Expression Génique Au Cours De La Différenciation De L'épiderme Humain

Total Page:16

File Type:pdf, Size:1020Kb

Expression Génique Au Cours De La Différenciation De L'épiderme Humain UNIVERSITÉ TOULOUSE III - PAUL SABATIER U.F.R. Sciences de la Vie et de la Terre (SVT) École Doctorale Biologie-Santé-Biotechnologies THÈSE Pour l’obtention du grade de DOCTEUR DE L’UNIVERSITÉ TOULOUSE III Spécialité Biologie Cellulaire et Moléculaire Présentée et soutenue par Eve TOULZA le 20 octobre 2006 EXPRESSION GÉNIQUE AU COURS DE LA DIFFÉRENCIATION DE L’ÉPIDERME HUMAIN Jury : David CRIBBS Président Thierry MAGNALDO Rapporteur Philippe MUSETTE Rapporteur Daniel ABERDAM Examinateur Guy SERRE Examinateur Marina GUERRIN WEBER Directeur de thèse Unité Différenciation Épidermique et Auto-immunité Rhumatoïde UMR 5165 CNRS – Université Toulouse III, Faculté de Médecine 37, allées J. Guesde - 31073 Toulouse 1 Cette thèse, pour vous qui me lisez, c’est 282 pages, 41 illustrations, 64 762 mots, 431 168 caractères et 385 références. Mais pour moi ce fût aussi : – 152 minibanques – plus de 100 000 clones – 22 585 ORESTES – 27 000 séquences – 54 plaques de 384 puits – 1200 unités de Taq – 1 demi-milliard de cellules – 288 heures d’enseignement – 23 litres de LB – 18 flacons de trypsine – 760 microgrammes d’ARN – 550 litres de café – 468 000 marches d’escalier – 1 225 grammes d’agarose – 2,66 m² de bureau – 322 amorces de PCR quantitative – 80 gigaoctets de fichiers – 130 kilogrammes de documents – 4 ans de bons moments... 3 Remerciements J’exprime toute ma gratitude à Guy Serre pour m’avoir accueillie dans son unité. Merci de m’avoir permis de travailler dans les meilleures conditions, de m’avoir encouragée et de m’avoir fait confiance quand j’ai souhaité faire de l’enseignement. Je remercie Thierry Magnaldo, Directeur de Recherche CNRS à l’Institut Gustave Roussy (Villejuif, UPR2169 CNRS), et Philippe Musette, Professeur de dermatologie de Rouen, de me faire l’honneur d’évaluer ces travaux. Merci d’avoir accepté la lourde tâche de rapporteurs. Merci aussi à Daniel Aberdam, Directeur de Recherche INSERM (Nice, INSERM U634) et David Cribbs, Professeur de génétique à l’Université Paul Sabatier (Toulouse III) d’avoir accepté de participer au jury de cette thèse malgré un emploi du temps chargé. Mes remerciements les plus sincères à Marina Guerrin Weber, mon directeur de thèse. Sa passion pour son métier, son enthousiasme, son exigence et le soutien auquel j’ai eu droit tout au long de ces travaux, qu’il soit moral ou intellectuel, resteront mes bases et mon élan pour de futurs projets. Merci de m’avoir donné un sujet extrêmement passionnant, et de m’avoir fait confiance pendant ces 5 ans. Je voudrais également te remercier pour le temps, la disponibilité et l’énergie dont tu as fait preuve pendant cette thèse. Il me tient à coeur également d’exprimer ici toute ma reconnaissance et ma profonde amitié à Mitou Ribouchon. Mitou, tes doigts d’or, ta bonne humeur permanente et les nombreuses attentions dont tu as fait preuve à mon égard se sont révélées extrêmement précieuses depuis ton arrivée au laboratoire. Merci pour notre café du matin qui a souvent été l’occasion de plaisantes discussions. Je salue avec grand plaisir tous les membres de l’équipe et du laboratoire qui m’ont chaleureusement entourée tout au long de cette thèse. Merci en particulier à Florence Galliano pour son travail sur l’A2ML1, à Nathalie Jonca pour sa disponibilité et nos discussions enrichissantes, Hélène Gallinaro pour ses analyses immunohistochimiques. Merci à Anne Huchenq-Champagne pour avoir supporté ma pagaille avec bonne humeur. Je remercie plus particulièrement Nicolas Mattiuzzo, mon colocataire et « compagnon de transcriptome ». Merci d’avoir essayé de m’initier, en vain, au plaisir de l’analyse statistique. Merci surtout pour nos discussions concernant la biologie de l’armadillo, les chats de l’île Kerguelen ou l’alignement des orbites des planètes du système solaire sur un même plan. Merci enfin pour ta... bonhomie ! Merci également à Emilie Leclerc pour ses nombreuses relectures et ses coups de pouce salvateurs lors de la mise en forme de ce manuscrit. Merci pour ta disponibilité et pour ta bonne humeur au quotidien. Je vous souhaite à tous les deux bon courage pour vos oeuvres doctorales respectives. Céline, miss PAD6, nous avons partagé les moments d’angoisse, de doute, et parfois (?) d’espoir. Je te souhaite autant de plaisir à terminer ta rédaction que j’en ai eu à mettre un point final à ce manuscrit. Le relais qui m’a été transmis par Cécile et Rachida est désormais entre tes mains ! 