Integrated Fish Stock Assessment and Monitoring Program

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Fish Stock Assessment and Monitoring Program Project Report QO99011 Integrated Fish Stock Assessment and Monitoring Program S Hoyle, I Brown, C Dichmont, M Sellin, M Cosgrove and M McLennan Project No. 94/161 June 2000 FISHERIES RESEARCH & DEVELOPMENT CORPORATION 6.1.1.1 Data extraction ................................................................................................. 24 6.1.1.2 Categorising the data for the GLM ................................................................... 25 6.1.2 Catch sampling ..................................................................................................... 26 6 .1.2.1 Commercial fishery .......................................................................................... 27 6.1.2.2 Recreational fishery .......................................................................................... 28 6.1.2.3 Fishery-independent sampling ......................................................................... 28 6.2 Ageing........................................................................................................................... 28 6.2.1 Fish and otolith collection .................................................................................... 28 6.2.2 Otolith preparation ............................................................................................... 28 6.2.3 Otolith reading ...................................................................................................... 29 6.2.4 Ageing experiment ............................................................................................... 29 6.2.5 Validation ............................................................................................................. 29 6.2.6 Statistical procedures ............................................................................................ 30 6. 3 Estimation ofpopulation parameters (modelling) ....................................................... 31 6.3.1 Growth parameters ............................................................................................... 31 6.3 .2 Total mortality ...................................................................................................... 31 6.3.3 Natural mortality .................................................................................................. 31 6.3.4 Population length and age structure ..................................................................... 32 6.3.4.1 Estuarine species .............................................................................................. 32 6.3.4.2 Tailor ................................................................................................................ 32 6.3 .5 Age length keys .................................................................................................... 33 6.3.6 Yield per recruit. ................................................................................................... 33 6.3 .6.1 Model structure ................................................................................................. 34 6.3.6.2 Ageing error ..................................................................................................... 35 6.3.6.3 Mean length at age ........................................................................................... 35 6.3.6.4 Selectivity ......................................................................................................... 35 6.3.6.5 Length weight relationship ............................................................................... 35 6.3.6.6 Natural mortality .............................................................................................. 36 6.3.6.7 Fishing mortality .............................................................................................. 36 6.3.6.8 Optimising minimum legal size ....................................................................... 36 6.3 .7 Bootstrapping confidence intervals on recreational diary data ............................ 37 6.3.7.1 Bootstrapping methods ..................................................................................... 38 6.3.7.2 Data collection .................................................................................................. 39 6.3.7.3 Simulation ........................................................................................................ 39 6.3. 7 .4 Aspects of the analysis ..................................................................................... 40 Integrated Fish Stock Assessment and Monitoring Program ii 6.3.7.5 Data scenarios ................................................................................................... 40 6. 4 Evaluation ofalternative assessment methods - egg production method .................... 41 6.4.1 1997 Annual egg survey cruise ............................................................................ 41 6.4.2 1998 Annual egg survey cruise ............................................................................ 41 6.4.3 Monthly cruises .................................................................................................... 41 6.4.4 Plankton collection ............................................................................................... 42 6.4.5 Identification ........................................................................................................ 42 6.4.6 Analysis ................................................................................................................ 43 7 Results .............................................................................................................................. 44 7.1 Trends in commercial fishery statistics ........................................................................ 44 7 .1.1 Catches, historical and current ............................................................................. 44 7 .1.2 Catch, effort and CPUE ........................................................................................ 46 7.1.2.1 Tailor ................................................................................................................ 46 7 .1.2.2 Whiting ............................................................................................................. 49 7.1.2.3 Bream ............................................................................................................... 53 7.1.2.4 Flathead ............................................................................................................ 55 7.1.3 Standardised catch-per-unit-effort ........................................................................ 58 7.1.3.1 Bream ............................................................................................................... 58 7.1.3.2 Dusky flathead .................................................................................................. 60 7. 2 Assessment ofotolith-based age determination methods .............................................. 64 7 .2.1 Comparison ofring counts between methods and readers .................................... 64 7.2.1.1 Bream ................................................................................................................ 64 7.2.1.2 Sand whiting ...................................................................................................... 64 7.2.1.3 Golden-lined whiting ......................................................................................... 65 7.2.1.4 Dusky flathead ................................................................................................... 66 7.2.1.5 Tailor ................................................................................................................. 67 7 .2.2 Comparison ofreadability estimates between methods and readers ..................... 68 7 .2.2.1 Bream ................................................................................................................ 69 7.2.2.2 Sand whiting ...................................................................................................... 69 7.2.2.3 Golden-lined whiting ......................................................................................... 71 7.2.2.4 Dusky flathead ................................................................................................... 73 7.2.2.5 Tailor ................................................................................................................. 74 7.2.3 Age validation- marginal increment analysis ...................................................... 75 Integrated Fish Stock Assessment and Monitoring Program iii 7 .4.4.3 Dusky flathead .................................................................................................. 99 7.4.4.4 Tailor .............................................................................................................. 100 7.4.5 Catch sampling results: length-weight relationships .......................................... 101 7. 5 Bootstrapping recreational catch confidence intervals - comparison ofmethods .... 103 7.6 DEPM as an alternative assessment method/or tailor .............................................. 104 8 Discussion ....................................................................................................................... 109 8.1 The CFISH commercial fishery database ................................................................... 109 8 .1.1 Data management issues ....................................................................................
