Exploration Ontologique De Données Issues De Patients Atteints De Maladies Rares

Total Page:16

File Type:pdf, Size:1020Kb

Exploration Ontologique De Données Issues De Patients Atteints De Maladies Rares École doctorale no 610 : Sciences et Ingénierie des Systèmes, Mathématiques, Informatique THÈSE pour l’obtention du Grade de DOCTEUR DE L’UNIVERSITÉ DE POITIERS Secteur de Recherche “Bio-informatique” présentée et soutenue publiquement par Quentin Riché-Piotaix le 20 décembre 2019 Exploration ontologique de données issues de patients atteints de maladies rares Directeur de thèse : Professeur Patrick Girard Co-encadrant de thèse : Docteur Frédéric Bilan Jury Gaëlle Calvary, Professeur Rapporteur Christèle Dubourg, Maître de conférence Rapporteur Ladjel Bellatreche, Professeur Examinateur Annie Choquet-Geniet, Professeur Examinateur Sophie Lepreux, Maître de conférence Examinateur Jean Muller, Maître de conférence Examinateur T Université de Poitiers Laboratoire d’Informatique et d’Automatique pour les Systèmes H Téléport 2 - 1 avenue Clément Ader BP40109 86961 Futuroscope Chasseneuil Cedex - France EA3808 NEUVACOD & Laboratoire de Génétique Biologique E service de Génétique, CHU de Poitiers S E Remerciements Je tiens tout d’abord à remercier mon directeur de thèse Patrick pour toute l’aide fournie, sans laquelle l’élaboration de ces travaux aurait été impossible, et pour m’avoir guidé et conseillé tout au long de ces 4 années. Je remercie particulièrement mon co-directeur Fred, de m’avoir épaulé, supporté et inspiré au quotidien, et plus que tout d’avoir cru à ce projet quand moi-même je n’y croyais plus. Mes remerciements vont aussi à Christèle Dubourg et Gaëlle Calvary de me faire l’honneur de rapporter ce travail. Je remercie également Ladjel Bellatreche, Annie Choquet-Geniet, Sophie Lepreux et Jean Muller d’avoir accepté de composer mon jury et de venir examiner ma soutenance. Le laboratoire de génétique à été un endroit idéal pour réaliser ces travaux, j’en remercie tous les acteurs que j’ai eu le plaisir de côtoyer et plus particulièrement mes camarades de café, Barbara, Sylvie, Vincent et Valérie, pour avoir contribué significativement à mon réveil chaque matin. Un autre merci particulier à Montse pour son efficacité et sa gentillesse. Je suis très heureux de pouvoir rester parmi vous quelques années de plus. Toujours au sein du laboratoire, je remercie tous ceux qui ont prit de leur temps pour tester mes différentes productions, m’expliquer des pratiques obscures et m’apporter de précieux conseils : Gwenaël, Tanguy, Fabienne, Dominique, et un merci spécial à Lucile pour les goûters et les salades. Merci à mes parents d’avoir été d’un soutien sans faille et d’une aide précieuse, comme depuis toujours. Merci à Pierre et Mathilde pour leurs soutiens, aux royaumes d’Hyrule et de l’enfer. Merci à Audessa, pour la motivation quand je n’en avais plus et pour des leçons de vie que je n’oublierai jamais. Merci à Ortie pour son soutien moral et à N pour son énergie. Enfin et surtout, Amandine, la vie à tes côtés est un tel bonheur que tout me paraît plus facile. Je t’aime. ii Table des matières Table des matières iii Liste des figures v Liste des tableaux 1 1 Introduction 3 1.1 Principales étapes de l’analyse . .5 2 Contexte 9 2.1 Cadre de la recherche . 10 2.2 Problématique et esquisse générale . 15 3 Etat de l’art général 17 3.1 Cadre théorique . 18 3.2 La Déficience Intellectuelle . 27 3.3 Les scores . 28 3.4 Tâches du généticien . 33 3.5 Manipulation de base de données . 