Financed by the World Bank Loan

Total Page:16

File Type:pdf, Size:1020Kb

Financed by the World Bank Loan SFG3301 V2 Public Disclosure Authorized Guiyang Rural Road Project (P129401) Financed by the World Bank Loan ENVIRONMENTAL CODE OF PRACTICES Public Disclosure Authorized Public Disclosure Authorized Guizhou Institute of Environmental Science and Designing Public Disclosure Authorized Guo Huan Ping Zheng: Jia Zi No. 3302 July 2013 · Guiyang Project of Guiyang Rural Road Construction Financed by the World Bank Loan Environmental Code of Practices Contents 1 Preface .................................................................................................................................. 1 1.1 Background of project .......................................................................................... 1 1.2 Environmental assessment (EA) .......................................................................... 1 1.3 Purpose, criterion and scope of drawing up environmental code of practices ..... 1 1.4 Relevant laws, rules and security policies ............................................................ 3 1.5 Experience summary of rural road subproject of “Guiyang transport project” ...... 4 1.6 Structure of the report ......................................................................................... 10 2 Outline of Basic Information of Guiyang City ............................................................. 12 2.1 Natural environment ........................................................................................... 12 2.2 Social environment ............................................................................................. 27 3 Implementation Management of Environmental Code of Practices ........................ 32 3.1 Organization structuring and main responsibilities ............................................ 32 3.2 Settings and main responsibilities of environmental administrative staff .......... 33 3.3 Construction preparation and environmental supervision .................................. 34 3.4 Document management and report ..................................................................... 36 4 Environmental Code of Practices for Site Construction ............................................ 38 4.1 Environment code of practices for site environment .......................................... 38 4.2 Environmental code of practices for site construction ....................................... 39 5 Environmental Code of Practices for Site Cleaning .................................................... 42 5.1 Contents of site cleaning .................................................................................... 42 5.2 Environmental code of practices for site cleaning ............................................. 42 6 Environmental Code of Practices for Access road ...................................................... 44 6.1 Site selection requirements of access road ......................................................... 44 6.2 Environmental impact analysis on access road .................................................. 44 6.3 Environmental code of practices for access road ............................................... 44 7 Environmental Code of Practices for Quarry and Borrow Area .............................. 46 7.1 Site selection requirements of quarry and borrow area ...................................... 46 7.2 Analysis of quarry and borrow area on environment ......................................... 46 7.3 Environmental code of practices for quarry and borrow area ............................ 46 8 Environmental Code of Practices for Spoil/Waste Residue Ground ........................ 48 8.1 Site selection requirements of spoil/waste residue ground ................................ 48 8.2 Analysis on environmental impact factors of spoil/waste residue ground ......... 48 I Project of Guiyang Rural Road Construction Financed by the World Bank Loan Environmental Code of Practices 8.3 Environmental code of practices for spoil/waste residue ground ....................... 48 9 Environmental Code of Practices for Slope Stability and Earth Squaring/Filling 50 9.1 Analysis on common damages appearing on road slope and formation cause .. 50 9.2 Type of slope protection ..................................................................................... 51 9.3 Environmental code of practices for slope protection ........................................ 54 10 Environmental Code of Practices for Drainage System ........................................... 56 10.1 The importance of drainage system to rural road ............................................. 56 10.2 Types of drainage system of rural road ............................................................ 56 10.3 Environmental code of practices for drainage system ...................................... 56 11 Environmental Code of Practices for Bridge Construction ..................................... 61 11.1 Features and damage causes of rural road bridge ............................................. 61 11.2 Analysis of impact of bridge construction on the environment ........................ 62 11.3 Environmental code of practices for bridge construction ................................. 63 12 Environmental Code of Practices for Pipe Culvert ................................................... 68 12.1 Classification and applicable conditions of pipe culvert .................................. 68 12.2 Analysis of impact of pipe culvert construction on the environment ............... 68 12.3 Environmental code of practices for pipe culvert............................................. 68 13 Environmental Code of Practices for Maintenance Station and Overloading Control Station ............................................................................................................... 