Analysis and Control of Middleboxes in the Internet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distributed Deep Learning in Open Collaborations
Distributed Deep Learning In Open Collaborations Michael Diskin∗y~ Alexey Bukhtiyarov∗| Max Ryabinin∗y~ Lucile Saulnierz Quentin Lhoestz Anton Sinitsiny~ Dmitry Popovy~ Dmitry Pyrkin~ Maxim Kashirin~ Alexander Borzunovy~ Albert Villanova del Moralz Denis Mazur| Ilia Kobelevy| Yacine Jernitez Thomas Wolfz Gennady Pekhimenko♦♠ y Yandex, Russia z Hugging Face, USA ~ HSE University, Russia | Moscow Institute of Physics and Technology, Russia } University of Toronto, Canada ♠ Vector Institute, Canada Abstract Modern deep learning applications require increasingly more compute to train state-of-the-art models. To address this demand, large corporations and institutions use dedicated High-Performance Computing clusters, whose construction and maintenance are both environmentally costly and well beyond the budget of most organizations. As a result, some research directions become the exclusive domain of a few large industrial and even fewer academic actors. To alleviate this disparity, smaller groups may pool their computational resources and run collaborative experiments that benefit all participants. This paradigm, known as grid- or volunteer computing, has seen successful applications in numerous scientific areas. However, using this approach for machine learning is difficult due to high latency, asymmetric bandwidth, and several challenges unique to volunteer computing. In this work, we carefully analyze these constraints and propose a novel algorithmic framework designed specifically for collaborative training. We demonstrate the effectiveness of our approach for SwAV and ALBERT pretraining in realistic conditions and achieve performance comparable to traditional setups at a fraction of the cost. arXiv:2106.10207v1 [cs.LG] 18 Jun 2021 Finally, we provide a detailed report of successful collaborative language model pretraining with 40 participants. 1 Introduction The deep learning community is becoming increasingly more reliant on transfer learning. -
Ubuntu Enables Advanced Computer Research Into Killer Diseases
Case Study Ubuntu enables advanced computer research into killer diseases Delivering training courses to researchers in developing countries – Ubuntu was the first choice for The Wellcome Trust Sanger Institute. Background The Wellcome Trust Sanger Institute is charity at the forefront of research into the study of the genomes of the world’s major killer diseases such as malaria, typhoid fever and the ‘superbug’ MRSA. The Trust aims to offers workshops for free to countries in the developing world. Giving their researchers up-to- date training in the fast-moving arena of analysis, and providing them with the mechanisms to keep up with new developments. In June 2006, the Trust ran the first of their workshop project in Uruguay. The courseprovided an introduction to the bioinformatics tools freely available on the Internet. It focussed primarily on The Human Genome data and gave students hands-on training in the use of public databases, and web-based sequence analysis tools. In addition to training researchers from all over South America the Wellcome Trust donated high-powered computers, essential for analysing the genomes, to the Instituto de Higiene, Uruguay. Business challenge The Instituto de Higiene set up a permanent training room to house the computers, and act as a centre for workshops in South America. The Institutes Informatics Systems Group needed to ensure that it was possible to install the training room computers, and networks, anywhere in the world that offers reliable electrical power and a connection to the Internet. That’s where Ubuntu came in. Ubuntu solution The Systems Group integrated Ubuntu into a flexible, self-contained training room that was straightforward enough for local staff to administer. -
Test-Beds and Guidelines for Securing Iot Products and for Secure Set-Up Production Environments