40 3.6 Problématiques d’Interaction Homme Machine . 45 3.7 Conclusion sur la bibliographie . 47 4 Contribution base de données 49 4.1 Introduction et rappel . 50 4.2 État de l’art de la création d’ontologies . 50 4.3 Approche de recherche . 57 4.4 Détermination des liens entre les notions ontologiques et le vocabulaire métier 58 4.5 Discussion . 63 4.6 Prototype COPUNG . 64 4.7 Conclusion . 77 5 Contribution score 79 5.1 Introduction et rappel . 80 5.2 État de l’art spécifique . 80 5.3 Synthèse de la bibliographie . 95 5.4 Approche choisie . 100 5.5 GenSCor ...................................... 103 5.6 Méthodologie d’évaluation . 108 5.7 Résultats . 110 iii TABLE DES MATIÈRES 6 Conclusion 133 6.1 Contextualisation . 134 6.2 Résumé de nos travaux . 135 6.3 Perspectives de recherches et d’améliorations . 137 A Liste des acronymes 147 B Glossaire 149 C Table des adresses URL 151 D rulesets des utilisateurs 153 iv Liste des figures 1.1 Processus d’analyse d’un exome . .4 1.2 Schéma illustrant la notion de profondeur de séquençage . .5 1.3 Récapitulatif du processus d’analyse réalisé par le généticien . .8 2.1 Schéma du positionnement de nos contributions sur le processus global de l’analyse de données d’exomes . 16 3.1 Schéma du principe de séquençage selon Illumina 1) Ajout du nucléotide marqué 2) Fixation et blocage de la séquence par le fluorochrome 3) Excitation au laser, libération de la séquence et émission du flurochrome excité . 22 3.2 2 reads au format fastq ............................... 24 3.3 Visualisation de 2 reads au format bam ...................... 26 3.4 Nombre de publications contenant la notion de score par année dans la base de données PubMed . 29 3.5 Les six étages de l’ontoloy learning . 43 4.1 Schéma du fonctionnement de la méthode DILIGENT ............. 53 4.2 Schéma du fonctionnement de la méthode HCOME .............. 54 4.3 Schéma de l’agencement des étapes de création d’une ontologie dans la méthode UPON Lite ..................................... 55 4.4 Schéma des étapes de création d’une ontologie via la méthode Ontology Maturing 57 4.5 Les dix premières lignes de l’export de l’ontologie HPO . 59 4.6 Les dix premières lignes de l’export de dbSNP ................. 59 4.7 Les dix premières lignes de l’export d’OMIM . 60 4.8 Le schéma entités-association de l’export de l’ontologie HPO . 60 4.9 Le schéma entités-association de l’export de la morbidmap d’OMIM . 60 4.10 Le schéma entités-association de la base de données dbSNP .......... 61 4.11 Schéma récapitulatif de l’ajout d’un export de base de données à l’ontologie 65 4.12 L’interface d’import des données dans le prototype COPUNG, avant le test des paramètres. 67 4.13 L’interface d’import des données dans le prototype COPUNG avec l’affichage des données. 67 4.14 L’interface d’ajout des concepts dans le prototype COPUNG . 68 4.15 L’interface de création d’un nouveau concept dans le prototype COPUNG . 68 4.16 L’interface de création des concepts dans le prototype COPUNG . 68 4.17 Le concept de gène tel qu’il est sauvegardé dans l’ontologie . 69 4.18 L’interface de création des relations dans le prototype COPUNG . 69 4.19 L’interface de création des relations dans le prototype COPUNG avec une visualisation de relation . 70 4.20 La sauvegarde d’une relation dans l’ontologie du prototype COPUNG . 70 4.21 Le schéma entités-association global des trois bases de données OMIM, HPO et dbSNP ...................................... 71 4.22 Le schéma de l’ontologie produite par l’utilisateur F .............. 72 v LISTE DES FIGURES 4.23 Le schéma retravaillé de l’ontologie de l’utilisateur F ............. 