Population and Distribution of Sunda Porcupine (Hystrix Javanica F. Cuvier, 1823) in Designated Area of Cisokan Hydropower, West Java, Indonesia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hystrix Africaeaustralis)
Reproduction in captive female Cape porcupines (Hystrix africaeaustralis) R. J. van Aarde Mammal Research Institute, University ofPretoria, Pretoria 0002, South Africa Summary. Captive females attained sexual maturity at an age of 9\p=n-\16months and con- ceived for the first time when 10\p=n-\25months old. Adult females were polyoestrous but did not cycle while lactating or when isolated from males. The length of the cycle varied from 17 to 42 days (mean \m=+-\s.d. 31\m=.\2\m=+-\6\m=.\5days; n = 43) and females experienced 3\p=n-\7 sterile cycles before conceiving. Pregnancy lasted for 93\p=n-\94days (93\m=.\5\m=+-\0\m=.\6days; N = 4) and litter intervals varied from 296 to 500 days (385 \m=+-\60\m=.\4;n = 10). Litter size varied from 1 to 3 (1\m=.\5\m=+-\0\m=.\66;n = 165) and the well-developed precocial young weighed 300\p=n-\400g (351 \m=+-\47\m=.\4g; n= 19) at birth. Captive females reproduced throughout the year with most litters (78\m=.\7%;n = 165) being produced between August and March. Introduction Cape porcupines (Hystrix africaeaustralis) inhabit tropical forests, woodlands, grassland savannas, semi-arid and arid environments throughout southern Africa. Despite this widespread distribution little attention has been given to these nocturnal, Old World hystricomorph rodents, which shelter and breed in subterranean burrows, rock crevices and caves. Some information on reproduction in female porcupines has been published on the crested porcupine (H. cristata) (Weir, 1967), the Himalayan porcupine (H. hodgsoni) (Gosling, 1980) and the Indian porcupine (H. -
Annual Report for the Year 2017-18
NAGALAND ZOOLOGICAL PARK, RANGAPAHAR DIMAPUR NAGALAND Annual Report for the year 2017-18 CONTENTS Page Sl.No Section Number 1. Report of the Officer-in-Charge 4 2. History of the Zoo 6 3. Vision 6 4. Mission 6 5. Objective 7 6. About us 8 7. Organizational Chart 10 8. Human Resources 11 9. Capacity Building of the zoo personnel 13 10. Zoo Advisory Committee 14 11. Health Advisory Committee 14 12. Statement of income and expenditure of the Zoo 15 13. Daily Feed Schedule of animals 16 14. Vaccination Schedule of animals 20 2 15. De-worming schedule of animals 20 16. Disinfection Schedule 20 17. Health Check-up of employees for Zoonotic diseases 21 18. Development Works carried out in the zoo during the year 22 19. Education and Awareness programmes during the year 23 20. Important Events and happenings in the zoo 24 21. Seasonal special arrangements for upkeep of animals 26 22. Research work carried out and publications 27 23. Conservation Breeding Programme of the Zoo 27 24. Animal acquisition/transfer/exchange during the year 27 25. Rescue and Rehabilitation of the wild animals carried out by the zoo 28 26. Annual Inventory of animals 29 27. Mortality of animals 31 Status of the Compliance with conditions stipulated by the Central Zoo 28. 32 Authority 29. List of free living wild animals within the zoo premises 33 3 1. Report of the Officer-in-Charge The Nagaland Zoological Park is located at about 8 km from the commercial city of Dimapur in the state of Nagaland with total area of 176 Hectares. -
Inf26erev 2011 Code of Conduct Zoos+Aquaria IAS FINAL
Strasbourg, 8 October 2012 T-PVS/Inf (2011) 26 revised [Inf26erev_2011.doc] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Standing Committee 32nd meeting Strasbourg, 27-30 November 2012 __________ EUROPEAN CODE OF CONDUCT ON ZOOLOGICAL GARDENS AND AQUARIA AND INVASIVE ALIEN SPECIES Code, rationale and supporting information - FINAL VERSION – (October 2012) Report prepared by Mr Riccardo Scalera, Mr Piero Genovesi, Mr Danny de man, Mr Bjarne Klausen, Ms Lesley Dickie This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS/Inf (2011) 26 rev. - 2 – INDEX 1. INTRODUCTION ...........................................................................................................................3 1.1 Why a Code of Conduct ? ......................................................................................................4 2. SCOPE AND AIM ..........................................................................................................................6 3. BACKGROUND .............................................................................................................................7 3.1 The History of Zoological Gardens and Aquaria.....................................................................7 3.2 Zoological Gardens and Aquaria as pathways for IAS............................................................7 3.2.1 IAS originating from zoological gardens and aquaria ....................................................8 -