75 13.1 Requirements of site selection of maintenance station and overloading control station ............................................................................................................... 75 13.2 Analysis of impact of maintenance station and overloading control station on the environment ............................................................................................... 75 13.3 Environmental code of practices for maintenance station and overloading control station ................................................................................................... 75 14 Environmental Code of Practices for Preventing Water and Soil Loss ................. 79 14.1 Soil and water conservation measures and construction arrangement ............. 79 14.2 Prevention area of the main works ................................................................... 79 14.3 Prevention area of concrete mixing station ...................................................... 80 14.4 Prevention area of access road ......................................................................... 81 14.5 Prevention area of temporary spoil (residue) ground ....................................... 81 15 Management of Social Interference ............................................................................. 83 15.1 Connectivity of water conservancy system ...................................................... 83 15.2 Connectivity of branch line .............................................................................. 84 15.3 Environmental code of practices for noise influence ....................................... 84 II Project of Guiyang Rural Road Construction Financed by the World Bank Loan Environmental Code of Practices 15.4 Flying dust management measures ................................................................... 85 15.5 Solid waste management measures .................................................................. 85 15.6 Organizational planning of construction transportation ................................... 86 16 Environmental Code of Practices for Sewage Treatment ........................................ 87 16.1 Types of sewage from construction and operation of road ............................... 87 16.2 Environmental code of practices for sewage treatment .................................... 87 16.3 Emergency management system and emergency measures suggested ............ 88 17 Environmental Code of Practices for Historic Preservation ................................... 90 18 Environmental Code of Practices for Safety and Health ......................................... 92 18.1 Analysis of construction safety and health ....................................................... 92 18.2 Measures for construction safety and health .................................................... 92 18.3 Road Traffic Safety Signs and Facilities .......................................................... 93 19 Environmental Code of Practices for Hazardous Waste and Chemical Waste .... 94 19.1 Measures for managing hazardous waste and chemical waste ......................... 94 19.2 Risk prevention measures and emergency plan ................................................ 94 20 Environmental Code of Practices for Public Consultation ...................................... 96 20.1 The purpose of public participation .................................................................. 96 20.2 General requirements of public participation ................................................... 96 20.3 Organizational forms and findings of public participation ............................... 96 21 Training and Capacity Building ................................................................................. 110 Attached Maps: ..................................................................................................................
Recommended publications
  • Morphology and Developmental Traits of the Trilobite Changaspis Elongata from the Cambrian Series 2 of Guizhou, South China
    Morphology and developmental traits of the trilobite Changaspis elongata from the Cambrian Series 2 of Guizhou, South China GUANG-YING DU, JIN PENG, DE-ZHI WANG, QIU-JUN WANG, YI-FAN WANG, and HUI ZHANG Du, G.-Y., Peng, J., Wang, D.-Z., Wang, Q.-J., Wang, Y.-F., and Zhang, H. 2019. Morphology and developmental traits of the trilobite Changaspis elongata from the Cambrian Series 2 of Guizhou, South China. Acta Palaeontologica Polonica 64 (4): 797–813. The morphology and ontogeny of the trilobite Changaspis elongata based on 216 specimens collected from the Lazizhai section of the Balang Formation (Stage 4, Series 2 of the Cambrian) in Guizhou Province, South China are described. The relatively continuous ontogenetic series reveals morphological changes, and shows that the species has seventeen thoracic segments in the holaspid period, instead of the sixteen as previously suggested. The development of the pygid- ial segments shows that their number gradually decreases during ontogeny. A new dataset of well-preserved specimens offers a unique opportunity to investigate developmental traits after segment addition is completed. The ontogenetic size progressions for the lengths of cephalon and trunk show overall compliance with Dyar’s rule. As a result of different average growth rates for the lengths of cephalon, trunk and pygidium, the length of the thorax relative to the body shows a gradually increasing trend; however, the cephalon and pygidium follow the opposite trend. Morphometric analysis across fourteen post-embryonic stages reveals growth gradients with increasing values for each thoracic segment from anterior to posterior. The reconstruction of the development traits shows visualization of the changes in relative growth and segmentation for the different body parts.
