOR BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES……………………………………………………………………………………………………...5 3.1 General policies for blood products……………………………………………………………5 3.2 General policies for fusion proteins……………………………………………………………5 3.3 General policies for gene therapy products………………………………………………..5 3.4 General policies for glycosylated and non-glycosylated compounds………...6 3.5 General policies for immunoglobulins……………………………………………………….7 3.6 General polices for monoclonal antibodies………………………………………………..7 3.7 General polices for skin substitutes……………………………………………………………9 3.8 General policies for transgenic products……………………………………………………9
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) FORMER DOCUMENT NUMBER: INN Working Document 05.179 © World Health Organization 2019 All rights reserved. Publications of the World Health Organization are available on the WHO website (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]