Target Based Design and Synthesis of Fused Pyrimidines in the Potential Treatment of Cancer and Opportunistic Infection Khushbu Shah

Total Page:16

File Type:pdf, Size:1020Kb

Target Based Design and Synthesis of Fused Pyrimidines in the Potential Treatment of Cancer and Opportunistic Infection Khushbu Shah Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Fall 1-1-2017 Target Based Design and Synthesis of Fused Pyrimidines in the Potential Treatment of Cancer and Opportunistic Infection Khushbu Shah Follow this and additional works at: https://dsc.duq.edu/etd Part of the Medicinal and Pharmaceutical Chemistry Commons Recommended Citation Shah, K. (2017). Target Based Design and Synthesis of Fused Pyrimidines in the Potential Treatment of Cancer and Opportunistic Infection (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/234 This One-year Embargo is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. TARGET BASED DESIGN AND SYNTHESIS OF FUSED PYRIMIDINES IN THE POTENTIAL TREATMENT OF CANCER AND OPPORTUNISTIC INFECTION A Dissertation Submitted to the Graduate School of Pharmaceutical Sciences Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By Khushbu Shah December 2017 Copyright by Khushbu Shah 2017 TARGET BASED DESIGN AND SYNTHESIS OF FUSED PYRIMIDINES IN THE POTENTIAL TREATMENT OF CANCER AND OPPORTUNISTIC INFECTION By Khushbu Shah Approved October 25, 2017 ________________________________ ________________________________ Aleem Gangjee, Ph. D. Marc W. Harrold, Ph. D. Professor of Medicinal Chemistry Professor of Medicinal Chemistry Graduate School of Pharmaceutical Sciences Graduate School of Pharmaceutical Sciences (Committee Chair) (Committee Member) ________________________________ _____________________________ Patrick T. Flaherty, Ph. D. Kevin Tidgewell, Ph. D. Associate Professor of Medicinal Chemistry, Assistant Professor of Medicinal Chemistry Graduate School of Pharmaceutical Sciences Graduate School of Pharmaceutical Sciences (Committee Member) (Committee Member) ________________________________ ________________________________ Lauren O'Donnell, Ph. D. J. Douglas Bricker, Ph. D. Associate Professor of Pharmacology Dean, School of Pharmacy and Graduate School of School of Pharmacy and Graduate School of Pharmaceutical Sciences Pharmaceutical Sciences (Committee Member) _______________________________ James K Drennen III, Ph. D. Associate Dean, Research and Graduate Programs, Graduate School of Pharmaceutical Sciences iii ABSTRACT TARGET BASED DESIGN AND SYNTHESIS OF FUSED PYRIMIDINES IN THE POTENTIAL TREATMENT OF CANCER AND OPPORTUNISTIC INFECTION By Khushbu Shah December 2017 Dissertation supervised by Dr. Aleem Gangjee This dissertation describes an introduction, background and research progress in the areas of agents designed as (a) selective Pneumocystis jirovecii dihydrofolate reductase (pjDHFR) inhibitors for pneumocystis pneumonia (PCP) infection; (b) inhibitors of microtubule polymerization and multiple receptor tyrosine kinase (RTK) for potential treatment of cancer; and (c) substrates for tumor-targeted therapy for cancer. PCP is a host species-specific infection. Most of the drugs, synthesized and evaluated so far, have been tested against Pneumocystis carinii dihydrofolate reductase (the causative organism in rats), which would not necessarily be effective against pjDHFR (the causative organism in humans). Trimethoprim-sulfamethoxazole (TMP-SMX) combination, which has been used for PCP for decades, has major limitations due to low inhibitory potency of TMP, side-effects of SMX and emergence of resistant strains iv expressing mutated dihydropteroate synthase enzyme (target of SMX). For patients unresponsive or resistant to this treatment, newer drugs are critically needed. The absence of an X-ray crystal structure of pjDHFR poses a large gap in drug discovery efforts. The status quo, as it pertains to designing selective inhibitors for an enzyme, is to exploit the amino acid differences between the active sites of