Technology Transfer and Innovation for Low-Carbon Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Latent Dangers in a Patent Pool: the European Commission's Approval of the 3G Wireless Technology Licensing Agreements
Latent Dangers in a Patent Pool: The European Commission's Approval of the 3G Wireless Technology Licensing Agreements Michael R. Franzingert TABLE OF CONTENTS Introduction ............................................................................................1695 I. B ackground .....................................................................................1698 A. The Evolution of Standards in the Wireless Communications Indu stry .....................................................................................1698 1. The 2G Mobile Telephone Standards .................................1698 2. The 3G Mobile Communication Standards ........................1699 B. Europe's Past Efforts at Standardization ..................................1700 C. Licensing of Essential Patents for 3G Standards ......................1702 II. The European Commission's Competition Law .............................1708 A. Article 81: The Foundation of European Antitrust Doctrine ...1709 B. New Block Exemptions, Individual Exemptions, and "C om fort L etters". ....................................................................1710 1. The Technology Transfer Block Exemption ......................1711 2. Exceptions Developed in Individual Cases ........................1712 III. A nalysis ...........................................................................................17 14 A. The Japanese Fair Trade Commission's Early Clearance of the Platform ..........................................................................1714 Copyright © 2003 -
Technology Transfer: a Bibliometric Analysis Dimitrius Pablo Sabino Lima De Miranda;Armoni Da Cruz Santos;Suzana Leitão Russo
Technology Transfer: A Bibliometric Analysis Dimitrius Pablo Sabino Lima de Miranda;Armoni Da Cruz Santos;Suzana Leitão Russo Abstract In a global context of highly competitive, new technologies have become an indispensable element for companies, the tool normally used to gain such advantage is the transfer of technology. In order to provide an overview of how this issue has been studied by the academic community, this article presents a bibliometric analysis of published studies on the technology transfer in the Scielo and ScienceDirect bases between the years 1973 to 2016. It was concluded the year with more publications on the subject in both bases was in 2013, the journal with the highest number of articles in the Scielo base was the Journal of Technology Management & Innovation with concept Qualis B2, while the Innovation magazine with concept A1 had more items on the base ScienceDirect. Keyword: technology; technology transfer; bibliometric analysis Published Date: 12/31/2017 Page.78-87 Vol 5 No 12 2017 Link: http://ijier.net/ijier/article/view/867 International Journal for Innovation Education and Research www.ijier.net Vol:-5 No-12, 2017 Technology Transfer: A Bibliometric Analysis Dimitrius Pablo Sabino Lima de Miranda, Armoni Da Cruz Santos, Suzana Leitão Russo Postgraduate Program in Intellectual Property Science/ Federal University of Sergipe Abstract In a global context of highly competitive, new technologies have become an indispensable element for companies, the tool normally used to gain such advantage is the transfer of technology. In order to provide an overview of how this issue has been studied by the academic community, this article presents a bibliometric analysis of published studies on the technology transfer in the Scielo and ScienceDirect bases between the years 1973 to 2016. -
Putting Clean Tech on a Path to Subsidy Independence