    [Show full text]
  • Lithofacies Palaeogeography of the Late Permian Wujiaping Age in the Middle and Upper Yangtze Region, China
    Journal of Palaeogeography 2014, 3(4): 384-409 DOI: 10.3724/SP.J.1261.2014.00063 Lithofacies palaeogeography and sedimentology Lithofacies palaeogeography of the Late Permian Wujiaping Age in the Middle and Upper Yangtze Region, China Jin-Xiong Luo*, You-Bin He, Rui Wang School of Geosciences, Yangtze University, Wuhan 430100, China Abstract The lithofacies palaeogeography of the Late Permian Wujiaping Age in Middle and Upper Yangtze Region was studied based on petrography and the “single factor analysis and multifactor comprehensive mapping” method. The Upper Permian Wujiaping Stage in the Middle and Upper Yangtze Region is mainly composed of carbonate rocks and clastic rocks, with lesser amounts of siliceous rocks, pyroclastic rocks, volcanic rocks and coal. The rocks can be divided into three types, including clastic rock, clastic rock-limestone and lime- stone-siliceous rock, and four fundamental ecological types and four fossil assemblages are recognized in the Wujiaping Stage. Based on a petrological and palaeoecological study, six single factors were selected, namely, thickness (m), content (%) of marine rocks, content (%) of shallow water carbonate rocks, content (%) of biograins with limemud, content (%) of thin- bedded siliceous rocks and content (%) of deep water sedimentary rocks. Six single factors maps of the Wujiaping Stage and one lithofacies palaeogeography map of the Wujiaping Age were composed. Palaeogeographic units from west to east include an eroded area, an alluvial plain, a clastic rock platform, a carbonate rock platform where biocrowds developed, a slope and a basin. In addition, a clastic rock platform exists in the southeast of the study area. Hydro- carbon source rock and reservoir conditions were preliminarily analyzed based on lithofacies palaeogeography.
    [Show full text]
  • Supplemental Information
    Supplemental information Table S1 Sample information for the 36 Bactrocera minax populations and 8 Bactrocera tsuneonis populations used in this study Species Collection site Code Latitude Longitude Accession number B. minax Shimen County, Changde SM 29.6536°N 111.0646°E MK121987 - City, Hunan Province MK122016 Hongjiang County, HJ 27.2104°N 109.7884°E MK122052 - Huaihua City, Hunan MK122111 Province 27.2208°N 109.7694°E MK122112 - MK122144 Jingzhou Miao and Dong JZ 26.6774°N 109.7341°E MK122145 - Autonomous County, MK122174 Huaihua City, Hunan Province Mayang Miao MY 27.8036°N 109.8247°E MK122175 - Autonomous County, MK122204 Huaihua City, Hunan Province Luodian county, Qiannan LD 25.3426°N 106.6638°E MK124218 - Buyi and Miao MK124245 Autonomous Prefecture, Guizhou Province Dongkou County, DK 27.0806°N 110.7209°E MK122205 - Shaoyang City, Hunan MK122234 Province Shaodong County, SD 27.2478°N 111.8964°E MK122235 - Shaoyang City, Hunan MK122264 Province 27.2056°N 111.8245°E MK122265 - MK122284 Xinning County, XN 26.4652°N 110.7256°E MK122022 - Shaoyang City,Hunan MK122051 Province 26.5387°N 110.7586°E MK122285 - MK122298 Baojing County, Xiangxi BJ 28.6154°N 109.4081°E MK122299 - Tujia and Miao MK122328 Autonomous Prefecture, Hunan Province 28.2802°N 109.4581°E MK122329 - MK122358 Guzhang County, GZ 28.6171°N 109.9508°E MK122359 - Xiangxi Tujia and Miao MK122388 Autonomous Prefecture, Hunan Province Luxi County, Xiangxi LX 28.2341°N 110.0571°E MK122389 - Tujia and Miao MK122407 Autonomous Prefecture, Hunan Province Yongshun County, YS 29.0023°N