73 4.24 Le schéma de l’ontologie produite par l’utilisateur X .............. 73 4.25 Le schéma de l’ontologie produite par l’utilisateur S .............. 74 4.26 Le schéma de l’ontologie produite par l’utilisateur G .............. 75 5.1 Capture d’écran de l’interface d’annotation de QueryOR ............ 81 5.2 Capture d’écran d’une règle élaborée sous QueryOR .............. 81 5.3 Capture d’écran de la présentation des résultats groupés de QueryOR .... 82 5.4 Capture d’écran de la présentation des résultats détaillés de QueryOR .... 82 5.5 Capture d’écran de la présentation des résultats par gène de QueryOR ; les cadres 1 et 2 correspondent aux variations ; les exons sont représentés par les bandes blanches au-dessus des variations et détaillés par transcrit en-dessous. 83 5.6 Capture d’écran de la présentation des résultats téléchargés depuis QueryOR 86 5.7 Capture d’écran de la présentation des filtres dans Varaft ........... 87 5.8 Capture d’écran de la présentation des variants dans Varaft .......... 87 5.9 Capture d’écran de la présentation de VCF-miner ............... 90 5.10 Récapitulatif du processus de filtration . 99 5.11 Capture d’écran d’un exemple de règle . 104 5.12 Capture d’écran du menu d’ajout des règles . 104 5.13 Capture d’écran de la fenêtre des options de GenSCor ............. 106 5.14 Capture d’écran d’une règle ET ......................... 106 5.15 Capture d’écran d’une règle OU ......................... 107 5.16 Capture d’écran du format d’une sauvegarde de ruleset ............ 107 5.17 Capture d’écran du menu File de GenSCor ................... 108 5.18 Nombre de critères utilisés pour chaque utilisateur . 112 5.19 Nombre de critères partagés en fonction du nombre d’utilisateurs . 113 5.20 Profil des rulesets de l’utilisateur F. FDR : F. dominant sur des gènes recherches, FDO : F. dominant sur des gènes OMIM, FRO : F. récessif sur des gènes OMIM, FX : F. sur le chromosome X. 117 5.21 Profil des rulesets de l’utilisateur G. GAR : G. autosomique récessif, GX : G. sur le chromosome X, GAD : G. autosomique dominant, GDN : G. De novo.. 117 5.22 Profil des rulesets de l’utilisateur L. LD : L. Dominant, LX : L. sur le chromo- some X, LR : L. récessif . 118 5.23 Profil du ruleset de l’utilisateur T......................... 118 5.24 Positionnement des variations pathogènes parmi les premiers rangs . 122 5.25 Comparaisons des approches utilisées par les différents utilisateurs .
Recommended publications
  • IL-1 Transcriptional Responses to Lipopolysaccharides Are Regulated by a Complex of RNA Binding Proteins
    IL-1 Transcriptional Responses to Lipopolysaccharides Are Regulated by a Complex of RNA Binding Proteins This information is current as Lihua Shi, Li Song, Kelly Maurer, Ying Dou, Vishesh R. of October 1, 2021. Patel, Chun Su, Michelle E. Leonard, Sumei Lu, Kenyaita M. Hodge, Annabel Torres, Alessandra Chesi, Struan F. A. Grant, Andrew D. Wells, Zhe Zhang, Michelle A. Petri and Kathleen E. Sullivan J Immunol published online 17 January 2020 http://www.jimmunol.org/content/early/2020/01/16/jimmun Downloaded from ol.1900650 Supplementary http://www.jimmunol.org/content/suppl/2020/01/16/jimmunol.190065 http://www.jimmunol.org/ Material 0.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published January 17, 2020, doi:10.4049/jimmunol.1900650 The Journal of Immunology IL-1 Transcriptional Responses to Lipopolysaccharides Are Regulated by a Complex of RNA Binding Proteins Lihua Shi,* Li Song,* Kelly Maurer,* Ying Dou,*,1 Vishesh R.