Recommended publications
  • Choose Your Fish Brochure
    outside: panel 1 (MDH North Shore) outside: panel 2 (MDH North Shore) outside: panel 3 (MDH North Shore) outside: panel 4 (MDH North Shore–back cover) outside: panel 5 (MDH North Shore–front cover) 4444444444444444444444444444444444444444444444444444444444444444444444444 4444444444444444444444444444444444444444444444444444444444444444444444444 Parmesan Salmon 4444444444444444444444444444444 Fish to Avoid Bought or Try this easy, tasty recipe for serving up a good source of omega-3s. Salmon has a rich, buttery taste and Mercury levels are too high Caught Think: species, tender, large flakes. Serve with brown rice and a mixed Do not eat the following fish if you are pregnant or green salad for up to 4 people. CHOOSE may become pregnant, or are under 15 years old: size and source YOUR What you need 1 pound salmon fillet (not steak) • Lake Superior Lake Trout How much mercury is in 2 tablespoons grated Parmesan cheese (longer than 39 inches) fish depends on the: • Lake Superior Siscowet Lake Trout 1 tablespoon horseradish, drained (longer than 29 inches) 1/3 cup plain nonfat yogurt • Species. Some fish have 1 tablespoon Dijon mustard • Muskellunge (Muskie) more mercury than others 1 tablespoon lemon juice • Shark because of what they eat and How to prepare • Swordfish how long they live. 1. Arrange the fillet, skin side down, on foil-covered broiler pan. Raw and smoked fish may cause illness • Size. Smaller fish generally have less FISHFISHFISH 2. Combine remaining ingredients and spread over fillet. If you are or might be pregnant: mercury than larger, older fish of the 3. Bake at 450°F or broil on high for 10 to 15 minutes, same species.
    [Show full text]
  • Chinook Salmon Oncorhynchus Tsha Wytscha from Experimentally-Induced Proliferative Kidney Disease
    DISEASES OF AQUATIC ORGANISMS Vol. 4: 165-168, 1988 Published July 27 Dis. aquat. Org. I Oral administration of Fumagillin DCH protects chinook salmon Oncorhynchus tsha wytscha from experimentally-induced proliferative kidney disease R. P. Hedrick*,J. M. Groff, P. Foley, T. McDowell Aquaculture and Fisheries Program, Department of Medicine, School of Veterinary Medicine, University of California, Davis, California 95616, USA ABSTRACT: The antibiotic Fumagillin DCH was found to be effective in controlling experimental infections with PKX, the myxosporean that causes proliferative kidney disease (PKD) in salmonid fish. Following 6 or 7 wk of treatment, experimentally infected chinook salmon Oncorhynchus tshawytscha showed no evidence of PKX cells, or of the renal inflammation characteristic of PKD, on withdrawal of the treatment and tor up to 7 wk afterwards. In contrast, 90 to 100 % of fish (in 2 experiments) that were injected with PKX, but not glven the antibiotic, had numerous PKX cells in the kidney and developed clinical PKD. This is the first report of an effective orally administered drug for the control of a myxozoan infection in salmonid fish. INTRODUCTION Clifton-Hadley & Alderman (1987) found that periodic bath treatments with malachite green effectively Proliferative kidney disease (PKD) is considered to reduced the severity and prevalence of PKD in rainbow be one of the most serious diseases of farm-reared trout trout. In the study, malachite green was found to be in Europe and also causes major losses among Pacific concentrated in certain tissues of the rainbow trout and salmon in North America (Clifton-Hadley et al. 1984, this in combination with the teratogenic and car- Hedrick et al.