5 J’ai pris beaucoup de plaisir à travailler avec les nombreux stagiaires qui ont contribué, le temps de quelques mois ou seulement de quelques séquences, à l’avancée de ces travaux : Aurélie, Christophe, Matthieu, Delphine, Emilie, Daniela, Dany, Bénédicte, Ikrame... Merci à vous. Je remercie l’équipe administrative de l’unité, Claudine, Hélène, Christel et Catherine pour leur aide (et les bons de commandes oligos toujours urgentissimes). Un grand merci à Hélène Brun et Claudie Offer du service commun de séquençage de l’IFR30 pour leur efficacité et leur gentillesse. Merci à Marie-Françoise Isaïa et Marie-Paule Henry pour leur expertise dans l’utilisation du cryotome, ou l’art de couper les poils en 4. Un merci tout particulier à Marie-Noëlle qui a partagé avec moi un coin de bureau, ainsi que quelques analyses de séquences... Je remercie nos collaborateurs du Genoscope et du centre de bioinformatique de Bordeaux pour leur aide dans la production et l’analyse des séquences. Merci aussi à Christian Vincent et Aurélien Rougemont pour leur aide dans la construction de la première base de données... et à Jim Kent pour son extraordinaire genome browser ! Merci aux enseignants de l’Université Paul Sabatier de m’avoir fait confiance pendant ces 3 ans de monitorat et cette dernière année d’ATER, Martine Briet, Pascale Belenguer, Gwenaëlle Fichant, Catherine Mathé et Pierre Ferrer. Merci infiniment à ce dernier de m’avoir encouragée à me diriger vers le DEA de biologie moléculaire. Merci à Michel Weber pour m’avoir acceptée au sein de sa formation doctorale, ainsi que pour l’aide qu’il m’a apportée dans l’utilisation du genome browser de l’UCSC. Merci enfin à Bruno Dagues et Bernadette Santoni du Centre d’Initiation à l’Enseignement Supérieur de Toulouse pour m’avoir permis de continuer à enseigner grâce à un support ATER spécifique. Merci à mesdames Casanova et Sutra, professeurs de biologie, respectivement au collège Victor Hugo de Lavelanet et au lycée de Mirepoix, de m’avoir transmis leur savoir et leur passion. Enfin et surtout, merci à mes proches de m’avoir supportée, au sens propre comme au sens figuré. Maman, Vital et Pierre-Guy, merci de votre patience. Charles, tu as traversé ces 4 années de thèse avec moi. Merci pour ton soutien et ta compréhension. Vous avez subi mes humeurs et mes états d’âme au quotidien, cette thèse n’existerait pas sans vous tous. Je dédie cette thèse à la mémoire de mon père. 6 Liste des abréviations aa : acides aminés ADN : Acide Désoxyribo-Nucléique ADNc : ADN Complémentaire AMP : Adénosine Mono-Phosphate AMPc : AMP cyclique ARN : Acide Ribo-Nucléique ARNm : ARN messager ATF : Activating Transcription Factor ATP : Adenosine Tri-Phosphate BAC : Bacterial Artificial Chromosome CCD : Charge-Coupled Device CDE : Complexe de Différenciation Epidermique CMH : Complexe Majeur d’Histocompatibilité CRE : cAMP Responsive Element Ct : threshold Cycle Dnase : deoxyribonuclease EBS : Epidermolyse Bulleuse Simple EDC : Epidermal Differentiation Complex EST : Expressed Sequence Tags FRET : Fluorescence Resonance Energy Transfer HT-ISH : High Throughput In Situ Hybridization GAPDH : GlycerAldehyde 3-Phosphate DesHydrogenase GFP : Green Fluorescent Protein GLGI : Generation of Longer cDNA fragments from SAGE tags for Gene Identification GPI : glycosylphosphatidylinositol HLA : Human Leukocyte Antigen IFAP : Intermediate Filament Associated Protein IL : interleukine IP3 : Inositol tri-phosphate kDa : kilodaltons LEF1 : Lymphoid enhancer-binding factor-1 LPS : lipopolysaccharide MAPK : Mitogen-Activated Protein Kinase pb : paire(s) de bases PCR : Polymerase Chain Reaction PGN : peptidoglycane RE : Réticulum Endoplasmique RT : Reverse Transcription SAGE : Serial Analysis of Gene Expression siRNA : small interfering RNA SNP : Single Nucleotide Polymorphism SSH : Suppression Subtractive Hybridization SST : Signal Sequence Trap Tm : melting Temperature TPA : phorbol ester 12-O-tetradecanoylphorbol-13-acetate TRE : TPA Responsive Element UV : rayons ultraviolets YAC : Yeast Artificial Chromosome 7 Résumé La fonction barrière de l’épiderme est assurée par sa partie la plus superficielle, la couche cornée, constituée de cornéocytes, des cellules très intercohésives, entourées d’un milieu extracellulaire riche en lipides. Les cornéocytes résultent de la cornification, une apoptose particulière. Les éléments constitutifs de ces cellules, ainsi que les enzymes qui régulent leur détachement pour permettre la desquamation, sont principalement synthétisés par les kératinocytes de la couche cellulaire sous jacente, la couche granuleuse. Le kératinocyte granuleux correspond non seulement au stade ultime de différenciation épidermique en termes de transcription et de traduction, mais aussi au point culminant de cette activité. Ce travail concerne l’étude du transcriptome du kératinocyte granuleux de l’épiderme humain, dans le but d’identifier de nouveaux gènes pour mieux comprendre la fonction de barrière et la régulation de la desquamation de l’épiderme normal. La mise au point d’une méthode d'incubations itératives à froid dans de la trypsine de lambeaux d’épiderme provenant de pièces opératoires, a permis de dissocier progressivement les kératinocytes épidermiques à partir de la couche basale pour obtenir des fragments majoritairement constitués de cornéocytes (sans activité transcriptionnelle) et de kératinocytes granuleux. En collaboration avec le Genoscope, 22 000 EST de kératinocytes granuleux ont été produits par la technique des ORESTES. Au total, 3387 gènes ont été identifiés dans les kératinocytes granuleux, dont une centaine environ codent pour des protéines hypothétiques. Parmi eux se trouvait un gène codant pour une protéine de fonction inconnue, la dermokine. Au cours de ce travail, 13 nouvelles isoformes de ce gène ont été mises en évidence.
Recommended publications
  • Gene Prediction: the End of the Beginning Comment Colin Semple
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central http://genomebiology.com/2000/1/2/reports/4012.1 Meeting report Gene prediction: the end of the beginning comment Colin Semple Address: Department of Medical Sciences, Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK. E-mail: [email protected] Published: 28 July 2000 reviews Genome Biology 2000, 1(2):reports4012.1–4012.3 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2000/1/2/reports/4012 © GenomeBiology.com (Print ISSN 1465-6906; Online ISSN 1465-6914) Reducing genomes to genes reports A report from the conference entitled Genome Based Gene All ab initio gene prediction programs have to balance sensi- Structure Determination, Hinxton, UK, 1-2 June, 2000, tivity against accuracy. It is often only possible to detect all organised by the European Bioinformatics Institute (EBI). the real exons present in a sequence at the expense of detect- ing many false ones. Alternatively, one may accept only pre- dictions scoring above a more stringent threshold but lose The draft sequence of the human genome will become avail- those real exons that have lower scores. The trick is to try and able later this year. For some time now it has been accepted increase accuracy without any large loss of sensitivity; this deposited research that this will mark a beginning rather than an end. A vast can be done by comparing the prediction with additional, amount of work will remain to be done, from detailing independent evidence.