    [Show full text]
  • Uranium Enrichment in a Paleo-Karstic Bauxite Deposit, Yunfeng, SW China Mineralogy, Geochemistry, Transport
    Journal of Geochemical Exploration 190 (2018) 424–435 Contents lists available at ScienceDirect Journal of Geochemical Exploration journal homepage: www.elsevier.com/locate/gexplo Uranium enrichment in a paleo-karstic bauxite deposit, Yunfeng, SW China: T Mineralogy, geochemistry, transport – deposition mechanisms and significance for uranium exploration ⁎ Yongzhen Longa,b, Guoxiang Chic, , Jianping Liua,b, Dexian Zhanga,b, Hao Songc,d a Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China b School of Geosciences and Info-Physics, Central South University, Changsha 410083, China c Department of Geology, University of Regina, Saskatchewan, S4S 0A2, Canada d Chengdu University of Technology, Chengdu, 610059, China ARTICLE INFO ABSTRACT Keywords: Elevated concentrations of uranium have been found in many bauxite deposits, but the status of uranium in the Paleo-karstic ores and the mechanisms of enrichment have not been well understood. In this paper, we report a new case of Bauxite deposit uranium enrichment in a paleo-karstic bauxite deposit at Yunfeng, southwestern China, present electron probe Uranium minerals micro-analyzer (EPMA) and Raman spectroscopic evidence for the presence of separate U-minerals, and propose EPMA a model in which uranium was enriched through successive processes from chemical weathering through early Raman spectroscopy to burial diagenesis. The Yunfeng bauxite ores, developed in Lower Carboniferous mudrocks overlying Middle to Yunfeng Guizhou Upper Cambrian carbonate rocks, contain 18.0 to 62.4 ppm (average 35.1 ppm) U, which is much high than the abundances in average crustal rocks (1–3 ppm). Micron-sized uraninite occurs as rims of Ti-oxides, fillings of micro-fractures in kaolinite, and disseminated grains in association with sulfides in the matrix of diaspore and kaolinite.
    [Show full text]
  • GFF Comments on Some Important Issues Concerning The
    This article was downloaded by: [Jin Peng] On: 12 June 2014, At: 08:59 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK GFF Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/sgff20 Comments on some important issues concerning the establishment of a GSSP for Cambrian Stage 5 Yuanlong Zhaoa, Jinliang Yuanb, Qingjun Guoc, Jin Penga, Leiming Yinb, Xinglian Yanga, Chunjiang Wangd & Haijing Suna a College of Resource and Environment Engineering of Guizhou University, Guiyang 550025, China; b Nanjing Institute of Geology and Palaeontology, The Chinese Academy of Sciences, Nanjing 210008, China c Institute of Geographic Sciences and Natural Resources Research, Center for Environmental Remediation, Chinese Academy of Sciences, Beijing 100101, China d State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China Published online: 28 Feb 2014. To cite this article: Yuanlong Zhao, Jinliang Yuan, Qingjun Guo, Jin Peng, Leiming Yin, Xinglian Yang, Chunjiang Wang & Haijing Sun (2014) Comments on some important issues concerning the establishment of a GSSP for Cambrian Stage 5, GFF, 136:1, 333-336, DOI: 10.1080/11035897.2014.884629 To link to this article: http://dx.doi.org/10.1080/11035897.2014.884629 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content.