APRIL 2012 BE YOND BOOM & BUST PUTTING CLEAN TECH ON A PATH TO SUBSIDY INDEPENDENCE Jesse Jenkins, Director of Energy and Climate Policy, Breakthrough Institute Mark Muro, Senior Fellow, Metropolitan Policy Program, Brookings Institution Ted Nordhaus and Michael Shellenberger, Cofounders, Breakthrough Institute Letha Tawney, Senior Associate, World Resources Institute Alex Trembath, Policy Associate, Breakthrough Institute APRIL 2012 BE YOND BOOM & BUST PUTTING CLEAN TECH ON A PATH TO SUBSIDY INDEPENDENCE Jesse Jenkins, Director of Energy and Climate Policy, Breakthrough Institute Mark Muro, Senior Fellow, Metropolitan Policy Program, Brookings Institution Ted Nordhaus and Michael Shellenberger, Cofounders, Breakthrough Institute Letha Tawney, Senior Associate, World Resources Institute Alex Trembath, Policy Associate, Breakthrough Institute INSTITUTIONAL AFFILIATIONS LISTED FOR IDENTIFICATION PURPOSES ONLY APRIL 2012 CONTENTS 3 EXECUTIVE SUMMARY g CONTENTS f 4 EXECUTIVE SUMMARY 4 Key Recommendations for a New Era of Clean Energy Policy 8g Key Recommendations for a New Era of Clean Energy Policy 8 PART 1: FROM CLEAN TECH BOOM TO FEDERAL SPENDING BUST 1g2 PART 1: FROM CLEAN TECH BOOM TO FEDERAL SPENDING BUST Methodology 1g5 12 Methodology 15 Analysis of Federal Clean Tech Spending, 2009 to 2014 1g6 Analysis of Federal Clean Tech Spending, 2009 to 2014 16 The Federal Clean Tech Funding Cliff 1g9 The Federal Clean Tech Funding Cliff 19 What’s Left After 2014? 2g2 What’s Left After 2014? 22 PART 2: CLEAN TECH MARKET IMPACTS 2g3 PART 2: Wind -
TECHNOLOGY and POLICY DRIVERS of the FUEL ECONOMY of NEW LIGHT-DUTY VEHICLES Comparative Analysis Across Selected Automotive Markets
TECHNOLOGY AND POLICY DRIVERS OF THE FUEL ECONOMY OF NEW LIGHT-DUTY VEHICLES Comparative analysis across selected automotive markets Working Paper 12 UNEP INTERNATIONAL ENERGY AGENCY The International Energy Agency (IEA), an autonomous agency, was established in November 1974. Its primary mandate was – and is – two-fold: to promote energy security amongst its member countries through collective response to physical disruptions in oil supply, and provide authoritative research and analysis on ways to ensure reliable, affordable and clean energy for its 29 member countries and beyond. The IEA carries out a comprehensive programme of energy co-operation among its member countries, each of which is obliged to hold oil stocks equivalent to 90 days of its net imports. The Agency’s aims include the following objectives: n Secure member countries’ access to reliable and ample supplies of all forms of energy; in particular, through maintaining effective emergency response capabilities in case of oil supply disruptions. n Promote sustainable energy policies that spur economic growth and environmental protection in a global context – particularly in terms of reducing greenhouse-gas emissions that contribute to climate change. n Improve transparency of international markets through collection and analysis of energy data. n Support global collaboration on energy technology to secure future energy supplies and mitigate their environmental impact, including through improved energy efficiency and development and deployment of low-carbon technologies. -
MANUFACTURING AGENDA a National Blueprint for Clean Technology Manufacturing Leadership and Industrial Transformation CONTENTS
MANUFACTURING AGENDA A National Blueprint for Clean Technology Manufacturing Leadership and Industrial Transformation CONTENTS Executive Summary 2 Overarching Objectives 4 MANUFACTURING AGENDA 6 PILLAR 1: Invest at Scale in a New Generation of American Manufacturing 6 PILLAR 2: Innovate to Transform Industry 11 PILLAR 3: Responsibly Mine, Reclaim, and Recycle Critical Materials 14 PILLAR 4: Use Public Investment Wisely to Build a Strong, Clean, Fair Manufacturing Economy Across America 16 PILLAR 5: Change the Rules to Build a Clean Economy that Works for All 20 Glossary of Key Concepts and Terms 23 Endnotes iii Cover photo by: Sam VarnHagen, courtesy of Ford Motor Company EXECUTIVE SUMMARY Introduction The U.S. can once again lead the world in manufacturing the technologies and products of the future. As an integral part of an aggressive strategy to address the climate emergency head on—and in line with achieving net zero emissions economy-wide by 2050—we have the opportunity to modernize and transform our industrial base to make it the cleanest and most advanced in the world, while spurring the creation of a new generation of good, safe jobs manufacturing clean technology. This industrial transformation can bring dynamic industries back to communities that have been left behind by deindustrialization and under-investment, and provide a starting point for broadly shared growth and prosperity. Last year, the BlueGreen Alliance—alongside our labor central role in the balance of U.S. imports and exports— and environmental partners—released Solidarity for and the jobs that go with them. Manufacturing also Climate Action, an ambitious, concrete platform to has the proven ability to provide pathways into the address the crises of climate change and economic and middle class for millions of workers and families, and to racial inequality simultaneously.1 support millions of high-skill, high-wage jobs. -