    [Show full text]
  • M1BP Cooperates with CP190 to Activate Transcription at TAD Borders and Promote Chromatin Insulator Activity
    ARTICLE https://doi.org/10.1038/s41467-021-24407-y OPEN M1BP cooperates with CP190 to activate transcription at TAD borders and promote chromatin insulator activity Indira Bag 1,2, Shue Chen 1,2,4, Leah F. Rosin 1,2,4, Yang Chen 1,2, Chen-Yu Liu3, Guo-Yun Yu3 & ✉ Elissa P. Lei 1,2 1234567890():,; Genome organization is driven by forces affecting transcriptional state, but the relationship between transcription and genome architecture remains unclear. Here, we identified the Drosophila transcription factor Motif 1 Binding Protein (M1BP) in physical association with the gypsy chromatin insulator core complex, including the universal insulator protein CP190. M1BP is required for enhancer-blocking and barrier activities of the gypsy insulator as well as its proper nuclear localization. Genome-wide, M1BP specifically colocalizes with CP190 at Motif 1-containing promoters, which are enriched at topologically associating domain (TAD) borders. M1BP facilitates CP190 chromatin binding at many shared sites and vice versa. Both factors promote Motif 1-dependent gene expression and transcription near TAD borders genome-wide. Finally, loss of M1BP reduces chromatin accessibility and increases both inter- and intra-TAD local genome compaction. Our results reveal physical and functional inter- action between CP190 and M1BP to activate transcription at TAD borders and mediate chromatin insulator-dependent genome organization. 1 Nuclear Organization and Gene Expression Section, Bethesda, MD, USA. 2 Laboratory of Biochemistry and Genetics, Bethesda, MD, USA. 3 Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA. ✉ 4These authors contributed equally: Shue Chen, Leah F.
    [Show full text]
  • From Genome to Phenome
    Dutch Society of Human Genetics (www.nvhg-nav.nl) From Genome to Phenome Two-Day Autumn Symposium 3 & 4 October 2013 Wij zijn bijzonder erkentelijk voor de financiële steun van Stichting Simonsfonds Logo’s: Tom de Vries Lentsch 2 Dear colleagues, Welcome to the joint autumn symposium of the NVHG (Dutch Society for Human Genetics). This meeting is organized together with the VKGL (Vereniging Klinisch Genetische Laboratoriumdiagnostiek), the VKGN (Vereniging Klinische Genetica Nederland) and the NACGG (Nederlandse Associatie voor Community Genetics en Public Health Genomics ) We live in an exciting time. Developments in genetics are going very fast. New technologies have advanced research and these findings are rapidly translated to diagnostics. Even non-invasive prenatal tests are now possible. Single gene tests with long turn-around times are being replaced by rapid analysis of gene panels and the genetic basis of multifactorial diseases is being resolved. This has great impact on the way we perform our research, diagnostics and counseling. Furthermore, we seriously have to reckon with the impact on society as illustrated by the recent publicity on the introduction of non-invasive prenatal testing. The scope of our profession is changing, interaction between the different professionals in genetics is increasingly important. This meeting is the perfect place to discuss the new developments and stimulate discussion of the possibilities and their implications. Thursday afternoon’s forum discussion on prenatal testing is a good example. This year we focus on the translation of the genetic findings to the patient. How do we interpret the sequence variants detected by the new technologies, which functional assays are available and how much functional evidence do we need before we start offering new tests? The scientific program covers basic research, disease models and implications for diagnostics.