    [Show full text]
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • Life Will Never Be the Same Annual Genome Sequencing and Biology Meeting, Cold Spring Harbor Laboratory, USA
    Yeast Yeast 2000; 17: 241±243. Meeting Review Life will never be the same Annual Genome Sequencing and Biology Meeting, Cold Spring Harbor Laboratory, USA. May 2000 M.A. Strivens* MRC Mammalian Genetics Unit and UK Mouse Genome Centre, Harwell, UK *Correspondence to: M. A. Strivens, MRC Mammalian Genetics Unit and UK Mouse Genome Centre, Harwell, Oxfordshire OX11 0RD,UK. E-mail: [email protected] It seems appropriate that the Cold Spring Harbor The crux of the whole-genome shotgun strategy is Genome Sequencing and Biology Meeting, which the assembly technique. Gene Myers (Celera Geno- witnessed the creation of the Human Genome mics) reported on how the `double-barrelled' shot- Organization (HUGO) in 1988, should this year gun2 approach had given a signi®cant advantage to present three major advances in genomic science: the computer algorithms employed in the assembly the completion of the ®nished sequence of Droso- of the ¯y genome. The assembly system employs a phila melanogaster; the announcement that 85% of bottom-up, nucleating strategy, initially assembling the genome of Homo sapiens is now in draft small islands of sequence of high con®dence sequence; and the complete, ®nished sequence of a (diverting the assembly of repeat regions to later second human chromosome, chromosome 21. Other stages) and then searching for other sequence major sessions of the meeting focused on single (including orientation data from clone end- nucleotide polymorphisms (SNPs), ethical, legal and sequencing) to join the islands together. In addition, social implications (ELSI), as well as comparative he con®rmed a less than 0.5% error rate in the and functional genomics.
    [Show full text]
  • 9781472910042 Herding Hemingway's 1Stpass.Indb 2 9/16/2015 6:57:20 PM HERDING HEMINGWAY’ S CATS UNDERSTANDING HOW OUR GENES WORK
    Also available in the Bloomsbury Sigma series: Sex on Earth by Jules Howard p53 – The Gene that Cracked the Cancer Code by Sue Armstrong Atoms Under the Floorboards by Chris Woodford Spirals in Time by Helen Scales Chilled by Tom Jackson A is for Arsenic by Kathryn Harkup Breaking the Chains of Gravity by Amy Shira Teitel Suspicious Minds by Rob Brotherton 9781472910042_Herding Hemingway's_1stpass.indb 2 9/16/2015 6:57:20 PM HERDING HEMINGWAY ’ S CATS UNDERSTANDING HOW OUR GENES WORK Kat Arney 9781472910042_Herding Hemingway's_1stpass.indb 3 9/16/2015 6:57:20 PM Bloomsbury Sigma An imprint of Bloomsbury Publishing Plc 50 Bedford Square 1385 Broadway London New York WC1B 3DP NY 10018 UK USA www.bloomsbury.com BLOOMSBURY and the Diana logo are trademarks of Bloomsbury Publishing Plc First published 2016 Copyright © Kat Arney, 2016 Kat Arney has asserted her right under the Copyright, Designs and Patents Act, 1988, to be identifi ed as Author of this work. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system, without prior permission in writing from the publishers. No responsibility for loss caused to any individual or organisation acting on or refraining from action as a result of the material in this publication can be accepted by Bloomsbury or the author. Quote on p. XXX reprinted by permission of Edward Monkton. British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.