IoT4CPS – Trustworthy IoT for CPS FFG - ICT of the Future Project No. 863129 Deliverable D7.4 Test-beds and guidelines for securing IoT products and for secure set-up production environments The IoT4CPS Consortium: AIT – Austrian Institute of Technology GmbH AVL – AVL List GmbH DUK – Donau-Universit t Krems I!AT – In"neon Technologies Austria AG #KU – JK Universit t Lin$ / Institute for &ervasive 'om(uting #) – Joanneum )esearch !orschungsgesellschaft mbH *+KIA – No,ia -olutions an. Net/or,s 0sterreich GmbH *1& – *1& -emicon.uctors Austria GmbH -2A – -2A )esearch GmbH -)!G – -al$burg )esearch !orschungsgesellschaft -''H – -oft/are 'om(etence 'enter Hagenberg GmbH -AG0 – -iemens AG 0sterreich TTTech – TTTech 'om(utertechni, AG IAIK – TU Gra$ / Institute for A((lie. Information &rocessing an. 'ommunications ITI – TU Gra$ / Institute for Technical Informatics TU3 – TU 3ien / Institute of 'om(uter 4ngineering 1*4T – 1-Net -ervices GmbH © Copyright 2020, the Members of the IoT4CPS Consortium !or more information on this .ocument or the IoT5'&- (ro6ect, (lease contact8 9ario Drobics7 AIT Austrian Institute of Technology7 mario:.robics@ait:ac:at IoT4C&- – <=>?@A Test-be.s an. guidelines for securing IoT (ro.ucts an. for secure set-up (ro.uction environments Dissemination level8 &U2LI' Document Control Title8 Test-be.s an. gui.elines for securing IoT (ro.ucts an. for secure set-u( (ro.uction environments Ty(e8 &ublic 4.itorBsC8 Katharina Kloiber 4-mail8 ,,;D-net:at AuthorBsC8 Katharina Kloiber, Ni,olaus DEr,, -ilvio -tern )evie/erBsC8 -te(hanie von )E.en, Violeta Dam6anovic, Leo Ha((-2otler Doc ID8 DF:5 Amendment History Version Date Author Description/Comments VG:? ?>:G?:@G@G -ilvio -tern Technology Analysis VG:@ ?G:G>:@G@G -ilvio -tern &ossible )esearch !iel.s for the -2I--ystem VG:> >?:G<:@G@G Katharina Kloiber Initial version (re(are. -
Developing P2P Protocols Across NAT Girish Venkatachalam
Developing P2P Protocols across NAT Girish Venkatachalam Abstract Hole punching is a possible solution to solving the NAT problem for P2P protocols. Network address translators (NATs) are something every software engineer has heard of, not to mention networking professionals. NAT has become as ubiquitous as the Cisco router in networking terms. Fundamentally, a NAT device allows multiple machines to communicate with the Internet using a single globally unique IP address, effectively solving the scarce IPv4 address space problem. Though not a long-term solution, as originally envisaged in 1994, for better or worse, NAT technology is here to stay, even when IPv6 addresses become common. This is partly because IPv6 has to coexist with IPv4, and one of the ways to achieve that is by using NAT technology. This article is not so much a description of how a NAT works. There already is an excellent article on this subject by Geoff Huston (see the on-line Resources). It is quite comprehensive, though plenty of other resources are available on the Internet as well. This article discusses a possible solution to solving the NAT problem for P2P protocols. What Is Wrong with NAT? NAT breaks the Internet more than it makes it. I may sound harsh here, but ask any peer-to-peer application developer, especially the VoIP folks, and they will tell you why. For instance, you never can do Web hosting behind a NAT device. At least, not without sufficient tweaking. Not only that, you cannot run any service such as FTP or rsync or any public service through a NAT device. -
Traversing NAT: a Problem
Dakota State University Beadle Scholar Masters Theses & Doctoral Dissertations Spring 3-2021 Traversing NAT: A Problem Tyler Flaagan Dakota State University Follow this and additional works at: https://scholar.dsu.edu/theses Part of the Information Security Commons, OS and Networks Commons, and the Systems Architecture Commons Recommended Citation Flaagan, Tyler, "Traversing NAT: A Problem" (2021). Masters Theses & Doctoral Dissertations. 365. https://scholar.dsu.edu/theses/365 This Dissertation is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses & Doctoral Dissertations by an authorized administrator of Beadle Scholar. For more information, please contact [email protected]. Traversing NAT: A Problem A dissertation submitted to Dakota State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cyber Operations March 2021 By Tyler Flaagan Dissertation Committee: Dr. Kyle L. Cronin Dr. Michael J. Ham Dr. Mark L. Hawkes DocuSign Envelope ID: 8BDB3DA0-604E-4AB7-9BFE-F25909CF4FC0 DISSERTATION APPROVAL FORM This dissertation is approved as a credible and independent investigation by a candidate for the Doctor of Philosophy degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of this dissertation does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department or university. Student Name: Tyler Flaagan Dissertation Title: Traversing NAT: A Problem -