    [Show full text]
  • Directors, Supervisors and Parties Involved in the [Redacted]
    THIS DOCUMENT IS IN DRAFT FORM. THE INFORMATION CONTAINED HEREIN IS INCOMPLETE AND IS SUBJECT TO CHANGE. THIS DOCUMENT MUST BE READ IN CONJUNCTION WITH THE SECTION HEADED “WARNING” ON THE COVER OF THIS DOCUMENT. DIRECTORS, SUPERVISORS AND PARTIES INVOLVED IN THE [REDACTED] DIRECTORS Name Address Nationality Executive Directors Mr. LI Zhiming No. 10-8-3, Dong Ting Yi Cun, Chinese (李志明) Wuchang District, Wuhan, Hubei Province, PRC Mr. XU An No. 5, Jianshe Road, Chinese (許安) Xixiu District, Anshun, Guizhou Province, PRC Non-executive Directors Mr. YANG Mingshang Sub No. 13, Unit 2, Chinese (楊明尚) No. 1, Shiling Street, Nanming District, Guiyang, Guizhou Province, PRC Mr. CHEN Yongjun No. 1102, Unit 2 Chinese (陳永軍) Building 903, Bihai Qiantu, Bihai Garden, Jinyang New District, Yunyan District, Guiyang, Guizhou Province, PRC Ms. GONG Taotao 14G, Zi Teng Xuan, Chinese (龔濤濤) Cai Tian Ming Yuan, Futian District, Shenzhen, Guangdong Province, PRC Mr. LU Lin Unit 1, Building 3, Chinese (盧麟) No. 71 Guanjing Road, Honghuagang District, Zunyi, Guizhou Province, PRC –79– THIS DOCUMENT IS IN DRAFT FORM. THE INFORMATION CONTAINED HEREIN IS INCOMPLETE AND IS SUBJECT TO CHANGE. THIS DOCUMENT MUST BE READ IN CONJUNCTION WITH THE SECTION HEADED “WARNING” ON THE COVER OF THIS DOCUMENT. DIRECTORS, SUPERVISORS AND PARTIES INVOLVED IN THE [REDACTED] Name Address Nationality Independent Non-executive Directors Mr. TANG Xin No.143, Block Northwestern 1, Chinese (湯欣) Tsinghua University, Haidian District, Beijing, PRC Mr. WANG Gefan Room 401, Suite 2, Building No. 10, Chinese (王革凡) Guoyingyuan Xiaoqu, Xicheng District, Beijing, PRC Mr. SONG Ke Room 15004, Chinese (宋科) No.
    [Show full text]
  • Report on Domestic Animal Genetic Resources in China
    Country Report for the Preparation of the First Report on the State of the World’s Animal Genetic Resources Report on Domestic Animal Genetic Resources in China June 2003 Beijing CONTENTS Executive Summary Biological diversity is the basis for the existence and development of human society and has aroused the increasing great attention of international society. In June 1992, more than 150 countries including China had jointly signed the "Pact of Biological Diversity". Domestic animal genetic resources are an important component of biological diversity, precious resources formed through long-term evolution, and also the closest and most direct part of relation with human beings. Therefore, in order to realize a sustainable, stable and high-efficient animal production, it is of great significance to meet even higher demand for animal and poultry product varieties and quality by human society, strengthen conservation, and effective, rational and sustainable utilization of animal and poultry genetic resources. The "Report on Domestic Animal Genetic Resources in China" (hereinafter referred to as the "Report") was compiled in accordance with the requirements of the "World Status of Animal Genetic Resource " compiled by the FAO. The Ministry of Agriculture" (MOA) has attached great importance to the compilation of the Report, organized nearly 20 experts from administrative, technical extension, research institutes and universities to participate in the compilation team. In 1999, the first meeting of the compilation staff members had been held in the National Animal Husbandry and Veterinary Service, discussed on the compilation outline and division of labor in the Report compilation, and smoothly fulfilled the tasks to each of the compilers.