    [Show full text]
  • Figure S1. 17-Mer Distribution in the Yangtze Finless Porpoise Genome
    Figure S1. 17-mer distribution in the Yangtze finless porpoise genome. The x-axis is 17-mer depth (X); the y-axis is the number of sequencing reads at that depth. Figure S2. Sequence depth distribution of the assembly data. The x-axis shows the sequencing depth (X) and the y-axis shows the number of bases at a given depth. The results demonstrate that 99% of bases sequencing depth is more than 20. Figure S3. Comparison of gene structure characteristics of Yangtze finless porpoise and other cetaceans. The x-axis represents the length of corresponding genetic element of exon number and the y-axis represents gene density. Figure S4. Phylogeny relationships between the Yangtze finless porpoise and other mammals reconstructed by RAxML with the GTR+G+I model. Table S1. Summary of sequenced reads Raw Reads Qualified Reads1 Total Read Sequence Physical Total Read Sequence Physical Library SRA Data Length Coverage2 Coverage2 Data Length Coverage2 Coverage2 Insert Size (bp) Number (Gb) (bp) (×) (×) (Gb) (bp) (×) (×) 289 58.94 150.00 23.67 22.80 57.84 149.75 23.23 22.41 SRR6923836 462 71.33 150.00 28.65 44.12 70.12 149.74 28.16 43.44 SRR6923837 624 67.47 150.00 27.10 56.36 63.90 149.67 25.66 53.50 SRR6923834 791 57.58 150.00 23.12 60.97 55.39 149.67 22.24 58.78 SRR6923835 4,000 108.73 150.00 43.67 582.22 70.74 150.00 28.41 378.80 SRR6923832 7,000 115.4 150.00 46.35 1,081.39 84.76 150.00 34.04 794.27 SRR6923833 11,000 107.37 150.00 43.12 1,581.08 79.78 150.00 32.04 1,174.81 SRR6923830 18,000 127.46 150.00 51.19 3,071.33 97.75 150.00 39.26 2,355.42 SRR6923831 Total 714.28 - 286.87 6,500.27 580.28 - 233.04 4,881.43 - 1Raw reads in mate-paired libraries were filtered to remove duplicates and reads with low quality and/or adapter contamination, raw reads in paired-end libraries were filtered in the same manner then subjected to k-mer-based correction.
    [Show full text]
  • NIH Public Access Author Manuscript Nat Rev Mol Cell Biol
    NIH Public Access Author Manuscript Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 February 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Nat Rev Mol Cell Biol. 2014 February ; 15(2): 108–121. doi:10.1038/nrm3742. A day in the life of the spliceosome A. Gregory Matera1,2,4,5 and Zefeng Wang3,4 1Department of Biology, University of North Carolina, Chapel Hill, NC 27599 2Department of Genetics, University of North Carolina, Chapel Hill, NC 27599 3Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599 4Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 5Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Abstract One of the most amazing findings in molecular biology was the discovery that eukaryotic genes are discontinuous, interrupted by stretches of non-coding sequence. The subsequent realization that the intervening regions are removed from pre-mRNA transcripts via the activity of a common set of small nuclear RNAs (snRNAs), which assemble together with associated proteins into a spliceosome, was equally surprising. How do cells orchestrate the assembly of this molecular machine? And how does the spliceosome accurately recognize exons and introns to carry out the splicing reaction? Insights into these questions have been gained by studying the life cycle of spliceosomal snRNAs from their transcription, nuclear export and reimport, all the way through to their dynamic assembly into the spliceosome. This assembly process can also affect the regulation of alternative splicing and has implications for human disease.