Debian \ Amber \ Arco-Debian \ Arc-Live \ Aslinux \ Beatrix
Debian \ Amber \ Arco-Debian \ Arc-Live \ ASLinux \ BeatriX \ BlackRhino \ BlankON \ Bluewall \ BOSS \ Canaima \ Clonezilla Live \ Conducit \ Corel \ Xandros \ DeadCD \ Olive \ DeMuDi \ \ 64Studio (64 Studio) \ DoudouLinux \ DRBL \ Elive \ Epidemic \ Estrella Roja \ Euronode \ GALPon MiniNo \ Gibraltar \ GNUGuitarINUX \ gnuLiNex \ \ Lihuen \ grml \ Guadalinex \ Impi \ Inquisitor \ Linux Mint Debian \ LliureX \ K-DEMar \ kademar \ Knoppix \ \ B2D \ \ Bioknoppix \ \ Damn Small Linux \ \ \ Hikarunix \ \ \ DSL-N \ \ \ Damn Vulnerable Linux \ \ Danix \ \ Feather \ \ INSERT \ \ Joatha \ \ Kaella \ \ Kanotix \ \ \ Auditor Security Linux \ \ \ Backtrack \ \ \ Parsix \ \ Kurumin \ \ \ Dizinha \ \ \ \ NeoDizinha \ \ \ \ Patinho Faminto \ \ \ Kalango \ \ \ Poseidon \ \ MAX \ \ Medialinux \ \ Mediainlinux \ \ ArtistX \ \ Morphix \ \ \ Aquamorph \ \ \ Dreamlinux \ \ \ Hiwix \ \ \ Hiweed \ \ \ \ Deepin \ \ \ ZoneCD \ \ Musix \ \ ParallelKnoppix \ \ Quantian \ \ Shabdix \ \ Symphony OS \ \ Whoppix \ \ WHAX \ LEAF \ Libranet \ Librassoc \ Lindows \ Linspire \ \ Freespire \ Liquid Lemur \ Matriux \ MEPIS \ SimplyMEPIS \ \ antiX \ \ \ Swift \ Metamorphose \ miniwoody \ Bonzai \ MoLinux \ \ Tirwal \ NepaLinux \ Nova \ Omoikane (Arma) \ OpenMediaVault \ OS2005 \ Maemo \ Meego Harmattan \ PelicanHPC \ Progeny \ Progress \ Proxmox \ PureOS \ Red Ribbon \ Resulinux \ Rxart \ SalineOS \ Semplice \ sidux \ aptosid \ \ siduction \ Skolelinux \ Snowlinux \ srvRX live \ Storm \ Tails \ ThinClientOS \ Trisquel \ Tuquito \ Ubuntu \ \ A/V \ \ AV \ \ Airinux \ \ Arabian -
Technology Stack for Decentralized Mobile Services
Technology Stack for Decentralized Mobile Services Matouš Skála Technology Stack for Decentralized Mobile Services by Matouš Skála to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Monday August 31, 2020 at 3:00 PM. Student number: 4893964 Project duration: November 15, 2019 – August 31, 2020 Thesis committee: Dr.ir. J.A. Pouwelse, TU Delft, supervisor Dr. J.S. Rellermeyer, TU Delft Dr. N. Yorke-Smith, TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Preface When I was choosing my thesis topic, I originally came up with an idea of designing a decen- tralized social network. After realizing how ambitious that goal was, I later decided to focus on more fundamental issues first and create a library that would allow for building any de- centralized applications, running purely on an overlay network consisting of smartphones. Rather than reinventing the wheel, I took inspiration from an existing networking library de- veloped at TU Delft over the last decade and created its wire-compatible implementation in Kotlin. Interestingly, in the end, I have even implemented a trivial social network to demon- strate the usage of the library, returning back to the original idea. I would like to thank my supervisor Johan Pouwelse for an endless stream of fresh ideas and valuable feedback, and to PhD students of the Delft Blockchain Lab for numerous coffee meetings and for serving me as a walking documentation of the existing codebase. Matouš Skála Prague, -
ESSENTIAL GUIDE to THREAT MANAGEMENT Your Organizations Are Under Attack from Organized Groups That Are After the Lifeblood of Your Company