Unequal Mobility: an Analysis of the Value of Muslim Passports
Unequal mobility: an analysis of the value of Muslim passports Jannah Ravestein Bachelor thesis Geography, Planning and Environment (GPE) Nijmegen School of Management Radboud University Nijmegen June 2018 Unequal mobility: an analysis of the value of Muslim passports Jannah Ravestein Bachelor thesis Geography, Planning and Environment (GPE) Nijmegen School of Management Radboud University Nijmegen June 2018 Supervisor: Prof. dr. Henk van Houtum Student number: s1009062 Word count: 18.029 Preface Nearly 16 weeks ago, me and my fellow students picked a subject that seemed most interesting to us. One of these subjects selectable was that of ‘visas’. In particular, the unequal division of visa requirements and mobility of different people in the world. To me, this subject linked the most to the parts of Human Geography I find most interesting: borders, identities and divisions in the world. Also, this subject was closest linked to the Master I would like to follow next year: Conflict, Territories & Identities at the Radboud University. I come from a University of Applied Science, where I proudly received my Bachelor diploma of Communications last year. Applied science is one level beneath university and, therefore, starting this pre-master, I was nervous if I was capable to study at a university. I learned some important lessons while continuing my studies. First of all, the commitment in my study has largely been dependent on the big interest I have in this discipline. Studying Communications, I always felt that there was more than the commercial way of thinking. Since I was a young girl, I have always been spreading the word that I will be the president of the United Nations at the Headquarter in New York City one day. -
The Impacts of Technological Invention on Economic Growth – a Review of the Literature Andrew Reamer1 February 28, 2014
THE GEORGE WASHINGTON INSTITUTE OF PUBLIC POLICY The Impacts of Technological Invention on Economic Growth – A Review of the Literature Andrew Reamer1 February 28, 2014 I. Introduction In their recently published book, The Second Machine Age, Erik Brynjolfsson and Andrew McAfee rely on economist Paul Krugman to explain the connection between invention and growth: Paul Krugman speaks for many, if not most, economists when he says, “Productivity isn’t everything, but in the long run it’s almost everything.” Why? Because, he explains, “A country’s ability to improve its standard of living over time depends almost entirely on its ability to raise its output per worker”—in other words, the number of hours of labor it takes to produce everything, from automobiles to zippers, that we produce. Most countries don’t have extensive mineral wealth or oil reserves, and thus can’t get rich by exporting them. So the only viable way for societies to become wealthier—to improve the standard of living available to its people—is for their companies and workers to keep getting more output from the same number of inputs, in other words more goods and services from the same number of people. Innovation is how this productivity growth happens.2 For decades, economists and economic historians have sought to improve their understanding of the role of technological invention in economic growth. As in many fields of inventive endeavor, their efforts required time to develop and mature. In the last five years, these efforts have reached a point where they are generating robust, substantive, and intellectually interesting findings, to the benefit of those interested in promoting growth-enhancing invention in the U.S. -
The Ethnographic Research of the Digital Divide