    [Show full text]
  • The Human Integrator Complex Facilitates Transcriptional Elongation by Endonucleolytic Cleavage of Nascent Transcripts
    Please do not remove this page The Human Integrator Complex Facilitates Transcriptional Elongation by Endonucleolytic Cleavage of Nascent Transcripts Blumenthal, Ezra https://scholarship.miami.edu/discovery/delivery/01UOML_INST:ResearchRepository/12386098540002976?l#13386098530002976 Blumenthal, E. (2021). The Human Integrator Complex Facilitates Transcriptional Elongation by Endonucleolytic Cleavage of Nascent Transcripts [University of Miami]. https://scholarship.miami.edu/discovery/fulldisplay/alma991031605861802976/01UOML_INST:ResearchR epository Open Downloaded On 2021/09/25 13:59:55 -0400 Please do not remove this page UNIVERSITY OF MIAMI THE HUMAN INTEGRATOR COMPLEX FACILITATES TRANSCRIPTIONAL ELONGATION BY ENDONUCLEOLYTIC CLEAVAGE OF NASCENT TRANSCRIPTS By Ezra Blumenthal A DISSERTATION SuBmitteD to the Faculty of the University of Miami in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Coral GaBles, FloriDa August 2021 ©2021 Ezra Blumenthal All Rights ReserveD UNIVERSITY OF MIAMI A Dissertation suBmitteD in partial fulfillment of the requirements for the Degree of Doctor of Philosophy THE HUMAN INTEGRATOR COMPLEX FACILITATES TRANSCRIPTIONAL ELONGATION BY ENDONUCLEOLYTIC CLEAVAGE OF NASCENT TRANSCRIPTS Ezra Blumenthal ApproveD: ________________ _________________ Ramin Shiekhattar, Ph.D. Anthony J. CapoBianco, Ph.D. Professor of Human Genetics Professor of Surgery ________________ _________________ DaviD J. Robbins, Ph.D. Stephen D. Nimer, M.D. Professor of Surgery Professor of MeDicine ________________ ________________ Lluis Morey, Ph.D. Guillermo PraDo, Ph.D. Assistant Professor of Human Genetics Dean of the GraDuate School ________________ SanDra K. Lemmon, Ph.D. Professor of Molecular anD Cellular Pharmacology Blumenthal, Ezra (Ph.D., Cancer Biology) The Human Integrator Complex (August 2021) Facilitates Transcriptional Elongation By EnDonucleolytic Cleavage of Nascent Transcripts. Abstract of a Dissertation at the University of Miami.
    [Show full text]
  • The Integrator Complex Terminates Promoter-Proximal Transcription at Protein- Coding Genes
    bioRxiv preprint doi: https://doi.org/10.1101/725507; this version posted August 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The Integrator complex terminates promoter-proximal transcription at protein- coding genes Nathan D. Elrod1#, Telmo Henriques2#, Kai-Lieh Huang1, Deirdre C. Tatomer3, Jeremy E. Wilusz3, Eric J. Wagner1* & Karen Adelman2* Affiliations: 1Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA. 2Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. 3Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. #These authors contributed equally to this work. *Corresponding authors E-mail: [email protected] (K.A.); [email protected] (E.J.W.) Lead Contact: [email protected] Highlights: • The Integrator complex inhibits transcription elongation at ~15% of mRNA genes • Integrator targets promoter-proximally paused Pol II for termination • The RNA endonuclease of Integrator subunit 11 is critical for gene attenuation • Integrator-repressed genes are enriched in signaling and growth-responsive pathways 1 bioRxiv preprint doi: https://doi.org/10.1101/725507; this version posted August 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Mosaic Origin of the Eukaryotic Kinetochore
    Mosaic origin of the eukaryotic kinetochore Eelco C. Tromera,b,c,1,2, Jolien J. E. van Hooffa,b,1, Geert J. P. L. Kopsb,d,3, and Berend Snela,2,3 aTheoretical Biology and Bioinformatics, Biology, Science Faculty, Utrecht University, 3584 CH Utrecht, The Netherlands; bOncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, The Netherlands; cDepartment of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; and dUniversity Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved April 30, 2019 (received for review December 24, 2018) The emergence of eukaryotes from ancient prokaryotic lineages In this study, we addressed the question of how the kineto- embodied a remarkable increase in cellular complexity. While pro- chore originated. Leveraging the power of detailed phylogenetic karyotes operate simple systems to connect DNA to the segregation analyses, improved sensitive sequence searches, and new struc- machinery during cell division, eukaryotes use a highly complex tural insights, we traced the evolutionary origins of the 52 pro- protein assembly known as the kinetochore. Although conceptually teins that we now assign to the LECA kinetochore. Based on our similar, prokaryotic segregation systems and the eukaryotic kineto- findings, we propose that the LECA kinetochore was of mosaic chore are not homologous. Here we investigate the origins of the origin; it contained proteins that shared ancestry with proteins kinetochore before the last eukaryotic common ancestor (LECA) using involved in various core eukaryotic processes, as well as potentially phylogenetic trees, sensitive profile-versus-profile homology detection, novel proteins.