    [Show full text]
  • Assessing the Effectiveness of Surrogates for Conserving Biodiversity in the Port Stephens-Great Lakes Marine Park
    Assessing the effectiveness of surrogates for conserving biodiversity in the Port Stephens-Great Lakes Marine Park Vanessa Owen B Env Sc, B Sc (Hons) School of the Environment University of Technology Sydney Submitted in fulfilment for the requirements of the degree of Doctor of Philosophy September 2015 Certificate of Original Authorship I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used as indicated in the thesis. Signature of Student: Date: Page ii Acknowledgements I thank my supervisor William Gladstone for invaluable support, advice, technical reviews, patience and understanding. I thank my family for their encouragement and support, particularly my mum who is a wonderful role model. I hope that my children too are inspired to dream big and work hard. This study was conducted with the support of the University of Newcastle, the University of Technology Sydney, University of Sydney, NSW Office of the Environment and Heritage (formerly Department of Environment Climate Change and Water), Marine Park Authority NSW, NSW Department of Primary Industries (Fisheries) and the Integrated Marine Observing System (IMOS) program funded through the Department of Industry, Climate Change, Science, Education, Research and Tertiary Education. The sessile benthic assemblage fieldwork was led by Dr Oscar Pizarro and undertaken by the University of Sydney’s Australian Centre for Field Robotics.
    [Show full text]
  • Species Identification Guide
    SPECIES IDENTIFICATION GUIDE Pilbara/Kimberley Region ABOUT THIS GUIDE a variety of marine and freshwater species including barramundi, tropical emperors, The Pilbara/Kimberley Region extends from sea-perches, trevallies, sooty grunter, the Ashburton River near Onslow to the threadfin, mud crabs, and cods. Northern Territory/South Australia border. The Ord and Fitzroy Rivers are two of the Recreational fishing activity in the region State’s largest river systems. They are shows distinct seasonal peaks, with the highly valued by visiting and local fishers. highest number of visitors during the winter Both river systems are relatively easy to months (dry season). Fishing pressure is access and are focal points for recreational also concentrated around key population fishers pursuing barramundi. centres. An estimated 6.5 per cent of the State’s recreational fishers fished marine Offshore islands, coral reef systems and waters in the Pilbara/Kimberley during continental shelf waters provide species of 1998/99, while a further 1.6 per cent major recreational interest, including many fished fresh waters in the region. members of the demersal sea perch family (Lutjanidae) such as scarlet sea perch and This guide provides a brief overview of red emperor, cods, coral and coronation some of the region’s most popular and trout, sharks, trevally, tuskfish, tunas, sought-after fish species. Fishing rules are mackerels and billfish. contained in a separate guide on fishing in the Pilbara/Kimberley Region. Fishing charters and fishing tournaments have becoming increasingly popular in the FISHING IN THE region over the past five years. The Dampier PILBARA/KIMBERLEY Classic and Broome sailfish tournaments are both state and national attractions, and Within the Pilbara/Kimberley Region, creek WA is gaining an international reputation for systems, mangroves, rivers and ocean the quality of its offshore pelagic sport and beaches provide shore and boat fishing for game fishing.