IINFNFOORMRMAATTIIOONN SECURITY® ESSENTIAL GUIDE TO THREAT MANAGEMENT Your organizations are under attack from organized groups that are after the lifeblood of your company. We’ll identify those attack vectors and tell you how to best secure your critical digital assets. INSIDE 7 New Web, New Threats 16 A Dangerous Delineation 24 UTM Should Not = Unnecessary Threat Management 33 This is Only a Drill INFOSECURITYMAG.COM , Let them roam loselaptops surf audit cutbudgets You do! Liberating your people and freeing up time and who cares resources makes productive sense. Sophos security and data protection solutions deliver: Install, set and forget. Easy on your time, easy on your system and easy on your business, everything from Endpoint to Compliance, Email, Web and Encryption is covered and all accessed and controlled with refreshing simplicity. Now, with security taken care of, you’ve got the rest of the day to do all the other things that can’t wait. See for yourself – learn more about Sophos today. ESSENTIAL GUIDE contentsTHREAT MANAGEMENT FEATURES 7 New Web, New Threats WEB 2.0 THREATS The collaborative nature of Web 2.0 introduces myriad threats to data that must be proactively countered. BY DAVID SHERRY 16 A Dangerous Delineation INSIDER RISK Enterprises can no longer differentiate between insiders and external threats. That’s such a 2003 paradigm. BY MICHAEL S. MIMOSO 24 UTM Should Not = Unnecessary Threat Management THREAT MANAGEMENT Buying the right unified threat management appliance means knowing what—if anything— you actually need beyond a firewall. BY NEIL ROITER 33 This is Only a Drill INCIDENT RESPONSE Delaware’s Dept. -
Technical Report Sce-12-04 Nat Traversal in Peer-To
TECHNICAL REPORT SCE-12-04 DEPARTMENT OF SYSTEMS AND COMPUTER ENGINEERING CARLETON UNIVERSITY NAT TRAVERSAL IN PEER -TO -PEER ARCHITECTURE Marc-André Poulin¹, Lucas Rioux Maldague¹, Alexandre Daigle¹, François Gagnon² 1 Cégep de Sainte-Foy, Canada [email protected] , [email protected] , [email protected] 2 Carleton University, Canada [email protected] Abstract. Peer-to-peer networks are well known for file sharing between multiple computers. They establish virtual tunnels between computers to transfer data, but NATs makes it harder. A NAT, Network Address Translation , is a process which transforms private IP addresses, such as 192.168.2.1, into public addresses, such as 203.0.113.40. The idea is that multiple private addresses can hide behind a single public address and thus virtually enlarge the number of allocable public IP addresses. When an application in the local network establishes a connection to Internet, the packet passes through the NAT which adjusts the IP header and maps an external port to the computer which sent the request. When packets are received from the Internet by the NAT, they are forwarded to the internal host which is mapped to the port on which the packet was received, or dropped if no mapping exists. In this paper, we will introduce you to NAT and P2P, we will discuss the numerous ways NATs use to translate private IP addresses into public ones, we will discuss known techniques used to fix the problem and we will also present how popular peer-to-peer programs bypass NATs. This paper is written so anybody with a reasonable knowledge of networking would grasp the essentials. -
A Framework for Multi- Channel Telecommunication Applied to Telecare Application
Master Thesis A Framework for Multi- Channel Telecommunication Applied to TeleCare Application Author: Yifan Ruan Supervisor: Danny Weyns Examiner: Danny Weyns Date: 2015-6-4 Course Code: 5DV00E, 30 credits Subject: Software Technology Level: Master Department of Computer Science Abstract This thesis is deriving from a telemedicine project "TeleCare" of constructing soft- ware for remote medical diagnosis between the doctor and the patient. The software has to fix the problem of managing local and remote media information. This thesis presents a telecommunication framework for synchronizing multiple media chan- nels, following research methodology, from problem description, iterative and incre- mental development to prototype finalization. For the framework, I have described the framework requirements and corresponding architecture design and implemen- tation. From the evaluation result of "TeleCare" software developed above it, I can conclude the framework has reached the problem. Keywords: framework, communication, synchronization, channel Preface Nowadays, the population of elderly people is growing fast around the world. So It is a nice idea to provide better social care with assistive technologies, such as "TeleCare" soft- ware. With "TeleCare", the patient and the doctor can communicate with each other like face-to-face meeting. In addition, with some state-of-the-art device, touchscreen monitor, they can express themselves through drawing on the screen. For example, the doctor can draw an arrow representing the patient should raise his arm to a certain height, and the patient can follow the instruction when seeing it on his screen. Image a scenario that if an elderly person lives far away from the hospital, one day he broke his leg, it was inconve- nient for him to go to hospital for reexamination again and again. -