the desired and undesired target enzyme. Structure based design, using a pjDHFR homology model and through identification of amino acid differences between pjDHFR and hDHFR active sites, has been presented in the text. Novel synthetic strategies were developed for efficient synthesis of 6- and 7- substituted 5-methyl-pyrrolo[2,3-d]pyrimidine-2,4-diamines, N6-substituted pyrido[3,2- d]pyrimidine-2,4,6-triamines, 6-(arylthio)pyrido[3,2-d]pyrimidine-2,4-diamines and 7- (arylthio)pyrido[3,2-d]pyrimidine-2,4-diamines. In cancer chemotherapy, the two major limitations are the dose-limiting toxicities of clinically used agents and development of resistant to the treatment. Combination chemotherapy with antiangiogenic agents and microtubule targeting agents has shown an advantage against both these drawbacks. Single agents with both antiangiogenic activity and cytotoxicity would afford a therapy that circumvents pharmacokinetic problems of multiple agents, avoids drug-drug interactions, lowers the drug dose, decrease overlapping toxicities, and delays or prevents tumor cell resistance. The work in this dissertation discusses the development of fused pyrimidines, aimed to inhibit tubulin polymerization as well as act as antiangiogenic agents which inhibit one or more of the receptor tyrosine kinases (RTKs)- vascular endothelial growth factor receptor-2 (VEGFR2), platelet derived growth factor receptor-β (PDGFRβ) and epidermal growth factor receptor (EGFR), using molecular modeling studies. This work also reviews the synthesis pyrrolo[3,2- v d]pyrimidines and thieno[3,2-d]pyrimidines and discusses novel synthetic strategies for substituted pyrrolo[3,2-d]pyrimidines and thieno[3,2-d]pyrimidines. Cancer cells transport folates through reduced folate carrier (RFC), Proton-Coupled Folate Transporter (PCFT) and/or Folate receptors (FR). Among several targeting strategies for cancer cells, selectively targeting through PCFT and FRs, over RFC have been successfully investigated. The next valid step in the field is to carry out a structure based design of agents to gain selectivity for PCFT and/or FRs transport over RFC and thus avoid dose-limiting toxicities. Absence of X-ray crystal structures for PCFT and RFC make this step impossible. The work in this dissertation discusses our efforts to fulfil this gap in the literature by developing a 3D QSAR pharmacophore for PCFT and RFC. PMX, the most widely used antifolate has three disadvantages: (i) transport by RFC; (ii) dependence on its polyglutamylation for potency; and (iii) development of resistance due to mutagenesis in the target enzyme (thymidylate synthase). This dissertation focuses on development of substituted-pyrrolo[3,2-d]pyrimidines to combat the above-mentioned drawbacks of PMX, using the X-ray crystal structures of intracellular targets and transporters and using the basic principles of scaffold hopping and bioisosteric replacements. The work described herein discusses our efforts to obtain agents with inhibition of two or more intracellular targets to inhibit de novo purine biosynthesis. Synthetic efforts for the development of pyrrolo[3,2-d]pyrimidines with different linkers and aryl substitutions have been discussed. vi Dedicated to my parents vii ACKNOWLEDGEMENT I sincerely thank Dr. Aleem Gangjee for giving me the opportunity to pursue research in his laboratory, for his constant support and guidance over the last five years. His advice and patience, throughout my term here, have been critical. He has been more than supportive in my quest to pursue new research strategies and extracurricular assignments. I will forever be indebted to him for all the scientific and life lessons that I have learnt from him. I would like to thank my committee members: Dr. Marc Harrold, Dr. Patrick Flaherty, Dr. Kevin Tidgewell and Dr. Lauren O’Donnell for their guidance and support. I would especially like to thank Dr. David Lapinsky, Dr. Kevin Tidgewell and Dr. Lauren O’Donnell for continuously encouraging me during