DIGITAL DIVIDE IN ISTRIA A dissertation presented to the faculty of the College of Communication of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Igor Matic August 2006 The dissertation entitled DIGITAL DIVIDE IN ISTRIA by IGOR MATIC has been approved for the School of Telecommunications and the College of Communication by Karen E. Riggs Professor, School of Telecommunications Gregory J. Shepherd Dean, College of Communication ABSTRACT MATIC, IGOR, Ph. D., August 2006, Mass Communication DIGITAL DIVIDE IN ISTRIA (209 pp.) Director of Dissertation: Karen E. Riggs This dissertation covers the Digital Divide phenomena in the Istrian region. Istria is a Northern Adriatic peninsula that is administratively divided between three European countries: Croatia (which covers approximately 90% of the peninsula), Slovenia (app. 7%), and Italy (app. 3%). In this dissertation my goal was to articulate the most influential theoretical frameworks that are used to explain the Digital Divide today and I try to give an explanation of the issue through ethnographic procedures. The goals of this research include the examination of the current Digital Divide debate, extension of the theory toward the local understanding and perception of this global phenomenon. Additionally, I wanted to identify different interpretations of the Digital Divide in three countries within one region and compare the differences and similarities in new technology usage and perceptions. Also, I was interested to see how age - which is described as one of the major Digital Divide factors - influences the relationships between older and younger generations, specifically relationships between parents and children, instructors, students and co-workers. -
The Changing Models of International Technology Transfer in China
The Changing Models of International Technology Transfer in China Zhou, Yuan (1); Xu, Guannan (2) 1: Tsinghua University, China, People's Republic of; 2: Beijing University of Posts and Telecommunications, People's Republic ofChina ABSTRACT In recent years, there have been some changes in technology transfer and cooperation activities that are different from traditional unidirectional technology transfer paradigm. This paper aims to explore the changing models of international technology transfer in China. This research examines the transfer of technology in three aspects: scientific knowledge, explicit technology, and tacit technology. Based on the network methods, we adopt a framework that integrates quantitative bibliometrics and patent analysis methods, complemented by qualitative enquiries with domain experts. Specifically, the research selects two emerging industries as representative cases: wind turbine and dye-sensitized solar cell. We find that the technology transfer models have experienced significant changes when considering scientific knowledge flows and industrial technology cooperation – the technology transfer models are different between these two emerging industries. The newer technology transfer models of dye-sensitized solar cell signify the rising innovation capacity of Chinese institutions which allows them to play more central roles in global innovation network. Keywords: international technology transfer; patent; bibliometrics; China 1 The Changing Models of International Technology Transfer in China INTRODUCTION Many scholars within innovation literature have looked at international technology transfer for innovation diffusion from a nation state perspective (Freeman, 1986; Nelson, 1993). In this context, China has been a recipient of transferred technology from developed economies such as the US and the European Union (EU) countries (Lema et al., 2015) for at least three decades. -
Technology and Global Change Technology and Global Change
Technology and Global Change Technology and Global Change by Arnulf Gr¨ubler International Institute for Applied Systems Analysis Laxenburg, Austria Meinen Eltern gewidmet Contents Acknowledgments ix 1 Introduction 1 1.1. Purpose 1 1.2. Approach 2 1.3. Structural Overview 7 PART I: WHAT IS TECHNOLOGY? 17 2 Technology: Concepts and Definitions 19 2.1. From Artifacts to Megamachines 20 2.2. Technological Change 38 2.3. Sources of Technological Change 75 3 Technology: Models 91 3.1. Models of Technological Change 91 4 Technology: History 117 4.1. A Long View of Technology Development: The Last 200 Years 117 Some Suggestions for Further Reading on Part I 127 PART II: TECHNOLOGY AND THE ENVIRONMENT: NATURAL AND HUMAN 129 5Agriculture 131 5.1. Introduction 132 5.2. Technology, Agricultural Land, and People 133 5.3. Three Clusters of Change in Agricultural Technologies 134 5.4. Impacts I: Productivity 154 5.5. Impacts II: Land-Use Changes 161 5.6. Impacts III: Other Global Changes 170 5.7. Global Changes in Human Occupations and Residence 181 5.8. Environmental Problems of Urbanization 186 vii viii 6 Industry 195 6.1. Introduction 196 6.2. Industrialization: Output and Productivity Growth 196 6.3. Clusters 204 6.4. Socioeconomic Impacts of Industrialization 223 6.5. Environmental Impacts of Industrialization 227 6.6. Industrial Metabolism and Dematerialization Strategies 229 6.7. Energy 248 7Services 291 7.1. Introduction: From Work to Pleasure 291 7.2. Measurement: Time Budgets and Consumer Expenditures 293 7.3. Lifestyles, Services, and the Environment 312 7.4. Mobility: Growing Demands and Emissions 316 7.5. -