    [Show full text]
  • Comparisons Between the Biology of Two Species of Whiting (Sillaginidiae) in Shark Bay, Western Australia
    Comparisons between the biology of two species of whiting (Sillaginidiae) in Shark Bay, Western Australia By Peter Coulson Submitted for the Honours Degree of Murdoch University August 2003 1 Abstract Golden-lined whiting Sillago analis and yellow-fin whiting Sillago schomburgkii were collected from waters within Shark Bay, which is located at ca 26ºS on the west coast of Australia. The number of circuli on the scales of S. analis was often less than the number of opaque zones in sectioned otoliths of the same fish. Furthermore, the number of annuli visible in whole otoliths of S. analis was often less than were detectable in those otoliths after sectioning. The magnitude of the discrepancies increased as the number of opaque zones increased. Consequently, the otoliths of S. analis were sectioned in order to obtain reliable estimates of age. The mean monthly marginal increments on sectioned otoliths of S. analis and S. schomburgkii underwent a pronounced decline in late spring/early summer and then rose progressively during summer and autumn. Since these trends demonstrated that opaque zones are laid down annually in the otoliths of S. analis and S. schomburgkii from Shark Bay, their numbers could be used to help age this species in this marine embayment. The von Bertalanffy growth parameters, L∞, k and to derived from the total lengths at age for individuals of S. analis , were 277 mm, 0.73 year -1 and 0.02 years, respectively, for females and 253 mm, 0.76 year -1 and 0.10 years, respectively. Females were estimated to attain lengths of 141, 211, 245 and 269 mm after 1, 2, 3 and 5 years, compared with 124, 192, 224 and 247 mm for males at the corresponding ages.
    [Show full text]
  • Information Sheet
    Illustration © R. Swainston/anima.net.au Information sheet Yellowfin whiting (Sillago schombergkii) Distribution Identification Yellowfin whiting (also known as western sand Adults have no distinguishing body markings and are whiting) are endemic to south-western Australia from best identified by their yellow ventral and anal fins Western Australia (Onslow) to South Australia (Gulf St and a weakly forked tail. Juveniles have faint black Vincent). WA and SA host separate breeding stocks. blotches on the body and may be confused with juvenile western trumpeter whiting. Stock structure and movement In WA, populations within the Gascoyne Coast Growth Bioregion and West Coast Bioregion are believed Can reach a maximum of 427 mm total length (TL) to have limited connectivity and so are regarded as and 12 years of age. Females and males attain separate stocks. sexual maturity at 2 years, at 200 and 190 mm TL, respectively. Females grow slightly larger than males. In the West Coast Bioregion, some fish live in estuaries for much the year, but these fish migrate Reproduction to sea to join their ocean-dwelling counterparts to Spawning typically occurs at water temperatures spawn in late spring/early summer. Hence, fish of 22-24 ºC. Spawning occurs August-December across the West Coast Bioregion belong to the same in northern areas (e.g. Shark Bay) and December- breeding stock (e.g. fish caught in the Peel-Harvey February in southern areas (e.g. Perth). Spawning Estuary are part of the same population as those in occurs over a longer period in northern areas Geographe Bay or Jurien Bay).
    [Show full text]
  • Federal Register/Vol. 85, No. 123/Thursday, June 25, 2020/Rules
    Federal Register / Vol. 85, No. 123 / Thursday, June 25, 2020 / Rules and Regulations 38093 that make the area biologically unique. and contrary to the public interest to DEPARTMENT OF COMMERCE It provides important juvenile swordfish provide prior notice of, and an habitat, and is essentially a narrow opportunity for public comment on, this National Oceanic and Atmospheric migratory corridor containing high action for the following reasons: Administration concentrations of swordfish located in Based on recent data for the first semi- close proximity to high concentrations 50 CFR Part 679 annual quota period, NMFS has of people who may fish for them. Public [Docket No. 200604–0152] comment on Amendment 8, including determined that landings have been from the Florida Fish and Wildlife very low through April 30, 2020 (21.9 RIN 0648–BJ35 Conservation Commission, indicated percent of 1,318.8 mt dw quota). concern about the resultant high Adjustment of the retention limits needs Fisheries of the Exclusive Economic potential for the improper rapid growth to be effective on July 1, 2020; otherwise Zone Off Alaska; Modifying Seasonal of a commercial fishery, increased lower, default retention limits will Allocations of Pollock and Pacific Cod catches of undersized swordfish, the apply. Delaying this action for prior for Trawl Catcher Vessels in the potential for larger numbers of notice and public comment would Central and Western Gulf of Alaska fishermen in the area, and the potential unnecessarily limit opportunities to AGENCY: National Marine Fisheries for crowding of fishermen, which could harvest available directed swordfish Service (NMFS), National Oceanic and lead to gear and user conflicts.