stressful times. I would also like to express my gratitude to Dr. Jelena Janjic and Dr. Khalid Kamal who served as a major source of inspiration to me. I would like to thank Dr. James Drennen and the Graduate School of Pharmaceutical Sciences for the constant support which has aided me in accomplishing my research, travelling to conferences and developing my overall persona as an independent researcher. I would like to thank Arpit, Priya, Manasa, Mohit, Rishabh, Shruti, Sudhir and Suravi for joining me in creating beautiful ever-lasting memories in Pittsburgh. None of the research work at Graduate School of Pharmaceutical Sciences is possible without Jackie Farrer, Mary Caruso and Deborah Wilson. I would especially thank Nancy Hosni for playing multiple roles- an administrative assistant, a friend, a colleague and source of constant encouragement. viii Center of Teaching Excellence (CTE) and Ms. Diane Rhodes have been instrumental in helping me develop as a teaching assistant and I would like to thank them for enabling me to fulfil my goals. I would also like to express gratitude to entire committee of the Women in Science at Duquesne University for inviting me to contribute to their mission. My parents have been amazing role models, who have encouraged me to be independent and confident. Along with them, I would like to thank my brother, Chaitanya for being my pillar of strength. Finally, I would express gratitude to my husband, Saurabh for his unconditional love, unwavering support and his innumerable sacrifices.
Recommended publications
  • List Item Withdrawal Assessment Report for Folcepri
    20 March 2014 EMA/CHMP/219148/2014 Committee for Medicinal Products for Human Use (CHMP) Assessment report Folcepri International non-proprietary name: etarfolatide Procedure No.: EMEA/H/C/002570/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. This AR reflects the CHMP opinion on 20 March 2014, which originally recommended to approve this medicine. The recommendation was conditional to the results of the on-going confirmatory study EC-FV-06. Before the marketing authorisation was granted by the EC, the results of this study became available and did not support the initial recommendation. Subsequently, the company decided to withdraw the application and not to pursue any longer the authorisation for marketing this product. The current report does not include the latest results of this study as the withdrawal of the application did not allow for the CHMP to revise its opinion in light of the new data. For further information please refer to the Q&A which followed the company’s withdrawal of the application. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5505 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2014. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 6 1.1. Submission of the dossier ...................................................................................... 6 1.2. Manufacturers ...................................................................................................... 8 1.3. Steps taken for the assessment of the product ......................................................... 8 2. Scientific discussion ...............................................................................
    [Show full text]
  • ESMO 2014 Scientific Meeting Report
    ESMO 2014 Congress Scientific Meeting Report – Lung Cancer Extract 26-30 September 2014 Madrid, Spain Summary The European Society for Medical Oncology (ESMO) Congress, held September 26 to 30 in Madrid, Spain, was a record-breaker on nearly all levels. It was resounding success and in a dedicated infographic you can find the congress statistics. A primary emphasis in the scientific programme was placed on precision medicine and how it will change the future treatment landscape in oncology. In addition, a number of scientific presentations were dedicated to cancer immunology and immunotherapy across multiple tumour types. This report is an overview of key scientific presentations made during the congress by leading international investigators. It attempts to represent the diversity and depth of the ESMO 2014 scientific programme, as well as advances in oncology. Infographic (right): ESMO 2014 record breaking Congress ESMO 2014 Congress Meeting Report Page 1 © Copyright 2014 European Society for Medical Oncology. All rights reserved worldwide. Contents Lung Cancer .................................................................................................................................... 