Out of Europe: Investigating Hystrix Cristata (Rodentia: Hystricidae) Skull Morphometric Geographic Variability in Africa
Biogeographia – The Journal of Integrative Biogeography 36 (2021): a001 https://doi.org/10.21426/B636051379 Out of Europe: Investigating Hystrix cristata (Rodentia: Hystricidae) skull morphometric geographic variability in Africa FRANCESCO M. ANGELICI1*, PAOLO COLANGELO2, SPARTACO GIPPOLITI3 1 FIZV, Via Marco Aurelio 2, I-00184 Rome (Italy) 2 Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, CNR-IRET, Via Salaria km 29.300, I-00015 Montelibretti, Rome (Italy) 3 Società Italiana per la Storia della Fauna ‘Giuseppe Altobello’, Viale Liegi 48, I-00198 Rome (Italy) * corresponding author: [email protected] Keywords: Crested porcupine, geographic variability, Hystrix cristata senegalica, Hystrix cristata galeata, North-East Africa, taxonomy. SUMMARY The crested porcupine Hystrix cristata is one of the most well-known members of the Family Hystricidae, yet very little is known regarding its geographic variability in Africa. Two alternative hypotheses exist; pre-1940s classical taxonomy supported the existence of a distinct Eastern African species, Hystrix galeata, whereas recent molecular data seem to support only a North-South separation inside one single species, with the geographic-ecological barrier represented by the Sahara desert. Our morphometric data support the recognition of Hystrix cristata senegalica Cuvier, 1822 as the sub- Saharan representative of the species with a clear morphological difference between the North African and sub-Saharan crested porcupines, which seem re-conductible mostly to size difference. Within H. c. senegalica, our analysis seems to support a weak separation between the West African and the East African samples. Owing to considerable qualitative skull differences and overlooked molecular data, the taxonomic status of H. galeata remains uncertain as well as the status of porcupines of North-East Africa (Nubia). -
Research Article the Placenta Anatomy of Sunda Porcupine (Hystrix Javanica)
Advances in Animal and Veterinary Sciences Research Article The Placenta Anatomy of Sunda Porcupine (Hystrix javanica) TEGUH BUDIPITOJO*, SITI SHOFIYAH, DIAN BEKTI HADI MASITHOH, LINDA MIFTAKHUL KHASANAH, IRMA PADETA Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia. Abstract | Sunda porcupines (Hystrix javanica) belongs to the Order of Rodentia is an endemic animal of Indonesia. The aims of this study are to determine the types and histological structure of Sunda porcupine placenta. Data regarding the type and histological structure of Sunda porcupines’ placental organs can be used to support the conservation of Sunda porcupines. This research used two samples of placenta Sunda Porcupine from Ngawi, East Java. Placenta were fixed in Bouin’s solution for 24 hours. Tissues were processed by using paraffin method and cut in 5 µm thickness. Tissues slide were stained with Hematoxylin Eosin (HE) to identified histological structure of the Sunda porcupine placenta. Photomicrographs were using Optilab Image Viewer. The histological structure of the Sunda porcupine’s placenta were analyzed and reported descriptively. Macroscopically, the shape of Sunda Porcupine placenta is flat like a disc. Histologically, the thickest parts of Sunda porcupines placenta consist of chorioallantoic plate, labyrinth zone, trophospongium, decidua, metrial glands, myometrium zone. In conclussion, the placenta of sunda porcupine (Hystrix javanica) has been identified which has a discoid shape and is classified to the hemochorial type. Keywords | Sunda porcupines, Placenta, Type, Histological structure Received | November 21, 2019; Accepted | February 17, 2020; Published | March 03, 2020 *Correspondence | Teguh Budipitojo, Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; Email: [email protected] Citation | Budipitojo T, Shofiyah S, Masithoh DBH, Khasanah LM, Padeta I (2020). -