    [Show full text]
  • Adnc : Les Incontournables
    Chroniques génomiques ADNc : les incontournables par Bertrand JORDAN médecine/sciences 2001 ; 17 : 81-4 u tout début des années 1990, Redondant par principe (puisque l’on une exploitation informatique plus l’on peinait à séquencer une détermine les séquences partielles de sophistiquée, et surtout une prise de Aou deux centaines de kilobases clones pris au hasard dans des conscience de la nécessité de plani- d’ADN humain, et les résultats scien- banques d’ADNc), cet ensemble était fier une opération de « Très Grand tifiques de tels travaux apparaissaient analysé par des systèmes dénommés Séquençage » comme une entreprise assez minces par rapport aux efforts gene index* comparant toutes les sé- industrielle, aboutissaient, malgré et aux fonds investis [1]. quences afin de les regrouper en clus- l’absence d’une révolution technique ters censés représenter chacun un majeure, à rendre la lecture de méga- Les débuts des EST transcrit : c’est à partir de ces données bases d’ADN possible et presque qu’avait été faite l’estimation d’envi- abordable. Ces progrès devinrent évi- L’option des ADNc, leur déchiffrage ron 100 000 gènes humains dents pour tous avec l’obtention en partiel mais massif apparurent vite aujourd’hui très discutée [3]. L’utilité 1996 de la séquence complète de la comme une alternative réaliste au sé- des EST fut encore renforcée par la levure. Les 13 mégabases déchiffrées quençage intégral. Lancée en franc-ti- localisation d’un grand nombre constituaient de loin le plus important reur par Craig Venter [2], très large- d’entre eux sur notre génome : effec- ensemble jamais obtenu, et mon- ment médiatisée par le scandale que tuée massivement grâce à l’emploi des traient que de tels projets étaient de- soulevèrent les tentatives de brevets hybrides d’irradiation, celle-ci devait venus viables ; et l’utilité de ces don- sur ces séquences partielles, l’ap- aboutir en 1998 au positionnement de nées était attestée par la découverte proche des EST (expressed sequence plus de 30 000 étiquettes [4].
    [Show full text]
  • What Is a Gene, Post-ENCODE? History and Updated Definition
    Downloaded from genome.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Perspective What is a gene, post-ENCODE? History and updated definition Mark B. Gerstein,1,2,3,9 Can Bruce,2,4 Joel S. Rozowsky,2 Deyou Zheng,2 Jiang Du,3 Jan O. Korbel,2,5 Olof Emanuelsson,6 Zhengdong D. Zhang,2 Sherman Weissman,7 and Michael Snyder2,8 1Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut 06511, USA; 2Molecular Biophysics & Biochemistry Department, Yale University, New Haven, Connecticut 06511, USA; 3Computer Science Department, Yale University, New Haven, Connecticut 06511, USA; 4Center for Medical Informatics, Yale University, New Haven, Connecticut 06511, USA; 5European Molecular Biology Laboratory, 69117 Heidelberg, Germany; 6Stockholm Bioinformatics Center, Albanova University Center, Stockholm University, SE-10691 Stockholm, Sweden; 7Genetics Department, Yale University, New Haven, Connecticut 06511, USA; 8Molecular, Cellular, & Developmental Biology Department, Yale University, New Haven, Connecticut 06511, USA While sequencing of the human genome surprised us with how many protein-coding genes there are, it did not fundamentally change our perspective on what a gene is. In contrast, the complex patterns of dispersed regulation and pervasive transcription uncovered by the ENCODE project, together with non-genic conservation and the abundance of noncoding RNA genes, have challenged the notion of the gene. To illustrate this, we review the evolution of operational definitions of a gene over the past century—from the abstract elements of heredity of Mendel and Morgan to the present-day ORFs enumerated in the sequence databanks. We then summarize the current ENCODE findings and provide a computational metaphor for the complexity.
    [Show full text]
  • Memoir and the Laboratory." Narrative in the Age of the Genome
    Choksey, Lara. "Memoir and the laboratory." Narrative in the Age of the Genome: . London: Bloomsbury Academic, 2021. 83–118. Bloomsbury Collections. Web. 25 Sep. 2021. <http:// dx.doi.org/10.5040/9781350102576.0009>. Downloaded from Bloomsbury Collections, www.bloomsburycollections.com, 25 September 2021, 17:03 UTC. Copyright © Lara Choksey 2021. You may share this work for non-commercial purposes only, provided you give attribution to the copyright holder and the publisher, and provide a link to the Creative Commons licence. 3 Memoir and the laboratory The Human Genome Project took place in the same decade that saw a proliferation of popular memoirs in Anglo American publishing, heaving on airport bestseller shelves and piling up on buffet tables in chain bookshops. The extension of chain bookshops from the high street to warehouse superstores in shopping parks on the outskirts of cities meant a boom for popular non-fiction. Biotechnology was also going through a moment in the sun, with billions invested in laboratories around the world working to sequence the human genome, and the bulk of funding coming from the United States. To justify massive amounts of funding, and to ensure a legacy for the project and its key players, several of the Human Genome Project’s main protagonists published science memoirs of the project. These memoirs – particularly James Watson’sDNA: The Secret of Life (2003) and J. Craig Venter’s A Life Decoded: My Genome, My Life (2007) – quickly ascended bestseller lists, sandwiched between sports stars and film actors. Venter and Watson draw techniques from the blockbuster memoir: a constant (often explicit) refrain of ‘you won’t believe what happened next’, cascading vignettes of overcoming obstacles for the sake of a higher goal, shock twists in the tale and a cast of protagonists, antagonists and commodities plucked from the thrillers and romances that competed for shelf space.