3 Final results of the SAKK 16/00 trial: A randomised phase III trial comparing neoadjuvant chemoradiation to chemotherapy alone in stage IIIA/N2 NSCLC ................................................. 3 Adjuvant treatment with MAGE-A3 cancer immunotherapeutic in patients with resected NSCLC does not increase DFS: Results of the MAGRIT, a double-blind,
    [Show full text]
  • 545 © American Association of Pharmaceutical Scientists 2019 P. V
    Index A Although, 524 Aberrant expression, 118 Alzheimer’s disease, 305, 326 Abluminal, 47 American type culture collection (ATCC), 537 Actin, 7 AMH, see Anti-Mullerian hormone (AMH) Actinic keratosis, 342 Aminolevulinic acid, 501 Actinomycetes, 485 Amino-triphenyl dicarboxylate-bridged Zr4+ Activated macrophages, 13 metal-organic framework nanoparticles Activation, 93 (NMOFs), 215 Activation functions (AFs), 89 Amphiregulin (AREG), 240 Active targeting, 467 β-Amyloid fibrils, 305 Adamantane–hyaluronic acid, 420 Anaplastic large cell lymphoma (ALCL), 219 Adamantane polyethylene glycol, 473 Anaplastic lymphoma kinase (ALK), 233 Adaptive immune responses, 328 Ancillary targets, 165 Adaptor proteins, 15 Androgen receptor (AR), 115 Adenocarcinoma, 231 Androgen receptor antagonists, 123 Adenomatous polyposis coli (APC), 188, 191 Androgen response elements (ARE), 116 Adenosine triphosphate (ATP), 243 Androgens, 120 Adherens junction, 179 Ang2 inhibitor (recombinant peptide-Fc-­ Adsorptive endocytosis, 49 fusion protein), 215 Advanced chemorefractory endometrial Angiogenesis, 53, 490, 529 cancers, 193 Angiogenesis factors, 189 Advanced epithelial ovarian, 131 Angiogenic paracrine factors, 490 Advanced gastric adenocarcinoma, 220 Anilinoquinazoline tyrosine kinase inhibitor, 242 Advanced glycation end products (AGE), 305 Annexin V, 493 Advanced/metastatic NSCLC, 258 Annexin V-FITC/propidium iodide assay, Adverse effects, 400 534–536 A glycoprotein hormone, 121 Antagonists, 287, 393 Agonists, 87 Antiangiogenic activity, 527 AIDS, 280 Antiangiogenic
    [Show full text]
  • Transdermal Drug Delivery Device Including An
    (19) TZZ_ZZ¥¥_T (11) EP 1 807 033 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61F 13/02 (2006.01) A61L 15/16 (2006.01) 20.07.2016 Bulletin 2016/29 (86) International application number: (21) Application number: 05815555.7 PCT/US2005/035806 (22) Date of filing: 07.10.2005 (87) International publication number: WO 2006/044206 (27.04.2006 Gazette 2006/17) (54) TRANSDERMAL DRUG DELIVERY DEVICE INCLUDING AN OCCLUSIVE BACKING VORRICHTUNG ZUR TRANSDERMALEN VERABREICHUNG VON ARZNEIMITTELN EINSCHLIESSLICH EINER VERSTOPFUNGSSICHERUNG DISPOSITIF D’ADMINISTRATION TRANSDERMIQUE DE MEDICAMENTS AVEC COUCHE SUPPORT OCCLUSIVE (84) Designated Contracting States: • MANTELLE, Juan AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Miami, FL 33186 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • NGUYEN, Viet SK TR Miami, FL 33176 (US) (30) Priority: 08.10.2004 US 616861 P (74) Representative: Awapatent AB P.O. Box 5117 (43) Date of publication of application: 200 71 Malmö (SE) 18.07.2007 Bulletin 2007/29 (56) References cited: (73) Proprietor: NOVEN PHARMACEUTICALS, INC. WO-A-02/36103 WO-A-97/23205 Miami, FL 33186 (US) WO-A-2005/046600 WO-A-2006/028863 US-A- 4 994 278 US-A- 4 994 278 (72) Inventors: US-A- 5 246 705 US-A- 5 474 783 • KANIOS, David US-A- 5 474 783 US-A1- 2001 051 180 Miami, FL 33196 (US) US-A1- 2002 128 345 US-A1- 2006 034 905 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Esmo – Missed Target Leaves Endocyte Clutching at Straws