Cablelabs® Ipv6 Roadmap Requirements Document CM-GL
CableLabs® IPv6 Roadmap Requirements Document CM-GL-IPv6-REQ-V01-120831 ISSUED Notice This CableLabs Requirements document is the result of a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. for the benefit of the cable industry and its customers. This document may contain references to other documents not owned or controlled by CableLabs. Use and understanding of this document may require access to such other documents. Designing, manufacturing, distributing, using, selling, or servicing products, or providing services, based on this document may require intellectual property licenses from third parties for technology referenced in this document. Neither CableLabs, nor any other entity participating in the creation of this document, is responsible for any liability of any nature whatsoever resulting from or arising out of use or reliance upon this document by any party. This document is furnished on an AS-IS basis and neither CableLabs, nor other participating entity, provides any representation or warranty, express or implied, regarding its accuracy, completeness, or fitness for a particular purpose. Distribution of this document is restricted pursuant to the terms of separate access agreements negotiated with each of the parties to whom this document has been furnished. Cable Television Laboratories, Inc., 2012 Confidential CM-GL-IPv6-REQ-V01-120831 CableLabs® CAUTION This document contains proprietary, confidential information that is the exclusive property of CableLabs®. If you do not have a valid agreement with CableLabs for the use of this document, or have not signed a non-disclosure agreement with CableLabs, then you received this document in an unauthorized manner and are not legally entitled to possess or read it. -
Project-Team GRAND-LARGE
IN PARTNERSHIP WITH: CNRS Université Paris-Sud (Paris 11) Université des sciences et technologies de Lille (Lille 1) Activity Report 2011 Project-Team GRAND-LARGE Global parallel and distributed computing IN COLLABORATION WITH: Laboratoire d’informatique fondamentale de Lille (LIFL), Laboratoire de recherche en informatique (LRI) RESEARCH CENTER Saclay - Île-de-France THEME Distributed and High Performance Computing Table of contents 1. Members :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 2. Overall Objectives :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 2.1. Grand-Large General Objectives1 2.2. Highlights 2 3. Scientific Foundations :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::2 3.1. Large Scale Distributed Systems (LSDS)2 3.1.1. Computing on Large Scale Global Computing systems3 3.1.2. Building a Large Scale Distributed System4 3.1.2.1. The resource discovery engine4 3.1.2.2. Fault Tolerant MPI4 3.2. Volatility and Reliability Processing5 3.3. Parallel Programming on Peer-to-Peer Platforms (P5)6 3.3.1. Large Scale Computational Sciences and Engineering7 3.3.2. Experimentations and Evaluations7 3.3.3. Languages, Tools and Interface8 3.4. Methodology for Large Scale Distributed Systems8 3.4.1. Observation tools8 3.4.2. Tool for scalability evaluations9 3.4.3. Real life testbeds: extreme realism9 3.5. High Performance Scientific Computing9 3.5.1. Communication avoiding algorithms for numerical linear algebra 10 3.5.2. Preconditioning techniques 10 3.5.3. Fast linear algebra solvers based on randomization 10 3.5.4. Sensitivity analysis of linear algebra problems 11 4. Application Domains :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::11 4.1. Building a Large Scale Distributed System for Computing 11 4.2. Security and Reliability of Network Control Protocols 11 4.3.