    [Show full text]
  • Discovery of Sponge Body Fossils from the Late Meishucunian (Cambrian)At Jinsha , Guizhou, South China*
    PROGRESS IN NATURAL SCIENCE Vol .15 , No .8 , August 2005 Discovery of sponge body fossils from the late Meishucunian (Cambrian)at Jinsha , Guizhou, south China* YANG Xinglian1, 2** , ZHAO Yuanlong2 , WANG Yue2 and WANG Pingli2 (1 .Nanjing Institute of Geology and Palaeontology , Chinese Academy of S ciences, Nanjing 210008 , C hina;2 .Institute of Resource and Environm ent , Guizhou University , Guiyang 550003 , China) Received December 28 , 2004 ;revised March 3 , 2005 Abstract Here w e report discovery of a sponge body fossil Triticispongia sp .from the base of low er Camb rian Niu titang Forma- tion at Jinsha , Guizhou .Stratigraphically , the fossil horizon is located below Ni-Mo ore layer with the Niutitang Biota above , and is equiv- alent to the late Meishucunian .The species is global in shape with skeletons composed of stau ractins and monaxons.Triticispongia sp .re- ported here may be the earliest sponge body fossils of Cambrian , w hich provides new information for understanding early evolution and ra- diation of sponge animals. Keywords: sponges, Cambrian, Niutitang Formation, Guizhou, China . Since abundant sponges and large bivalved first radiation of sponges should happen in the Niuti- arthropods from the low er Cambrian Niutitang For- tang time interval[ 8] . mation at Sancha , Dayong , Hunan Province were discovered[ 1, 2] , much attention has been paid to why Here we report the earliest sponge body fossils there are so many fossils preserved in the early Cam- located below Ni-M o ore layer from the late Meishu- brian black shale in this oxy gen-deficient environ- cunian pelitic silicalite , siliceous mudstone at the base ment .During recent years , m any w ell preserved mul- of the Niutitang Formation in Jinsha , Guizhou ti-phyla fossils were reported from the early Cambrian (Fig .1).Energy-dispersive X-ray (EDX) analysis [ 3—5] black shale no t only in Guizhou Province , but al- revealed that the sponge spicules are com posed of SiO 2 so in western Zhejiang and southern Anhui[ 6, 7] , south (Fig .2).
    [Show full text]
  • Guiyang Today
    今日贵阳 GUIYANG TODAY October 2020 (the Seventeenth Issue) Guiyang Foreign Affairs Office Guiyang Daily Guiyang and Gui’an New Area Embark on the Journey of Integrated Development Huaxi University Town in Gui'an New Area (provided by the Office of the Administrative Committee) The 9th plenary session of the 10th CPC Guiyang Municipal Committee was held on August 7, 2020, during which new deployment was put forward to promote the integrated growth of Guiyang and Gui’an New Area. According to the session, we should follow new development concepts, strive for high-end, green and intensive development, uphold high standards and requirements and accelerate high-level opening up to promote high-quality growth. Following the main line of “building up the city, increasing its popularity, and attracting investment to develop industries”, with the vision of “introduction of quality products and brands for the prosperity of over 100 industries”, we endeavor to develop an economic growth pole in western China, a new highland for inland open economy and an ecological civilization demonstration zone. Why choose integrated development? Profile of Gui’an New Area Gui’an New Area features open development, boost the development of opening up, coordinated and concerted Gui’an New Area is the eighth state-level terrain and convenient location. It plays an its surrounding areas and bring into full reform and innovation, sharing of public new area approved by the State Council on indispensable role in promoting industrial play its leading role as the capital city services, joint protection and treatment of Jan. 6, 2014. Located between Guiyang and development of Guizhou Province.