    [Show full text]
  • Nipbl Interacts with Zfp609 and the Integrator Complex to Regulate Cortical Neuron Migration
    Article Nipbl Interacts with Zfp609 and the Integrator Complex to Regulate Cortical Neuron Migration Highlights Authors d Nipbl interacts with the transcription factor Zfp609 and the Debbie L.C. van den Berg, Integrator complex Roberta Azzarelli, Koji Oishi, ..., Dick H.W. Dekkers, d Nipbl, Zfp609, and Integrator are required for cortical neuron Jeroen A. Demmers, migration Franc¸ ois Guillemot d Nipbl, Zfp609, and Integrator co-occupy genomic binding sites independently of cohesin Correspondence [email protected] d Nipbl, Zfp609, and Integrator directly regulate neuronal (D.L.C.v.d.B.), migration genes [email protected] (F.G.) In Brief NIPBL mutations cause Cornelia de Lange syndrome, but Nipbl function in brain development is not well understood. Van den Berg et al. show that Nipbl interacts with Zfp609 and the Integrator complex to transcriptionally regulate cortical neuron migration. van den Berg et al., 2017, Neuron 93, 348–361 January 18, 2017 ª 2017 The Authors. Published by Elsevier Inc. http://dx.doi.org/10.1016/j.neuron.2016.11.047 Neuron Article Nipbl Interacts with Zfp609 and the Integrator Complex to Regulate Cortical Neuron Migration Debbie L.C. van den Berg,1,* Roberta Azzarelli,1 Koji Oishi,1 Ben Martynoga,1 Noelia Urba´ n,1 Dick H.W. Dekkers,2 Jeroen A. Demmers,2 and Franc¸ ois Guillemot1,3,* 1The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK 2Center for Proteomics, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands 3Lead Contact *Correspondence: [email protected] (D.L.C.v.d.B.), [email protected] (F.G.) http://dx.doi.org/10.1016/j.neuron.2016.11.047 SUMMARY Cornelia de Lange syndrome (CdLS) is one particular example of a developmental disorder highlighted by neurological defects, Mutations in NIPBL are the most frequent cause of including seizures and intellectual disability.
    [Show full text]
  • Pan-Cancer Driver Copy Number Alterations Identified By
    www.nature.com/scientificreports OPEN Pan‑cancer driver copy number alterations identifed by joint expression/CNA data analysis Gaojianyong Wang1 & Dimitris Anastassiou1,2* Analysis of large gene expression datasets from biopsies of cancer patients can identify co-expression signatures representing particular biomolecular events in cancer. Some of these signatures involve genomically co-localized genes resulting from the presence of copy number alterations (CNAs), for which analysis of the expression of the underlying genes provides valuable information about their combined role as oncogenes or tumor suppressor genes. Here we focus on the discovery and interpretation of such signatures that are present in multiple cancer types due to driver amplifcations and deletions in particular regions of the genome after doing a comprehensive analysis combining both gene expression and CNA data from The Cancer Genome Atlas. Gene co-expression signatures in cancer ofen involve genomically co-localized genes resulting from the presence of various biological mechanisms that include, but are not limited to, the copy number alterations (CNAs) of malignant cells1 and the immune response against cancer cells2. For example, ERBB2, GRB7, MIEN1 are among the genes co-expressed in breast cancer due to the HER2 amplicon3, while HLA-DPA1, HLA-DPB1, HLA-DRA are among the genes co-expressed in the MHC Class II immune cluster4. Any co-expression signatures that are consistently present in many diferent cancer types are referred to as "pan-cancer" signatures, representing uni- versal (tissue-independent) biomolecular events in cancer5–8. Ref.8 studied co-expressed genes in immune cells. Tere are several techniques for identifying co-expression signatures involving genomically co-localized genes 9–11.