    September 28, 2014 Esmo – Missed Target leaves Endocyte clutching at straws Jacob Plieth Followers of Endocyte had pinned their hopes on overall survival data from vintafolide’s phase II Target study providing definitive proof of efficacy. With results presented at the Esmo congress on Saturday, however, defeat has been snatched from the jaws of victory. Even a broad data dredge has barely managed to tease out a subgroup benefit – after one accepts Target’s advantageous statistical design, that is. Endocyte had risen 6% on Thursday in anticipation of the late-breaking Esmo data, but when the markets open again tomorrow investors will almost certainly be left nursing losses. There were already question marks around vintafolide, Endocyte’s lead project. European approval was revoked after the Proceed study in ovarian cancer was halted for futility, prompting Merck & Co, which had paid $120m up front to access vintafolide, to pull out of the deal (Trial miss leaves Endocyte at the mercy of Merck, May 6, 2014). Back in March, progression-free survival (PFS) results from the Target trial, which pitched vintafolide and docetaxel against docetaxel alone in a second-line setting for NSCLC, caused Endocyte to surge, and the company managed to raise $102m from investors. The fate of vintafolide, which comprises vinblastine linked to a compound that targets the folate receptor, thus rested on further analyses of Target – most crucially of patients’ overall survival (OS). In fact, the OS data showed vintafolide scoring a miss. Risk of death was reduced by 12% – though with the upper confidence interval bound at 1.36 – with a p value of 0.2874.
    [Show full text]
  • EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use
    Ref. Ares(2019)6843167 - 05/11/2019 31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance .
    [Show full text]
  • (Ec145) and Pegylated Liposomal Doxorubicin (Pld/Doxil®/Caelyx®) in Combination Versus Pld in Patients with Platinum-Resistant Ovarian Cancer
    EC-FV-06 Clinical Study Report Page 1 1. EC-FV-06 Clinical Study Report A RANDOMIZED DOUBLE-BLIND PHASE 3 TRIAL COMPARING VINTAFOLIDE (EC145) AND PEGYLATED LIPOSOMAL DOXORUBICIN (PLD/DOXIL®/CAELYX®) IN COMBINATION VERSUS PLD IN PATIENTS WITH PLATINUM-RESISTANT OVARIAN CANCER Vintafolide (EC145): Targeted Therapeutic Agent 99mTc-etarfolatide: Companion Diagnostic Imaging Agent Therapy for platinum-resistant epithelial ovarian, fallopian tube or primary peritoneal cancer This was an international, multicenter, centrally-randomized, double-blind, Phase 3, two-arm study comparing EC145 + PLD and placebo + PLD, given until disease progression or unacceptable toxicity in patients platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer Endocyte, Inc. Protocol EC-FV-06 (PROCEED) Phase 3 First patient enrolled (assigned to therapy): 22 April 2011 Date of early study termination: 20 May 2014 Data cutoff date: 17 March 2014 Approval Date: 15 February 2017 Responsible Medical Officer: Alison Armour MB.ChB., BSc., MSc., MD., MRCP., FRCR Endocyte, Inc. 8910 Purdue Road, Suite 250 Indianapolis, IN 46268 This study was performed in compliance with the principles of good clinical practice (GCP) and Endocyte, Inc. standard operating procedures. The information contained in this clinical study report is confidential and may not be reproduced or otherwise disseminated without the written approval of Endocyte, Inc.. This document and its associated appendices are subject to United States Freedom of Information Act (FOIA) Exemption 4. Vintafolide (EC145) EC-FV-06 Clinical Study Report Page 2 2. Synopsis Title of Study: A Randomized Double-Blind Phase 3 Trial Comparing Vintafolide (EC145) and Pegylated Liposomal Doxorubicin (PLD/DOXIL®/CAELYX®) in Combination Versus PLD in Patients with Platinum- Resistant Ovarian Cancer Number of Investigator(s): This multicenter study included 194 principal investigators.