    [Show full text]
  • Table of Codes for Each Court of Each Level
    Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115
    [Show full text]
  • Mercury Accumulation in Vegetable Houttuynia Cordata Thunb. from Two
    www.nature.com/scientificreports OPEN Mercury accumulation in vegetable Houttuynia cordata Thunb. from two diferent geological areas in southwest China and implications for human consumption Qingfeng Wang1,2*, Zhonggen Li1,2, Xinbin Feng2, Ao Wang4, Xinyu Li2,3, Dan Wang1 & Leilei Fan1 Houttuynia cordata Thunb. (HCT) is a common vegetable native to southwest China, and grown for consumption. The results suggested that THg contents in all parts and MeHg in underground parts of HCT in Hg mining areas were much higher than those in non-Hg mining areas. The highest THg and MeHg content of HCT were found in the roots, followed by the other tissues in the sequence: roots > leaves > rhizomes > aboveground stems (THg), and roots > rhizomes > aboveground stems > leaves (MeHg). The average THg bioaccumulation factor (BCF) of HCT root in the Hg mining area and in non-Hg mining areas could reach 1.02 ± 0.71 and 0.99 ± 0.71 respectively, indicating that HCT is a Hg accumulator. And the THg and MeHg contents in all tissues of HCT, including the leaves, were signifcantly correlated with THg and MeHg content in the soil. Additionally, preferred dietary habits of HCT consumption could directly afect the Hg exposure risk. Consuming the aboveground parts (CAP) of HCT potentially poses a high THg exposure risk and consuming the underground parts (CUP) may lead to a relatively high MeHg exposure risk. Only consuming the rhizomes (OCR) of the underground parts could signifcantly reduce the exposure risk of THg and to some extent of MeHg. In summary, HCT should not be cultivated near the Hg contaminated sites, such as Hg tailings, as it is associated with a greater risk of Hg exposure and high root Hg levels, and the roots should be removed before consumption to reduce the Hg risk.
    [Show full text]
  • (RCC) DAMS “Celebration for 30 Years’ Application of RCC in Dams”
    th 5 INTERNATIONAL SYMPOSIUM ON ROLLER COMPACTED CONCRETE (RCC) DAMS “Celebration for 30 years’ application of RCC in Dams” Sponsored By: Chinese National Committee on Large Dams Spanish National Committee on Large Dams Technical Committee on RCC dams, CSHEE Technical Committee on RCC dams, CHES Guizhou Wujiang Hydropower Development Co. Ltd. Guizhou Branch, China Huadian Corporation Other sponsors to be invited Organized By: China Institute of Water Resources and Hydropower Research Co-sponsored By: National Natural Science Foundation of China (NNSFC) International Commission on Large Dams (ICOLD) Longyou Wuqiang Concrete Admixture Co., Ltd. China Three Gorges Project Corporation Longtan Hydropower Development Co., Ltd. Chengdu Hydropower Investigation, Design & Research Institute, CHECC Guiyang Hydropower Investigation, Design & Research Institute, CHECC Mid-South Design and Research Institute, CHECC Kunming Hydropower Investigation, Design & Research Institute, CHECC Guizhou Society for Hydroelectric Engineering Guizhou Survey, Design and Research Institute for Water Resources and Hydropower Sinohydro Corporation Sinohydro Engineering Bureau Minjiang Sinohydro Engineering Bureau 7 Sinohydro Engineering Bureau 8 Sinohydro Engineering Bureau 9 Nanjing Hydraulic Research Institute Jiangsu Bote New Materials Co., Ltd. Other Corporations, Companies and Institutes to be invited ADVISORY COMMITTEE Chairman LU Youmei Chairman, Chinese National Committee on Large Dams (CHINCOLD) Vice-Chairmen GAO Bo Department of International Cooperation, Science and Technology, the Ministry of Water Resources KUANG Shangfu China Institute of Water Resources and Hydropower Research MEI Jinyu Technical Committee on RCC dams, CSHEE LI Chunmin Technical Committee on RCC dams, CHES FAN Jixiang Sinohydro Corporation Members De Vivo (France) International Commission on Large Dams (ICOLD) ZHENG Sheng’an Chengdu Hydropower Investigation, Design & Research Institute, CHECC DAI Bo Longtan Hydropower Development Co.,Ltd.
    [Show full text]