    [Show full text]
  • SAFS Report 2018
    STATUS OF AUSTRALIAN FISH STOCKS REPORT Sand Whiting (2018) Sand Whiting (2018) Sillago ciliata Jason McGilvray: Department of Agriculture and Fisheries, Queensland, Karina Hall: Department of Primary Industries, New South Wales STOCK STATUS OVERVIEW Jurisdiction Stock Fisheries Stock status Indicators Queensland Queensland ECIFFF Sustainable Commercial catch and CPUE, length and age, mortality rate New South Wales New South EGF, N/A, Sustainable Catch, effort and CPUE, Wales OHF length and age, mortality rate EGF Estuary General Fishery (NSW), N/A Not Applicable (NSW), OHF Ocean Hauling Fishery (NSW), ECIFFF East Coast Inshore Fin Fish Fishery (QLD) STOCK STRUCTURE Sand Whiting occur along the east coast of Australia and are most abundant in southern Queensland and northern New South Wales. Tagging studies have shown movement of adult fish between estuaries, but information on biological stock boundaries remains incomplete. The unknown nature of biological stock composition means no formal assessment of the entire biological stock has been completed. Separate assessments of Sand Whiting have been conducted in Queensland and New South Wales [Gray et al. 2000, Hoyle et al. 2000, Ochwada- Doyle et al. 2014, O’Neill 2000]. Here, assessment of stock status is presented at the jurisdictional level—Queensland and New South Wales. STOCK STATUS New South In New South Wales, Sand Whiting are mainly taken by the commercial Estuary Wales General Fishery (by the mesh netting and hauling sectors), with smaller catches reported by the Ocean Hauling Fishery [Hall 2015]. Annual commercial catches of Sand Whiting in NSW waters over the last five years have been well below the preceding 20 year average of 162 t [NSW DPI unpublished].
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Recreational Fishing in Western Australia
    RECREATIONAL FISHING IN WESTERN AUSTRALIA NORTHERN FISH IDENTIFICATION GUIDE MARCH 2011 Cover: Spangled emperor (Lethrinus nebulosus) Photo: Shannon Conway Published by Department of Fisheries, Perth, Western Australia. Fisheries Occasional Publication No. 87, March 2011. ISSN: 1447 - 2058 ISBN: 978-1-921845-06-2 2 NORTHERN FISH IDENTIFICATION GUIDE ABOUT THIS GUIDE his guide has been developed to help you identify the Tmore common species within the Gascoyne and North Coast bioregions that you may encounter. The purpose of this recreational fishing guide is to greatly enhance consistent and accurate species identification. If you are unsure about a particular species (or if it is not in this guide), please discuss it with a representative of the Department of Fisheries, Western Australia. You can access additional information on the website www.fish.wa.gov.au Regions covered by this guide 114° 50' E North Coast Kununurra (Pilbara/Kimberley) Broome Gascoyne Coast Port Hedland Karratha 21°46' S Onslow A sh bur Exmouth ton R iver Carnarvon Denham 27°S Kalbarri Geraldton West Coast Eucla Perth Esperance Augusta Black Point Albany South Coast 115°30' E See Southern Fish Identfication Guide for these regions NORTHERN FISH IDENTIFICATION GUIDE 3 CONTENTS ABOUT THIS GUIDE ������������������������������������������������������ 3 OFFSHORE DEMERSAL ................................................. 5 INSHORE DEMERSAL .................................................... 5 NEARSHORE............................................................... 11
    [Show full text]