    [Show full text]
  • Access to Cancer Medicines in Australia
    Access to cancer medicines in Australia Medicines Australia Oncology Industry Taskforce July 2013 Contents Glossary ..................................................................................................................................... i Executive summary .................................................................................................................... i 1 Background ..................................................................................................................... 1 1.1 Purpose of this report ....................................................................................................... 2 1.2 Methods ........................................................................................................................... 3 1.3 Report structure ............................................................................................................... 9 2 Cancer in Australia and other countries ......................................................................... 10 2.1 Population statistics on cancer ........................................................................................ 10 2.2 Population impacts of cancer in Australia ........................................................................ 24 2.3 Summary ........................................................................................................................ 33 3 Current and future cancer medicines ............................................................................ 34 3.1 Current
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • Annexes to the Annual Report of the European Medicines Agency 2014
    Annexes to the annual report of the European Medicines Agency 2014 Table of contents Annex 1 – Members of the Management Board ............................................................................. 2 Annex 2 – Members of the Committee for Medicinal Products for Human Use ................................... 4 Annex 3 – Members of the Pharmacovigilance Risk Assessment Committee ...................................... 6 Annex 4 – Members of the Committee for Medicinal Products for Veterinary Use ............................... 8 Annex 5 – Members of the Committee on Orphan Medicinal Products ............................................ 10 Annex 6 – Members of the Committee on Herbal Medicinal Products .............................................. 12 Annex 07 – Committee for Advanced Therapies .......................................................................... 14 Annex 8 – Members of the Paediatric Committee ........................................................................ 16 Annex 9 – Working parties and working groups .......................................................................... 18 Annex 10 – CHMP opinions in 2014 on medicinal products for human use ...................................... 22 Annex 11 – CVMP opinions in 2014 on medicinal products for veterinary use .................................. 36 Annex 12 – COMP opinions in 2014 on designation of orphan medicinal products ............................ 41 Annex 13 – HMPC European Union herbal monographs in 2014....................................................
    [Show full text]
  • Rational Combination Therapy of Vintafolide (EC145) with Commonly Used Chemotherapeutic Drugs
    Author Manuscript Published OnlineFirst on January 15, 2014; DOI: 10.1158/1078-0432.CCR-13-2423 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Rational combination therapy of vintafolide (EC145) with commonly used chemotherapeutic drugs Joseph A. Reddy1, Ryan Dorton1, Alicia Bloomfield1, Melissa Nelson1, Marilynn Vetzel1, John Guan1 and Christopher P. Leamon1 Endocyte, Inc., 3000 Kent Ave, Suite A1-100, West Lafayette, IN 47906, USA 1Corresponding author: Dr. Christopher P. Leamon 3000 Kent Ave. Suite A1-100 West Lafayette, IN 47906 Phone: (765)463-7175 FAX: (765)463-9271 Email: [email protected] Running Title: Vintafolide drug combination studies Keywords: Folate receptor, targeted chemotherapy, ovarian cancer, EC145, vintafolide Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2014 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 15, 2014; DOI: 10.1158/1078-0432.CCR-13-2423 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 2 TRANSLATIONAL RELEVANCE Our report highlights the potential for safely combining vintafolide (a folate-targeted vinca alkaloid) with pegylated liposomal doxorubicin (PLD), platinum-based agents, topoisomerase inhibitors and taxanes to yield enhanced antitumor effects, including complete responses and cures against human tumor xenografts. The observed therapeutic benefits of these combinations were specific for folate receptor (FR)-positive tumor models, likely because vintafolide remains associated with tumor cells for multiple M phases of the cell due to its natural high affinity binding to the FR and the slow recycling rate of that receptor. Based on the disclosed preclinical data, a randomized phase 2 trial (PRECEDENT) was conducted with the vintafolide/PLD combination.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]