Downloaded from Brill.Com09/30/2021 08:45:12AM Via Free Access 302 D.J
Contributions to Zoology, 74 (3/4) 301-312 (2005) A taxonomic revision of the Pleistocene Hystrix (Hystricidae, Rodentia) from Eurasia with notes on the evolution of the family D.J. van Weers Zoological Museum Amsterdam, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands, e-mail: [email protected] Key words: Porcupines, Asia, evolution, Europe, paleogeography, Pleistocene Abstract Introduction Measurements of many hundreds of the high-crowned cheek teeth The extant porcupines and their distribution of Hystrix specimens from the Euro-Asiatic Pleistocene in the collections of European and Asiatic institutions have been compared with extant species for a revision of the genus. A review is given In the classifi cation of the Hystricidae followed here, about the extant genera and species of the family. The number of the family contains three, all extant, genera: Trichys recognisable Euro-Asiatic species in the fossil record is reduced Günther, 1877, Atherurus F. Cuvier, 1829, and Hystrix from eight to fi ve. The European H. (A.) vinogradovi Argyropulo, Linnaeus, 1758, which are distinguished by different 1941 is here considered to be a synonym of H. (A.) brachyura degrees of specialisation. Trichys, with only one Linnaeus, 1758, and the three Asiatic species H. (H.) crassidens Lydekker, 1886, H. (H.) gigantea Van Weers, 1985 and H. (H.) species, is the least specialised and the only one that magna Pei, 1987 are synonymized with H. (H.) refossa Gervais, is limited to Southeast Asia. Atherurus, occurring in 1852. Most of the Chinese fossil specimens are properly allocated Africa as A. africanus Gray, 1842 and represented in to H. -
Title Freshwater Fishes, Terrestrial Herpetofauna and Mammals of Pulau Tekong, Singapore Author(S) Kelvin K.P
Title Freshwater fishes, terrestrial herpetofauna and mammals of Pulau Tekong, Singapore Author(s) Kelvin K.P. Lim, Marcus A. H., Chua and Norman T-L. Lim Source Nature in Singapore, 9, 165–198 Published by Lee Kong Chian Natural History Museum, National University of Singapore Copyright © 2016 National University of Singapore This document may be used for private study or research purpose only. This document or any part of it may not be duplicated and/or distributed without permission of the copyright owner. The Singapore Copyright Act applies to the use of this document. This document first appeared in: Lim, K. K. P., Chua, M. A. H., & Lim, N. T. -L. (2016). Freshwater fishes, terrestrial herpetofauna and mammals of Pulau Tekong, Singapore. Nature in Singapore, 9, 165–198. Retrieved from http://lkcnhm.nus.edu.sg/nus/images/pdfs/nis/2016/2016nis165-198.pdf This document was archived with permission from the copyright owner. NATURE IN SINGAPORE 2016 9: 165–198 Date of Publication: 1 November 2016 © National University of Singapore Freshwater fishes, terrestrial herpetofauna and mammals of Pulau Tekong, Singapore Kelvin K.P. Lim1*, Marcus A. H. Chua1 & Norman T-L. Lim2 1Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Republic of Singapore; Email: [email protected] (KKPL; *corresponding author), [email protected] (MAHC) 2Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore; Email: [email protected] (NTLL) Abstract. The diversity of terrestrial and freshwater, non-avian, vertebrate fauna of Pulau Tekong, an island used almost exclusively by the Singapore Armed Forces, was compiled. -
Digestive Physiology, Resting Metabolism and Methane Production of Captive Indian Crested Porcupine (Hystrix Indica)