  • New Distributional Record of the Endemic Estuarine Sand Whiting, Sillago Vincenti Mckay, 1980 from the Pichavaram Mangrove Ecosystem, Southeast Coast of India
    Indian Journal of Geo Marine Sciences Vol. 47 (03), March 2018, pp. 660-664 New distributional record of the endemic estuarine sand whiting, Sillago vincenti McKay, 1980 from the Pichavaram mangrove ecosystem, southeast coast of India Mahesh. R1δ, Murugan. A2, Saravanakumar. A1*, Feroz Khan. K1 & Shanker. S1 1CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Porto Novo, Tamil Nadu, India - 608 502. 2Department of Value Added Aquaculture (B.Voc.), Vivekananda College, Agasteeswaram, India - 629 701. δ Present Address: National Centre for Sustainable Coastal Management, MoEF & CC, Chennai, India - 600 025. *[E-mail: [email protected]] Received 27 December 2013 ; revised 17 November 2016 The Sillaginids, commonly known as sand whiting are one among the common fishes caught by the traditional fishers in estuarine ecosystems all along the Tamil Nadu coast. The present study records the new distributional range extension for Sillago vincenti from the waters of Pichavaram mangrove, whereas earlier reports were restricted to only the Palk Bay and Gulf of Mannar regions of the Tamil Nadu coast, whereas it enjoys a wide range of distribution both in the east and west coast of India. This study marks the additional extension of the distributional record for S. vincenti in the east coast of India. Biological information on these fishes will have ecological applications particularly on account on their extreme abundance in the mangrove waters. The present study is based on the collection of specimens from handline fishing practices undertaken in the shallow waters of Pichavaram mangroves, on the southeast coast of India. [Keywords: Sillagnids, Sillago vincenti, Pichavaram, India] Introduction Sillaginopodys and Sillaginops)8.
    [Show full text]
  • Seafood Product Names List
    SEAFOOD PRODUCT NAMES LIST QTY PRODUCT NAME SCR # SCR # TICKET TICKET ** FRESH SALMON ROE (CAVIER) - [ check spelling on cavier] 814A 1 KG PACKET EXTENDER 234A 1/2 DOZEN EXTRA LARGE SYDNEY ROCK OYSTERS 714A 1/2 DOZEN LARGE SYDNEY ROCK OYSTERS 714A 1/2 DOZEN UNOPENED PACIFIC OYSTERS 714A 1/2 DOZEN UNOPENED SYDNEY ROCK OYSTERS 715A 2 DOZEN OYSTERS 769A 3 DOZ UNOPENED OYSTERS 330A AFRICAN CARP 977 ALBACORE (TUNA) STEAKS 981 ALBACORE FILLETS 404A ALBACORE STEAKS 665A ALBACORE TUNA CUTLETS 1037 1006 ALBACORE TUNA STEAKS 416A FT7L FT8L ALFONSINA FILLETS 254A ALFONSINO FILLETS 694A ALFONSINO RED PERCH 870A ALMOND TROUT 456A FT7L FT8L ALMOST BARRAMUNDI 229A AMBERJACK FILLETS 436A FT7L FT8L ANCHOVIES 665A ANGEL FISH FILLETS 506A 507A FT7L FT8L ANGEL SHARK 565A FT7L FT8L ANTONIOS HOME MADE DIPPING SAUCES 773A AQUATAS A GRADE Cold Smoked Atlantic Salmon 520A Aquatas Cold Smoked Atalantic Salmon Cockt Pces 520A FT7L FT8L AQUATAS COLD SMOKED ATLANTIC SLAMON 520A FT7L FT8L AQUATAS COLD SMOKED OCEAN TROUT 520A FT7L FT8L AQUATAS OAK SMOKED Pastrami Atlantic Salmon 520A FT7L FT8L AQUATAS PREMIUM Cold Smoked Atlantic Salmon 520A FT7L FT8L AQUATAS Premium Cold Smoked Ocean Trout 520A FT7L FT8L AQUATAS SMOKED SALMON 588A FT7L FT8L AQUATAS SMOKED SALMON PIECES 737A AQUATAS TASMANIAN Smoked Salmon (Gravalax) 520A ARROW SQUID 543A 300A FT7L FT8L ARROW SQUID CALAMARI 701A ATLANTIC SALMON 416A 29A FT7L FT8L ATLANTIC SALMON (APPROX. (170-200g) 434A FT7L FT8L ATLANTIC SALMON (SASHIMI) 681A ATLANTIC SALMON BELLY 842A ATLANTIC SALMON CAVIAR JAR 891A ATLANTIC SALMON
    [Show full text]