    [Show full text]
  • WHAT IS a GENE? the Idea of Genes As Beads on a DNA String Is Fast Fading
    25.5 gene MH 22/5/06 2:53 PM Page 398 NEWS FEATURE NATURE|Vol 441|25 May 2006 C DARKIN © 2006 Nature Publishing Group 25.5 gene MH 22/5/06 2:53 PM Page 399 NATURE|Vol 441|25 May 2006 NEWS FEATURE C. DARKIN WHAT IS A GENE? The idea of genes as beads on a DNA string is fast fading. Protein-coding sequences have no clear beginning or end and RNA is a key part of the information package, reports Helen Pearson. ene’ is not a typical four-letter Laurence Hurst at the University of Bath, UK. viously unimagined scope of RNA. word. It is not offensive. It is never “All of that information seriously challenges The one gene, one protein idea is coming bleeped out of TV shows. And our conventional definition of a gene,” says under particular assault from researchers who ‘Gwhere the meaning of most four- molecular biologist Bing Ren at the University are comprehensively extracting and analysing letter words is all too clear, that of gene is not. of California, San Diego. And the information the RNA messages, or transcripts, manufac- The more expert scientists become in molecu- challenge is about to get even tougher. Later tured by genomes, including the human and lar genetics, the less easy it is to be sure about this year, a glut of data will be released from mouse genome. Researchers led by Thomas what, if anything, a gene actually is. the international Encyclopedia of DNA Ele- Gingeras at the company Affymetrix in Santa Rick Young, a geneticist at the Whitehead ments (ENCODE) project.
    [Show full text]
  • The Mental Health Between Epigenetics and Individual Beliefs
    Mental Health Global Challenges XXI Century Dramnescu Marin Conference proceedings – 2018 The mental health between epigenetics and individual beliefs Dramnescu Marin Bucharest Academy of Economic Studies, Bucharest, Romania Abstract. Mental health is an integrative concept that is not limited to dysfunctions or accentuations of psychic processes or mechanisms of thought. The research effort focused on the idea that mental health is a functional optimum found at the intersection of cellular behavior, the physical environment, the external environment, with all its subtypes, the environment in which the individual manifests itself and the subjective, psychological environment, dominated mainly by unconscious behavioral routines, beliefs, values, and ultimately individual perspective on life. Mental health represents and manifests itself as an emerging process resulting from the correlated functioning of the biological, physiological, and in particular cellular mechanisms, the various, random and / or permanent influences and stimuli of the physical, social and professional environment and the superior motivational structures of the type of beliefs and individual perspective on life. Epigenetics is a contemporary discipline derived from genetics that includes the environmental context as an important part of heredity. Currently, this discipline strongly influences a variety of areas, including medicine, psychiatry and psychology. Keywords. Mental Health, Cell Behavior, Epigenetic Approach, Beliefs. 1. Introduction It is unanimously accepted that the becoming of a person is an effect of the interaction among genetic factors, environmental factors and educational factors. Their share in the individual's development differs according to the stage of the development, but their influence on mental health in particular and on the formation of personality in general is permanent and becomes manifest throughout the ontogenetic.