Journal of Animal and Feed Sciences, 28, 2019, 69–77 https://doi.org/10.22358/jafs/102741/2019 The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna Digestive physiology, resting metabolism and methane production of captive Indian crested porcupine (Hystrix indica) K.B. Hagen1, S. Hammer2, S. Frei1, S. Ortmann3, R. Głogowski4, M. Kreuzer5 and M. Clauss1,6 1 University of Zurich, Vetsuisse Faculty, Clinic for Zoo Animals, Exotic Pets and Wildlife, Winterthurerstr. 260, 15 8057 Zurich, Switzerland 2 Naturschutz-Tierpark Görlitz, Zittauerstrasse 43, D-02826 Görlitz, Germany 3 Leibniz Instiute for Zoo and Wildlife Research (IZW) Berlin, Alfred-Kowalke Str. 17, 10315 Berlin, Germany 4 Warsaw University of Life Sciences (WULS) – SGGW, Faculty of Animal Sciences, Department of Animal Breeding, Ciszewskiego 8, 02-786 Warsaw, Poland 5 ETH Zurich, Institute of Agricultural Sciences, Universitätsstr. 2, 8092 Zurich, Switzerland KEY WORDS: Hystricomorpha, Rodentia, ABSTRACT. Limited physiological measurements exist for the digestive mean retention time, digestibility, basal physiology of porcupines. We measured CH4 emission in three captive Indian metabolic rate, colonic separation mechanism crested porcupines (Hystrix indica; 16.1 ± 2.7 kg) fed a diet of pelleted lucerne, and measured feed intake, digestibility, and digesta mean retention time (MRT) of a solute and three particle markers (<2, 10 and 20 mm). Marker excretion patterns suggested secondary peaks indicative of caecotrophy, with MRTs of 26.4 h for the solute and 31.5, 26.8 and 26.2 h for the three particle markers, respectively. At a dry matter intake of 58 ±10 g/kg body mass0.75/day, Received: 29 November 2018 porcupines digested 49 and 35% organic matter and neutral detergent fibre, Revised: 9 January 2019 respectively, which is in the lower range of that expected for horses on a similar Accepted: 18 February 2019 diet. -
The First Cytogenetic Study of the Malayan Porcupine, Hystrix Brachyuran (Rodentia, Hystricidae) by Conventional Staining and G-Banding Technique
© 2008 The Japan Mendel Society Cytologia 73(3): 221–228, 2008 The First Cytogenetic Study of the Malayan porcupine, Hystrix brachyuran (Rodentia, Hystricidae) by Conventional Staining and G-banding Technique Alongkoad Tanomtong1,*, Praween Supanuam1, Wiwat Sangpakdee1, Pornnarong Siripiyasing2, Pawarisa Boonhan1 and Sarawut Kaewsri3 1 Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand 2 Major of Biology, Faculty of Science and Technology, Mahasarakham Rajabhat University, Muang, Mahasarakham 44000, Thailand 3 Program in Applied Biology, Department of Science, Faculty of Science, Buriram Rajabhat University, Muang, Buriram 31000, Thailand Received May 24, 2008; accepted July 12, 2008 Summary This research was the first cytogenetic study of the Malayan porcupine (Hystrix brachyura) from Songkla Zoo, Thailand. Blood samples were taken from two males and two females and then subjected to standard whole blood T-lymphocyte culture. The samples were harvested by colchicine-hypotonic-fixation-air-drying technique and followed by conventional staining and G- banding with Giemsa’s. The results showed that the diploid number was 2nϭ66, and the fundamental number (NF) was 127 and 128 in male and female, respectively. The autosomes consist of 6 large submetacentric, 20 large acrocentric, 6 medium submetacentric, 18 medium acrocentric, 2 medium telocentric, 4 small submetacentric, 6 small acrocentric and 2 small telocentric chromosomes. We found the nucleolar organizer regions (NORs), the representative chromosome marker, which are lo- cated on the long arms of the pair submetacentric autosomes 9 and 13. The X chromosome was a large metacentric chromosome, while the Y chromosome was the smallest telocentric chromosome. G-banding technique indicated that the number of bands was 236. -
Traditional Medicinal Animal Use by Xhosa and Sotho Communities in the Western Cape Province, South Africa Willem A
Nieman et al. Journal of Ethnobiology and Ethnomedicine (2019) 15:34 https://doi.org/10.1186/s13002-019-0311-6 RESEARCH Open Access Traditional medicinal animal use by Xhosa and Sotho communities in the Western Cape Province, South Africa Willem A. Nieman1* , Alison J. Leslie1 and Anita Wilkinson2 Abstract Background: The use of animals and animal-derived materials in traditional medicine constitutes an important part of the belief systems of indigenous African cultures. It is believed to be rapidly expanding in South Africa, where traditional healers are estimated to outnumber western doctors by 2000:1 in some areas, with an overall clientele consisting of 60–80% of South African citizens. Despite concerns about the impact of the trade in traditional medicine on