Fostering Clean Technology Innovation
The GEF UNIDO Global Cleantech Programme for SMEs Fostering Clean Technology Innovation in Emerging and Developing Countries “We are creating an innovative, global program supporting small- and medium- sized enterprises by leveraging the Cleantech Open’s global platform with UNIDO’s international network and resources.” — Dr. Naoko Ishii, CEO and Chairperson, Global Environment Facility EntrEprEnEurial innovation is thE answEr to our most prEssing EnvironmEntal problEms, and thE kEy to Economic growth • Innovators are developing ingenious solutions to major challenges in energy generation, distribution and storage, air and water pollution, waste management, new forms of transport and construction techniques. • Entrepreneurship thrives in countries where there’s minimal red tape, strong rule of law, ready access to venture capital, and a vibrant support network for entrepreneurs. • Almost all net new jobs are created by growing small businesses. storage, air and water pollution, waste management, new forms of transport and construction techniques. gEF, unido and clEantEch opEn bring PROVEn EXpEriEncE • UNIDO and the Cleantech Open, with the support of the GEF, have joined forces to launch cleantech platforms and competitions in developing and emerging countries, based on the Cleantech Open’s proven accelerator model originally created in Silicon Valley. • UNIDO has been supporting SME’s in developing countries for over 20 years. • The Cleantech Open runs the world’s largest cleantech accelerator, supporting innovators and entrepreneurs through extensive training, mentoring, showcases and access to capital: • Over 720 startups have completed this process in the United States alone • Over 40% of reporting alumni companies have now raised capital totalling over $800M, creating thousands of jobs • Participating countries will have access to the UNIDO’s in-country resources and to the Cleantech Open’s events, training, materials and an online global platform connecting entrepreneurs to a global network of mentors, investors and experts. -
Sustainable Low-Carbon Transport Through the GEF
Advancing Sustainable Low-Carbon Transport Through the GEF A STAP Advisory Document Scientific and Technical Advisory Panel The Scientific and Technical Advisory Panel, administered by UNEP, advises the Global Environmental Facility Advancing Sustainable Low-Carbon Transport Through the GEF A STAP Advisory Document Scientific and Technical Advisory Panel The Scientific and Technical Advisory Panel, administered by UNEP, advises the Global Environmental Facility Advancing Sustainable Low-Carbon Transport Through the GEF Prepared on behalf of the Scientific and Technical Advisory Panel (STAP) of the Global Environment Facility (GEF) by: Holger Dalkmann (Transport Research Laboratory) and Cornie Huizenga (Partnership on Sustainable, Low Carbon Transport)* Acknowledgements The authors would like to thank Lev Neretin of the Secretariat of the Scientific and Technical Advisory Panel of the GEF for the guidance provided in the drafting of the Advisory Document. The Document benefited greatly from the comments and suggestions received from the World Bank, Asian Development Bank, Inter-American Development Bank, the United Nations Development Program, the United Nations Environment Program, as well as the GEF Secretariat. A draft of the document was also circulated for comments to selected members of the Partnership for Sustainable Low Carbon Transport and comments were received from Axel Friedrich; Heather Allen (International Organization for Public transport); Andrea Lobo and Hilda Martinez (Center for Sustainable Transport Mexico); Sophie Punte (Clean Air Initiative for Asian Cities Center); Sanjivi Sundar (The Energy and Resources Center); Eric Zusman (Institute for Global Environmental Strategies). Please use the following reference for this publication: GEF-STAP (2010). Advancing Sustainable Low-Carbon Transport Through the GEF, A STAP advisory document by Holger Dalkmann and Cornie Huizenga.