    [Show full text]
  • Cartilage Disease & Regeneration Genomics in Osteoarthritis
    Darryl D’Lima, M.D. The Donald P. Shiley Visiting Lectureship Wednesday, Feb. 11, 2009 Scripps Green Hospital Cartilage Disease & Regeneration Genomics in Darryl D. D’Lima, MD, PhD Osteoarthritis Clifford W. Colwell Jr, MD Shiley Center for Shiley Center for Orthopaedic Research & Education Orthopaedic Research & Education Scripps Clinic Scripps Clinic Donald P Shiley Visiting Lectureship Donald P Shiley Visiting Lectureship February 11, 2009 February 11, 2009 Genetics Single gene disorders GENOMICS – Cystic fibrosis – Huntington’s Study of genes and how genetic variations affect function and disease Multifactorial – Heart disease – Diabetes –OA Human Genome Project Human Genome Project A GENOME the complete set of DNA HUMAN GENOME ~ 3 billion pairs of nucleotides for an organism 23 pairs of chromosomes Location of each gene on the chromosome How many genes are there? (normal volunteers) 20,000 - 75,000 C. elegans GeneSweep Winner: 24,947 1 Darryl D’Lima, M.D. The Donald P. Shiley Visiting Lectureship Wednesday, Feb. 11, 2009 Scripps Green Hospital Genome Trivia Human Genome Project Chromosome 1 has the most genes = 2968 Less than 2% of the genome codes for proteins Y (Male) chromosome has the fewest = 231 The functions are unknown for over 50% of discovered genes X (Female) chromosome = 2000 Junk DNA = repeated sequences that do not code for proteins make up at least 50% of the human genome Is This JUNK? Human Genome Project O lny srmat poelpe can raed tihs. I cdnuolt blveiee taht I cluod aulaclty uesdnatnrd waht I was rdanieg. 99.9% nucleotide bases are exactly the The phaonmneal pweor of the hmuan mnid, aoccdrnig to a same in all people rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoatnt tihng is taht the frist and lsat ltteer be in the rghit pclae.
    [Show full text]
  • Expanded Human Gene Tally Reignites Debate After 15 Years, Researchers Still Can’T Agree on How Many Genes Are in the Human Genome
    NEWS IN FOCUS GENETICS Expanded human gene tally reignites debate After 15 years, researchers still can’t agree on how many genes are in the human genome. BY CASSANDRA WILLYARD But many geneticists aren’t yet convinced an average of around 40,000. These days, the that all the newly proposed genes will stand up span of estimates has shrunk — with most now ne of the earliest attempts to estimate to close scrutiny. Their criticisms underscore between 19,000 and 22,000 — but there is still the number of genes in the human just how difficult it is to identify new genes, or disagreement (see ‘Gene tally’). genome involved tipsy geneticists, even to define what a Salzberg’s team used data from the Oa bar in Cold Spring Harbor, New York, and “People have gene is. Genotype-Tissue Expression (GTEx) pro- pure guesswork. been working “People have been ject, which sequenced RNA from more than That was in 2000, when a draft human hard at this for working hard at this 30 different tissues taken from several hundred genome sequence was still in the works; geneti- 20 years, and we for 20 years, and we cadavers. RNA is the intermediary between cists were running a sweepstake on how many still don’t have still don’t have the DNA and proteins. The researchers wanted to genes humans have, and wagers ranged from the answer.” answer,” says Steven identify genes that encode a protein and those tens of thousands to hundreds of thousands. Salzberg, a computa- that don’t, but that still have an important role Almost two decades later, scientists armed tional biologist at Johns Hopkins University in in cells.
    [Show full text]
  • The Gene Guessing Game
    Yeast Yeast 2000; 17: 218±224. Review Article The gene guessing game Ian Dunham* The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK *Correspondence to: Abstract I. Dunham, The Sanger Centre, Wellcome Trust Genome A recent ¯urry of publications and media attention has revived interest in the question of Campus, Hinxton, Cambridge how many genes exist in the human genome. Here, I review the estimates and use genomic CB10 1SA, UK. sequence data from human chromosomes 21 and 22 to establish my own prediction. Copyright # 2000 John Wiley & Sons, Ltd. Keywords: human genome; genes; DNA sequence; chromosome 22; EST Introduction functional RNAs are essential to the cell, it is the protein-coding genes that concern most gene coun- How many genes are there in the human genetic ters [4,10]. Mostly this is because the protein-coding parts list? Forget the 5 year plans [19] and the press genes must contain the bulk of the functionality and releases [18] Ð the end of the human genome therefore interest, but in part it is also because it is project will come when we have an accurate answer thought that they might be easier to count. Of to this question. Sure, there will be a few tens or course, we all know what we mean by a protein- maybe even hundreds not identi®ed, and perhaps coding gene. However these genes have a number of we won't have the full structure of every gene, but methods to increase complexity from a single region we will have a pretty good idea of how many genes of DNA, including alternative use of promoters, there are.
    [Show full text]