biodiversity, there has been only limited research on this topic in South Africa. Methods: Traditional Xhosa and Sotho healers operating from impoverished, rural communities in the Boland Region of the Western Cape Province were consulted to provide a comprehensive inventory of the number and frequency of animals used and sold. Species richness estimators, diversity indices, and a relative cultural importance (RCI) index were used to highlight species of concern and assess market dynamics. Results: A total of 26 broad use categories for 12 types of animal parts or products from 71 species or morphospecies were recorded. The most commonly sold items were skin pieces, oil or fat, and bones. Results showed that leopard, chacma baboon, Cape porcupine, monitor lizard species, puff adder, African rock python, and black-backed jackal were the species most used in the traditional medicinal trade. -
Food Habits of Indian Crested Porcupine (Hystrix Indica)
ISSN 1519-6984 (Print) ISSN 1678-4375 (Online) THE INTERNATIONAL JOURNAL ON NEOTROPICAL BIOLOGY THE INTERNATIONAL JOURNAL ON GLOBAL BIODIVERSITY AND ENVIRONMENT Original Article Food habits of indian crested porcupine (Hystrix indica) (Kerr 1792), in district Bagh, Azad Jammu and Kashmir Hábitos alimentares do porco-espinho de crista indiano (Hystrix indica) (Kerr 1972) nos distritos de Bagh, Azad Jammu e Caxemira M. B. Khana, N. Irshada* , B. Ahmedb, M. R. Khana, R. A. Minhasb, U. Alic, M. Mahmooda, A. Muhammada, A. A. Sheikha and N. Ashrafb aDepartment of Zoology, University of Poonch, Rawalakot, AJ&K Pakistan bDepartment of Zoology, University of Azad Jammu and Kashmir Muzaffarabad, AJ&K Pakistan cDepartment of Zoology, Mirpur University of Science and Technology, Mirpur, AJ&K Pakistan Abstract The Indian Crested Porcupine (Hystrix indica) is classified as an agricultural pest species. It feeds on plants and crops; hence, it is responsible for massive financial losses worldwide. The current study was conducted to assess the diet composition of Indian Crested Porcupine in District Bagh, Azad Jammu and Kashmir (AJ&K). Thus, fecal samples were collected and examined from different sampling sites. Reference slides of the material collected from the study area were prepared for identification of dietary components in fecal pellets. A total of 80 fecal samples were collected and processed. Percent relative frequencies (P.R.F.) were calculated for each plant species recovered from pellets. Data revealed that Indian Crested Porcupine consumed 31 plant species in its diet, among them Zea mays (34.31±7.76) was the most frequently selected species followed by Rumex obtusifolius (15.32±2.57) and Melia azedarach (12.83±4.79). -
Animal Inspected at Last Inspection
United States Department of Agriculture Customer: 3432 Animal and Plant Health Inspection Service Inspection Date: 10-AUG-16 Animal Inspected at Last Inspection Cust No Cert No Site Site Name Inspection 3432 86-C-0001 001 ARIZONA CENTER FOR NATURE 10-AUG-16 CONSERVATION Count Species 000003 Cheetah 000005 Cattle/cow/ox/watusi 000003 Mandrill *Male 000006 Hamadryas baboon 000004 Grevys zebra 000008 Thomsons gazelle 000002 Cape Porcupine 000002 Lion 000002 African hunting dog 000002 Tiger 000008 Common eland 000002 Spotted hyena 000001 White rhinoceros 000007 Spekes gazelle 000005 Giraffe 000004 Kirks dik-dik 000002 Fennec fox 000003 Ring-tailed lemur 000069 Total ARHYNER United States Department of Agriculture Animal and Plant Health Inspection Service 2016082567967934 Insp_id Inspection Report Arizona Center For Nature Conservation Customer ID: 3432 455 N. Galvin Parkway Certificate: 86-C-0001 Phoenix, AZ 85008 Site: 001 ARIZONA CENTER FOR NATURE CONSERVATION Type: ROUTINE INSPECTION Date: 19-OCT-2016 No non-compliant items identified during this inspection. This inspection and exit interview were conducted with the primate manager. Additional Inspectors Gwendalyn Maginnis, Veterinary Medical Officer AARON RHYNER, D V M Prepared By: Date: AARON RHYNER USDA, APHIS, Animal Care 19-OCT-2016 Title: VETERINARY MEDICAL OFFICER 6077 Received By: (b)(6), (b)(7)(c) Date: Title: FACILITY REPRESENTATIVE 19-OCT-2016 Page 1 of 1 United States Department of Agriculture Customer: 3432 Animal and Plant Health Inspection Service Inspection Date: 19-OCT-16