    [Show full text]
  • Demographic Histories and Genome-Wide Patterns of Divergence in Incipient Species of Shorebirds
    Supplementary Material Demographic histories and genome-wide patterns of divergence in incipient species of shorebirds Xuejing Wang1§, Kathryn H. Maher2§, Nan Zhang1§, Pingjia Que3, Chenqing Zheng1,4, Simin Liu1, Biao Wang5, Qin Huang1, De Chen3, Xu Yang4, Zhengwang Zhang3, Tamás Székely2, Araxi O. Urrutia2,6*, Yang Liu1* 1. State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China 2. Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK 3. Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, P. R. China 4. Shenzhen Realomics Biological Technology Ltd, Shenzhen, 518000, P. R. China 5. Research Center of Precision Medicine, College of Life Sciences and Oceanography, Key laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China 6. Instituto de Ecología, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico. Running title: Population genomics of two plover species Abbreviation: KP:Kentish plover (Charadrius alexandrinus) WFP: White-faced plover (Charadrius dealbatus) Supplementary Table 1 Sampling sites of KP and WFP Species site amount Yangjiang, 1 Guangdong* Qinghai Lake, Qinghai 2 Kentish plover Tangshan, Hebei 2 Lianyungang, Jiangsu 2 Rudong, Jiangsu 2 Zhoushan, Zhejiang 2 Minjiang Estuary, 2 Fuzhou, Fujian Xiamen, Fujian 1 White-faced Shanwei, Guangdong 2 plover Zhanjiang, Guangdong 2 Beihai, Guangxi 2 Dongfang, Hainan 2 Total 22 * The wintering female individual used for de novo sequencing. Supplementary Figure 1 Schematic overview of the different analyses of the study 1.
    [Show full text]
  • Science Journals
    SCIENCE ADVANCES | RESEARCH ARTICLE BIOCHEMISTRY Copyright © 2020 The Authors, some rights reserved; Integrator restrains paraspeckles assembly by exclusive licensee American Association promoting isoform switching of the lncRNA NEAT1 for the Advancement Jasmine Barra1,2,3,4,5, Gabriel S. Gaidosh6, Ezra Blumenthal6, Felipe Beckedorff 6, Mina M. Tayari6, of Science. No claim to 6 7,8 9 3,4,10 3,4 original U.S. Government Nina Kirstein , Tobias K. Karakach , Torben Heick Jensen , Francis Impens , Kris Gevaert , Works. Distributed 5 6 1,2 † Eleonora Leucci *, Ramin Shiekhattar *, Jean-Christophe Marine * under a Creative Commons Attribution RNA 3′ end processing provides a source of transcriptome diversification which affects various (patho)-physiological NonCommercial processes. A prime example is the transcript isoform switch that leads to the read-through expression of the long License 4.0 (CC BY-NC). non-coding RNA NEAT1_2, at the expense of the shorter polyadenylated transcript NEAT1_1. NEAT1_2 is required for assembly of paraspeckles (PS), nuclear bodies that protect cancer cells from oncogene-induced replication stress and chemotherapy. Searching for proteins that modulate this event, we identified factors involved in the 3′ end processing of polyadenylated RNA and components of the Integrator complex. Perturbation experiments estab- lished that, by promoting the cleavage of NEAT1_2, Integrator forces NEAT1_2 to NEAT1_1 isoform switching and, thereby, restrains PS assembly. Consistently, low levels of Integrator subunits correlated with poorer prognosis of cancer patients exposed to chemotherapeutics. Our study establishes that Integrator regulates PS biogenesis and a link between Integrator, cancer biology, and chemosensitivity, which may be exploited therapeutically. INTRODUCTION and/or activity of core 3′ end processing factors can obviously con- Most human genes have multiple sites at which RNA 3′ end cleavage tribute to 3′ end processing rewiring, either globally or specifically, and polyadenylation can occur (1).
    [Show full text]